STRICTLY LOCAL SOLUTIONS OF DIOPHANTINE EQUATIONS

MARVIN J. GREENBERG

For any system f of Diophantine equations, there exist positive integers C(f), D(f) with the following properties: For any nonnegative integer n, for any prime p, if v is the p-adic valuation, and if a vector x of integers satisfies the inequality

$$v(f(x)) > C(f)n + v(D(f))$$

then there is an algebraic p-adic integral solution y to the system f such that

$$v(x-y) > n \; .$$

This theorem is proved by techniques of algebraic geometry in the more general setting of Noetherian domains of characteristic zero. When f is just a single equation, the method of Birch and McCann gives an effective determination of C(f)and D(f).

Let R be a Noetherian integral domain, K its field of fractions. We will consider *Henselian discrete valuation rings* R_v (see [4]) containing R, where v is the valuation normalized so that $v(R_v)$ is the set of nonnegative integers (plus ∞). If $f = (f_1, \dots, f_r)$ is a system of r polynomials in s variables with coefficients in R, and x is an s-tuple with coordinates in an extension ring of R, we set $f(x) = (f_1(x), \dots, f_r(x))$. We define the valuation of an r-tuple (or s-tuple) to be the minimum of the valuations of its components.

THEOREM. Assume R has characteristic zero. For each system f of polynomials with coefficients in R, there exists an integer $C(f) \ge 1$ and an element $D(f) \ne 0$ in R with the following property: For any Henselian discrete valuation ring R_v containing R, and any nonnegative integer n, if an s-tuple x with components in R satisfies the inequality

(1)
$$v(f(x)) > C(f)n + v(D(f))$$

then there is a zero y of f in R_v such that

$$v(x-y) > n$$
.

In particular, if R is the ring of algebraic integers in a number field, and we take n = 0, S = set of primes dividing D(f), then we recover Greenleaf's theorem [3] to the effect that if $p \notin S$, then every zero of $f \mod p$ may be refined to an actual zero of f in the p-adic integers — in fact, to an actual zero of f in the *algebraic* p-adic integers. The theorem above strengthens Greenleaf's result by giving information about the exceptional primes $p \in S$ and by providing a precise linear estimate of how close the actual zero y is to the approximate zero x. The hypothesis that R have characteristic zero is required by Greenleaf's counterexample ([3], p. 30).

Proof. Let fR[X] be the ideal in the polynomial ring $R[X_1, \dots, X_s]$ generated by $f_1(X), \dots, f_r(X)$, and let V be the algebraic set in affine s-space over K which is the locus of zeroes of f.

Step 1. We may assume fR[X] is equal to its own radical. For let g be a system of polynomials generating the radical, and suppose the mth power of the radical is contained in fR[X]. If C(g), D(g)are invariants for g, set

$$C(f) = mC(g)$$
, $D(f) = D(g)^m$.

Then inequality (1) implies that for any polynomial $h \in fR[X]$, say $h = h_1 f_1 + \cdots + h_r f_r$, we have

$$egin{aligned} v(h(x)) & & & \min_i \ [v(h_i(x)) + \ v(f_i(x))] \ & & & & \lim_i \ v(f_i(x)) = \ v(f(x)) > C(f)n + \ v(D(f)) \ . \end{aligned}$$

In particular, for $h = g_j^m$, with g_j in g, we get

$$mv(g_j(x)) > m[C(g)n + v(D(g))]$$
 for all j

so that there is a zero y of g in R_v such that

v(x-y) > n.

Since y is also a zero of f, we have found the invariants for f.

Step 2. Granted that fR[X] is its own radical, we may further assume fR[X] is a prime ideal. Otherwise, it is an intersection of finitely many prime ideals, so by induction on the number of these, we may assume fR[X] is the intersection of two ideals generated by systems g, g' for which invariants C(g), C(g'), D(g), D(g') have already been found. We set

$$C(f) = \max (2C(g), 2C(g'))$$

 $D(f) = D(g)^2 D(g')^2$.

Then for each $g_i \in g$ and $g'_j \in g'$, we have $g_i g'_j \in fR[X]$, so that as before, inequality (i) implies

$$v(g_i(x)) + v(g'_i(x)) \ge v(f(x)) > C(f)n + v(D(f))$$
.

Suppose that for one index j, $v(g'_i(x)) < 1/2 v(f(x))$. Fixing that j and letting i vary, we get $v(g_i(x)) > 1/2 v(f(x))$ for all indices i, so that

$$v(g(x)) > \frac{1}{2} [C(f)n + v(D(f))]$$
.

By definition of C(f) and D(f), the term on the right is at least as big as C(g)n + v(D(g)), so that there is a zero y of g — a fortiori of f — in R_v such that v(x - y) > n. If, on the other hand, $v(g'(v)) \ge$ 1/2 v(f(x)), the same argument gives a zero y of g' — a fortiori of f — in R_v such that v(x - y) > n.

