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PRODUCT INTEGRALS AND INVERSES
IN NORMED RINGS

JON C. HELTON

This paper concerns product integrals of functions with
values in a normed complete ring. The inverses of elements
obtained as such integrals are investigated. In particular, the
conditions under which UΓP(1 + G)]"1 exists are shown to be

S y
\G2\ = 0. Since the existence

X

of LPΓPU+G)]" 1 is connected with the existence of the product
integrals J p ( l + G ) and J K 1 — G), the study of the inverse
leads to a study of the conditions under which these integrals
exist when xYlv(l -f- G) is known to exist. Commutative and
noncommutative rings are considered.

II* Definitions* All integrals and definitions are of the subdivi-
sion-refinement type; functions are from S x S to N, where S denotes
a linearly ordered set and N denotes a ring which has a multiplicative
identity element represented by 1 and has a norm | | with respect to
which N is complete and | 1 | = 1. The statements that G is bounded,
Ge OP0, Ge OP', and Ge OB° on {α, b} mean there exist a subdivision
D of {a, b} and a number B such that if J = {xg}q=0 is a refinement of
D, then

(

(

(

(

1)
2)
3)
4)

\G(u)\

1 πj=.;
1 ILu)
s \.TI T) j

< B f o]
(1 + G9)
(1 + G)
G < JB,

respectively, where Gq -

1 <
<

= G

eJ(I),
B ίor 1 ^ i ^ j ^ 7

B, and

Kxa-i, Xa) and J(/) - ,-i, Xf)}^i Also,

( 1 ) G e 0A° on {α, 6} only if Γ G exists and Γ| G - ( G | = 0, and

( 2 ) G e OM° on {α, 6} only if . Π ' ί l + G) exists for each subdivi-

sion {a, x, v, b) of {a, b} and \"\ 1 + G - Π (1 + G)\ - 0.

The statement that G G OD° on {α, 6} means if ε > 0 then there exists
a subdivision D of {α, 6} such that if {̂ g}J=0 is a refinement of D and
1 ^ i ^ i ^ n, then

1 - Γή (1 + Gt)l Γή (1 - Gj+i^)]\ < ε

and

If N is commutative, then the preceding inequalities are equivalent
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to the requirement that

1 - Π ( 1 - G2

q)\<ε.

In the following treatment it is assumed that {α, 6} is in the linear
ordering of S. Thus, if {xq}

n

q=0 is a subdivision of {α, &}, then

( 2 ) J
( 3 ) α Π 6 ( l + G) ~ Π?-i [1 + G ( * M , a;,)], and
( 4 ) J p (1 + G) ~ Πί-i [1 + G(xn+ί_g, xn_g)].

Similar considerations hold for OP°, OF, and OB°. Note that if
G(x, y) — — G(y, x) for each subdivision {a, x, y, b} of {a, b), then

Π [1 + G(a;κ+1_,, »._,)] = Π [1 - G(x,_?( a;B+1_,)] .

We adopt the conventions that G(x, x) = 0 and Πί=r (1 + Gff) = 1 if
r > s. See B. W. Helton [2] and J. S. MacNerney [5] for additional
details.

Ill* Results: noncommutative rings*

LEMMA 3.1. If {αj^=1 is a sequence of elements of Nf then

π a +

Indication of proof. Lemma 3.1 can be established by induction.

LEMMA 3.2. If G is a function from S x S to N such that

Γ| G2| = 0 , GeOP0 on {α, 6} and {6, a} and G(x, y) = - G(y, x) for each
Ja

subdivision {a, x, y, b} of {a, b}9 then Ge OD° on {α, 6}.

Indication of proof. Lemma 3.2 follows as a corollary to Lemma

3.1.

S b

\G2\ =
0, α I P ( l + G) exists, GeOP° on {a, b} and {6, a), G{x, y) = -"&(?/, x)
for each subdivision {a, x, y, b} of {a, b} and ε > 0, then there exists
a subdivision D of {α, 6} such that if {xq}%* and {yq}%=o are refinements
of D, then
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JΠ [1 + <?(*,_,, .<>]} (Π [1 - G(y,_w ym+ί-,)]}\ < ε

and

Π Π ε .

Indication of proof. Lemma 3.3 follows by using Lemma 3.2 and
the Cauchy criterion for product integrals.

LEMMA 3.4. If G is a function from S x S to N such that G e
OD° on {a, b}, G e OP' on {a, b} and {b, a}, aΐ[

h(l + G) exists, hΐl
a(l + G)

exists and G(x, y) = — G(y, x) for each subdivision {a, x, y, b} of {a, b),
then [OIΓ(1 + G)]-1 exists and is J p (1 + G).

Proof. Let ε > 0. There exists a subdivision D of {a, b} and a
number B such that if {£„}"=<, is a refinement of D, then

(1) \IiU(± + Gq)\<B,
(2) IΠ?=ι(l-G!.+i-,)l<JB,
( 3 )

( 4 )

( 5 )

- VΆU (i + GMTίU (i - G
lΓ (1 + G) - Π?=i (1 + Gq)\<

<

(1 + G) - Π?=i (1 - G.+ 1_,)| < e(4B)-S and
( 6 ) [ε(4BΓY < ε/4.

Suppose {xg}g=0 is a refinement of D. Let P t and P 2 denote Π?=i (1 + Gq)
and Π F I (1 - <?„+!_,), respectively. Thus,

g 11 - P,P2| + UΠ*(1 + G) - Pill »Π"(1 + G) - P 2 |
+ LΠ*(l + G ) - P ι | | P ϊ | + UΠ α + GJ-P.HP.I
< ε/4 + [ε(4B)-1]2 + J5[6(4B)-'] + -B[ε(4B)-1] < e .

Therefore, [oΠδ (1 + G)]~ι exists and is ό Π α (1 + G).

THEOREM 3.1. If G is a function from S x S to N such thai

| G2| = 0, aΐl
h (1 + G) ea isίs, G e OP° on {a, b} and {b, a} and G(x, y) =

— G(v, x) for each subdivision {a, x, y, b} of {α, 6}, then
(1) &Πα (1 + G) exists, and
( 2 ) [αll b (l + G)]-1 exists and is bU

a (1 + G).

Proof. We initially use the Cauchy criterion to show that bΐ[
a(l + G)

exists. Let ε > 0. There exists a subdivision A of {a, b] and a
number J? such that if {.τff}J=0 is a refinement of A , then

Π (1 + Gq) <B
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Lemma 3.3 implies that there exists a subdivision D2 of {α, b}
such that if {xq}%0 and {s/JJU are refinements of D2, then

Πl
q=l ιM'

and

- | Π Π

Let D ~ D^ D2 and suppose {̂ 9}J=0 and {i/Ĵ -_0 are refinements of
iλ Let Px, P2, and P 3 denote

Π [1 + G(αv-i, ^)] >
q = l

and

respectively. Now,

TT π _ G(xn xn.χ- )]

Π [1 - G(ym-g, ym+i-g)] ,

ε/2> [|P8|][ε(2BΠ

— •To

Therefore, ε > | P 3 - P 2 | , and hence, δ Π σ ( l + G) exists.
Lemma 3.2 implies that Ge OD° on {α, 6}. Hence, it follows from

Lemma 3.4 that [aU
b (1 + G)]~ι exists and is ,Π α (1 + G).

LEMMA 3.5. If G is a bounded function from S x S to N such

that \b\G2\ = 0, GeOM° on {a, 6}, ^Π" (1 + G) exists and is

for each subdivision {a, x, y, b} of {α, 6}, G(x, y) = — G(τ/, α?) /or
subdivision {a, x, y, b) of {a, 6}, and [afΠ

y (1 + G)]"1 is bounded on {a, 6},
GeOM° on {6, α}.
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Proof. Since we are given that yJ[x (1 + (?) exists for each sub-
division {α, x, y, b} of {α, &}, it is only necessary to show that

l + G - Π ( l - + G ) | = 0 .

Let ε > 0. There exist a subdivision D of {a, b} and a number B
such that if {x „},=<, is a refinement of D, then

(1) 11 - G, | < £ for 1 ̂  g ^ π ,
(2) l U ^ Π ' α + G)V\ <Bΐovl£q^n,
(3) Σ?=χ 1[.^IP* (1 + G)] - [1 + Gg] | < e(2B2)-1 , and
(4) Σ -il-GJI <e(2B)-1.