Step 3. Assuming fR[X] is a prime ideal, we proceed by induction on the dimension m of the irreducible K-variety V. If V is empty, let D(f) be any nonzero constant in fR[X], and let C(f) = 1. Then the inequality (1) is never satisfied for any n, v, and x, so the theorem is vacuously true. Assume now that V is nonempty and the theorem established in dimensions less than m. Let J be the Jacobian matrix of f, Δ the system of minors $\Delta_{(i)(j)}$ of order s - mtaken from J. Since the characteristic is zero, the locus of common zeros of Δ and f is a proper K-closed subset of V (the singular locus); by inductive hypothesis, there are invariants C', D' for the system Δ plus f.

If (i) is a collection of s - m indices $\leq r, f_{(i)}$ the corresponding system of s - m polynomials taken out of f, let $V_{(i)}$ be the algebraic set of zeros of $f_{(i)}$ and let $W_{(i)}$ be the union of the K-irreducible components of $V_{(i)}$ which have dimension m and are different from V. Let $g_{(i)}$ be a system of generators for the ideal of $W_{(i)}$ in R[X]; by inductive hypothesis, there are invariants $C_{(i)}, D_{(i)}$ for the system $g_{(i)}$ plus f (since $V \cap W_{(i)}$ is its locus). The results of Zariski (Trans. A.M.S. 62 (1947), pp. 14 and 28-29) tell us that if x is a point of $V_{(i)}$ such that for some (j)

$$\Delta_{(i)(j)} \neq 0$$

then x lies on exactly one component of $V_{(i)}$, that component having dimension m.

We now set

$$egin{aligned} C(f) &= C' + \max{\{C', \ C_{(k)} \ ext{all} \ (k)\}} \ D(f) &= (D')^2 \prod_{(k)} D_{(k)} \end{aligned}$$

so that $v(D(f)) \ge v(D') + \max \{v(D'), v(D_{(k)}) \text{ all } (k)\}$. Assuming inequality (1), we then have three possibilities:

I. $v(\varDelta(x)) > C'n + v(D')$. By inductive hypothesis, there is a singular zero y of f in R_v such that v(x - y) > n.

II. For some (i), $v(g_{(i)}(x)) > C_{(i)}n + v(D_{(i)})$. By inductive hypothesis, there is a zero y of f in R_v (lying on $V \cap W_{(i)}$) such that v(x - y) > n.

III. For some (i) and (j),

$$v(\mathcal{A}_{(i)(j)}(x)) \leq C'n + v(D')$$

and for every (k), there is a polynomial $\gamma_{(k)}$ in the system $g_{(k)}$ for which

$$v(\gamma_{(k)}(x)) \leq C_{(k)}n + v(D_{(k)})$$
.

By Hensel's Lemma, there is a zero y of the system $f_{(i)}$ in R_{v} such that

 $v(y - x) > \max \{C'n + v(D'), C_{(k)}n + v(D_{(k)}) \text{ all } k\}$.

In that case $g_{(k)}(y) \neq 0$, for all (k), since

$$v(\gamma_{(k)}(y)) = v(\gamma_{(k)}(x))$$
.

Thus $y \notin W_{(k)}$ for any (k). As we also have

 $\varDelta_{(i)(j)}(y) \neq 0$

y must lie on V, so y is a zero of f.

Note 1. In the last part of the above argument we used a version of Hensel's Lemma which is a strengthening of Lemma 2, p. 63 of [2]. It says that if R_v is a Henselian discrete valuation ring with maximal ideal m, F a system of r polynomials in s variables with coefficients in R_v , $r \leq s$, J its Jacobian matrix, $x \in R_v^s$, $a \in R_v$ so that

$$F(x) \equiv 0 \pmod{ae^2\mathfrak{m}}$$

where e = D(x), D being a minor of order r taken from J, then there exists $y \in R_v^s$ such that F(y) = 0 and

$$y \equiv x \pmod{aem}$$

(Since h = v(a) is an arbitrary integer, we have applied this lemma by taking $F = f_{(i)}$ and

$$h = \max \{C'n + D', C_{(k)}n + D_{(k)} \text{ all } k\} - v(\Delta_{(i)(j)}(x))$$

in part III above.) The idea for proving this stronger Hensel's Lemma is the same as in [2], pp. 63-64, reducing to the case r = s, applying Taylor's formula to F(aeX), obtaining F(aeX) = aeJ(0)H(X), and if $y' \in \mathfrak{m}^s$ is zero of H as in Lemma 1 of [2], then y = aey' is the zero we seek. Note 2. Birch and McCann [1] proved the special case of the theorem where R is a unique factorization domain, and f is a single polynomial (in several variables). Their method has the advantage of providing an effective (but impractical) method of calculating D(f) when f is a single polynomial. If f involves s variables, they use the notation $D_s(f)$ because their invariant is constructed by induction on s. They omit the definition of $C_s(f) = C(f)$, which can be given inductively on s as follows: If s = 1, $C_i(f) = d(f)$, where d(f) is the degree of f. If s > 1, denote by f_i the polynomial f regarded as having coefficients in $R[X_i]$ and involving the other s - 1 variables. Then

$$C_s(f) = \max_{1 \leq i \leq s} \{C_{s-1}(f_i) + d(D_{s-1}f_i)\}$$

with $d(D_{s-1}f_i)$ being the degree in X_i of $D_{s-1}f_i \in R[X_i]$.