Let {«,}"=o be a refinement of D and suppose P, denotes x ΠM1 + G)
for 1 sί g ̂  %. Thus,

[1 - GJ - [..Π'-Kl + G)]Σ

< v i n — (

^ r> x p I Γ1 C* Λ Γ T> ίΛ i Γ1 \ i ίΛ i Γ* W 1 1

^ t> 2J I I 1 "~ ^gJl^g — (1 + Crg; + (1 + (jrq)\ — 1 |
g = l

α l /^ \ I !_ 7? X"1 /^2 I

+ Cτg j I + IS 2u —tΓq\

Therefore, GeOM° on {6, α}.
The proof of Lemma 3.5 is essentially the same as the proof of

a previous result by the author [3, Theorem 4]. However, since the
argument is relatively brief and the setting here is somewhat different
from that in [3], the proof is included for completeness.

THEOREM 3.2. If G is a function from S x S to N such that

[b\ G2\ = 0, G e OP° on {a, b) and {by a}, G e OM° on {a, b} and G(x, y) =
Ja

— G(y, x) for each subdivision {a, x, y, b) of {a, 6}, then Ge OM° on
{b, a}.

Proof. It follows from Theorem 3.1 that J\x (1 + G) exists and
is LIP (1 + G)]~ι for each subdivision {a, x, y, b} of {a, b}. Therefore,
Theorem 3.2 follows from Lemma 3.5.

We now show that under certain restrictions the Riccati integral
equation

S y

n(r)G(r, s)n(r)
a
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has a solution in a noncommutative ring. Initially, we state two
lemmas on the product integral solution of integral equations. Both
of these lemmas are based on a result of B. W. Helton [2, Theorem
5.1, p. 310]. The hypothesis of this result has been modified to produce
the lemmas given here. However, with the use of Theorem 3.1 to
assure the existence of certain inverses, these lemmas can be established
by arguments that are essentially the same as the one given by B. W.
Helton.

LEMMA 3.6. If

(a) ae S, ke N, k~~ι exists and f is a function from S to N such
that f(a) = k, and

(b) G is a function from S x S to N such that if {α, y}eS x S,
then G e OP° on {α, y} and {y9 α}, G(u, v) = — G(v, u) for each subdivi-

ί y

\G2\ = 0,
a

then the following statements are equivalent:
(1) if {a,y}eS x S, then f(r)G(rf s) e OA° on {α, y) and

f(y) - k + \'f(r)G(r, s) ,

and

(2) if {a,y}eS x S, then G e OM° on {a, y) and

LEMMA 3.7. If

(a) ae S, ke N, k~ι exists and f is a function from S to Nsuch
that f(a) — k, and

(b) G is a function from S x S to N such that if {y, a} e
S x S, then G e OP° on {y, a) and {a, y}, G{u, v) = — G{vf u) for each

\G2\ = 0,
y

then the following statements are equivalent:
(1) if {y,a}eS x S, then G(r, s)f(s) e OA° on {y, a} and

f(v) = k+ \aG(r, s)f(s) ,
jy

and

( 2 ) if {y, a}eS x S, then Ge OM° on {y, a} and

We now establish the integral equation result. The proof presented
here was suggested by B. W. Helton's proof for the commutative
case [2, Examples 4,5, p. 320].
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THEOREM 3.3. If

(a) a e S, k e N, k~ι exists and n is a function from S to N such
that n(a) = k,

(b) G is a function from SxS to N such that if {a, y}e SxS, then
G(r, s)n(r) e OP° on {a, y}, G(r, s)n(s) e OP° on {y, a], G(u, v)=- G(v, u)
for each subdivision {a, u, v, y) of {α, y) and

\V\[G(r,s)n(r)Y\ =0 ,
Ja

and
(c) if {a, y}e S x S, then n(r)G(r, s)n(r) e OA° on {a, y) and

Cy

n(y) = k + \ n{r)G{ry s)n(r) ,
Ja

then (conclusion) if {a, y}eS x S,

niy) =

Proof. If {a, y} e S x S and H denotes the function such that if
{a, r, 8, y) is a subdivision of {α, y}, then

( 1 ) H(r, s) = GKr, s)n(r)f and

( 2 ) H(8,r) = G(8,r)n(r),
then we know the following about H: He OP0 on {α, y) and {y, a},

S y
I H2\ =

a

0, ^(r)fl(r, s) e OA° on {α, y) and

n(y) = k + \'n(r)H(r, s) .
Ja

Therefore, it follows from Lemma 3.6 that if {α, y}eSx S, then He
OM° on {a, y} and

Again, if we suppose {a, y} e S x S and define H as before, then
we know the following about H: He OP° on {α, y) and {y, a), H(u, v) —

S y

\H2\ — 0 and
HeOM° on {a, y). Thus, from Theorem 3.1, IW (I + H)\~ι exists
and is , Π α ( l + H). Further, from Theorem 3.2, HeOM° on {y, a}.
Now, since k~ι exists,

My))-1 = {kinv (1

Once more, if we suppose {a, y}eS x S and define H as before,
then we know the following about H: He OP° on {a, y} and {y, a},
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( a

\G2

0, HeOMΌ on {y, a} and

= [Jϊβ(l
Thus, from Lemma 3.7,

= Ar1 + (*G .
Jy

We have now established that if {a, y} e S x S, then

n{y) =

IV. Results: commutative rings.

THEOREM 4.1. Suppose N is commutative. If G is a function
from S x S to N such that G e OD° on {a, b}, O Π ' (1 + G) exists and
-GeOP' on {a, b}, then

( 1 ) all 4 (1 — G) exists, and
(2 ) [«IΓ (1 + G)]~ι exists and is a Π 6 (1 - G).

Proof. We use the Cauchy criterion for product integrals to show
that all 6 (1 — G) exists. Let ε > 0. There exist a subdivision D of
{a, b) and a number B such that if K and L are refinements of D, then

( 1 ) I Πsm (1 + G)\< B and | Π*m (1 - G)\ < B,
( 2 ) I ΐί*m (1 + G) ~ ILm (1 + G)\< ε(WY\ and
( 3 )

Suppose K and L are refinements of D. Let Pu P2, P3, and P 4 denote
Πim, (1 - G), Π M ) (1 - G), Π M (1 - G2), and Π m . (1 - G% respec-
tively. Thus,

- Ps]}\

| P ι P < - P 2 P 8

ILm (1 + G) - 1 (1 + G)\ + e/3

-1] + e/3
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Therefore, j p (1 - G) exists.
Since GeOD° on {a, &}, it follows readily that [αΠ

δ (1 + G)]"1

exists and is αΠ δ (1 — G).

LEMMA 4.1. Suppose N is commutative. If G is a function from
S x S to N, then the following statements are equivalent:

(1) GeOD° on {a, b} and -G2e0M° on {a, b}, and

(2) Γ

Proof (1 -»2). Since G e OD° on {a, b], J P (1 - G2) exists and is
1 for each subdivision {a, x, y, b} of {a, b}. Thus, since —G2e0M° on
{α, b},

= ΓlΠ(l -
Ja

0

Proo/ (2 — 1). Note that | - G 2 | G O P ° on {a, b}. There exist
a subdivision D of {α, 6} and a number i? such that if {xq}q=0 is a
refinement of D, then

( 1 ) Π ΰ ( l + I-GJI) < 5 for l ^ ΐ ^ i ^ ^ , and
(2) Σ;-I|G;I <S/B.

Suppose {xq}q=o is a refinement of D. Thus, if 1 ^ i ^ί j ^ n, then

1 - Π (1 - G\

Π

Π

Therefore, GeOD° on {α, 6}.

Since Γ|G2 | - 0, it follows that -G2eOA° and 05° on {a, b}.
Therefore, a~G2eOM° on {a, b) by a result of B. W. Helton [2,
Theorem 3.4, p. 301].

LEMMA 4.2. Suppose N is commutative. If G is a function from
S x S to N such that GeOD° and OP° on {α, b} and -Ge OP' on
{a, b), then -GeOPΌ on {a, b}.

Proof. There exist a subdivision H — {i/gJJU of {α, b) and a
number B > 1 such that if J = {# Jj= o is a refinement of iJ, then
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(1) \ΊLmO--G)\<B,

( 2 )

( 3 )

na + G9)

11 (1 — tr?)

< B for 1 <^ i <L j <Ξ: n, and

<B ΐoτ 1 ^i^j <^n .

Suppose — (?g OP0 on {α, 6}. Hence, there exist sequences {Pi}T=u {Qi}ΐ=ι
and {ΐZi}Γ=i and positive integers r and s such that

( 1 ) l ^ r ^ s ^ m , {Vr-i, pif yr) is a subdivision of {yr-.ι, vλ a n ( i
{2/.-1, ?*, 2/.} is a subdivision of {|/β-1, y,}, and

( 2 ) Hi is a subdivision of {pif qt} such that i < | Π^4(/)(l -* G)\
and if r < s then {yjj^ S -Hi-

Let i be a positive integer such that i > 3 + B3. Further, let
P= I Π ^ i ί ί l - G)\ and let J=H\jHi. Since GeOD° on [a, b},
there exist subdivisions K and L of {α, p j and {qiy b], respectively,
such that

( 1 ) {Wff};=ϊ s X and {yj^. £ L,
( 2 ) I [ 7 | < (PB)-1, where U = 1 - Π*m (1 - G2), and
( 3 ) \V\< (PB)~\ where 7 = 1 - Π*</> (1 ~ ^2)

Thus,

+ Π K D (1 - G2)] [ Π ^ i , (1 - G)] [IL(« (1 - G2) + V] I

+ I ILnr, (1 + G)| I Π/d) (1 ~ G)\ I Πw) (1 + G)\

< (PB)(PB)~l + P(PB)~2 + B* + (PB)(PB)~ι

< 3 + Bs <i.

This is a contradiction, and therefore, — G e OP° on {α, b}.

THEOREM 4.2. Suppose N is commutative. If G is a function
from S x S to N such that Ge OP° and OM° on {a, b}, -Ge OP' on

{a, b} and[b\G*\ = 0, then -GeOM0 on {a, b}.

Proof. It follows from Theorem 4.1 that xY[y (1 - G) exists and
is [χΐly (1 + G)]~x for each subdivision {α, x, y, b} of {α, b}. Further,
since GeOD° on {α, 6} by Lemma 4.1, Lemma 4.2 implies that — Ge
OP° on {α, &}. Therefore, it follows from Lemma 3.5 that -GeOM0

on {α, 6}.

THEOREM 4.3. Suppose N is commutative. If G is a function
from S x S to N such that xJly (1 + G) and xJJy (1 — G) exist and
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LIP (1 + G)]"1 exists and is xJly (1 — G) for each subdivision {α, x, y, b}
of {a, b}, then GeOD° on {a, b}.

Proof. Suppose G i OD° on {α, 6}. Hence, there exists a positive
number ε such that if H is a subdivision of {a, b) then there exist
a refinement {xq}q=0 of H and integers i and j such that 1 <£ i ^ j S n
and

1 - Π (1 - G\)
i

> ε .

For convenience, suppose 1 > ε. Note that x]Jy (1 — G2) exists and is
1 for each subdivision {a, x, y, b) of {a, b}. Thus, there exists a sub-
division H of {α, 6} such that if / is a refinement of H, then

Hence, there exist a refinement {a?ff}J=0 of H and integers i and j such
that 1 ^ i ^ i ^ n and

1 - Π (1 - > ε .

Let ifi and K2 represent {xqYqz\ and {xq}%if respectively. Further, let

τ> + 1.

There exist refinements Lx and L2 of Kx and ίΓ2, respectively, such that
(1) I - 1 + πv» (1 - G2) | < s(4P)-S and
(2) ! - l + Π L 2 u ) α - G 2 ) | <

Let J = L, U H U L2. Thus,

1 - [1 - 1 + ΠΛI(,, (1 -

x [l - l + Π*2u) (i -

ή

Π (1
i

- G2)\

> ε - P[e(4P)~1] - P[ε(4P)~ι] - P[ε(4P)-γ > e/4 .

This is a contradiction, and therefore, G e OZ>° on {a, b}.

REMARK 1. B. W. Helton [2, §6] gives product integral techniques
for solving certain types of integral equations in commutative rings.
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An important condition in this development is that

[JP(1 + G)r = JΓ (1 - G) .

In particular, see Examples 4 and 5 [2, p. 320]. Thus, the results
in this section can be applied to the solution of certain Riccati type
integral equations.

REMARK 2. Related results are obtained by J. S. MacNerney [5,
§7]. However, in that development the functions under consideration
are required to have bounded variation. We do not require bounded
variation in this development. However, the functions here are often
required to belong to the set OP°. As noted by B. W. Helton [2,
p. 299], the set of functions of bounded variation is a proper subset

G21 = 0 does not imply
a

that G has bounded variation. W. P. Davis and J. A. Chatfield [1,

p. 747] give a function G such that Γ| G2| = 0, αΠ δ (1 + G) exists and
Ja

is not zero, and G does not have bounded variation. In addition,
J. V. Herod [4] has also investigated the existence of inverses in a
setting similar to the one studied by MacNerney.

REMARK 3. Related results are also obtained in a previous paper
by the author [3, Theorems 2, 3, 4, 5]. However, conditions relating
to commutativity or the existence of inverses are required there that
are not required here.
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