The proof by Birch and McCann then goes by induction on s. However, there is an error in the inductive step (their equation $D_{n-1}(\phi) = g_1(a_1)$ does not always hold, as is shown by the polynomial $f(X_1, X_2) = X_2^2 - X_1^2$, with $a_1 = 0$, where $g_1(a_1) = 0$ while $D_1(\phi) = 1$). This error can be rectified by proving the following result and its corollary, since the inequality in the corollary is all they really need for their argument.

SPECIALIZATION THEOREM. Let R be a unique factorization domain of characteristic zero. Given $f \in R[X_0, X_1, \dots, X_s]$ and $a_0 \in R$. Denote by a bar the specialization obtained by substituting a_0 for X_0 . Let f_0 be f regarded as a polynomial in the variables X_1, \dots, X_s with coefficients in $R[X_0]$. Let $D_s f_0 \in R[X_0]$ and $D_s \overline{f_0} \in R$ be the invariants defined by Birch-McCann. If

 $\overline{D_s f_{\scriptscriptstyle 0}}
eq 0$

then $\overline{D_s f_0}$ is divisible by $D_s \overline{f_0}$ and they have the same irreducible factors.

COROLLARY. For any valuation v nonnegative on R,

$$v(D_s \overline{f}_{\scriptscriptstyle 0}) \leqq v(\overline{D_s f_{\scriptscriptstyle 0}})$$
 .

2. Proof of the specialization theorem and the main theorem for the invariant of Birch-McCann. Recall how $D_s(f)$ is defined: For any polynomial g in one variable, A(g) is the leading coefficient of g, d(g) is its degree, and

$$rg = g/(g, g')$$

where (g, g') is the greatest common divisor of g and its derivative g'. Thus rg is the primitive polynomial having the same roots as g but all taken with multiplicity one. $\Delta(g)$ is the discriminant of g; if g has the linear factorization

$$g(X) = A(g) \prod_{i=1}^d (X - lpha_i)$$

then

$$arDelta(g) = A^{{\scriptscriptstyle 2(d-1)}} \prod_{i < j} (lpha_i - lpha_j)^2$$
 .

Suppose f is a polynomial in s variables X_1, \dots, X_s and g_i is a polynomial in X_i only. Let $d(g_i) = d_i$, and let α_{ij} , with $1 \leq j \leq d_i$, be the roots of g_i counted with their multiplicities. Then the *eliminant* $E(Z) = E(f; g_1, \dots, g_s)(Z)$ is the polynomial in Z of degree $d(E) = \prod d_i$ given by

$$E(Z) = \prod_i A(g_i)^{d(E)d(f)/d_i} \prod_{(j)} \{ Z - f(lpha_{_1j_1}, \, \cdots, \, lpha_{_sj_s}) \} \; .$$

Inductively, $D_s(f)$ is then defined as follows: If s = 1, $D_1(f) = A(f)^{(d-1)d^2} \mathcal{A}(rf)^d$. If s > 1, set $g_i = D_{s-1}(f_i)$, where f_i has been defined before as f regarded as a polynomial in the s - 1 variables other than X_i ; let E be $E(f; g_1, \dots, g_s)$. Then

$$D_s(f) = egin{cases} \prod\limits_i D_1(g_i) \{A(E)^{d(E)} E(0)\}^{d(g_i)} & ext{if } E(0)
eq 0 \ \prod\limits_i D_1(g_i) D_1(E)^{d(g_i)} & ext{if } E(0) = 0 \ . \end{cases}$$

We will prove the Specialization Theorem by induction on s.

Case s = 1. Let $f_0(X_1) = A(f_0)X_1^d + \cdots$, and let $(rf_0)(X_1) = A(rf_0)X_1^\delta + \cdots$, so that $\delta \leq d$ and $A(rf_0)$ divides $A(f_0)$. Since by hypothesis $\overline{D_1f_0} \neq 0$, we have $\overline{A(f_0)} \neq 0$, so $\overline{A(f_0)} = A(\overline{f_0})$ and $\overline{f_0}$ has the same degree d in X_1 . Also $\overline{d}(rf_0) = d(\overline{rf_0}) \neq 0$, so $\overline{rf_0}$ has the same degree δ and only simple roots, but may not be primitive. Let c be the greatest common divisor of the coefficients of $\overline{rf_0}$; then $\overline{rf_0} = c(r\overline{f_0})$. Now $d(\overline{rf_0})$ is homogeneous of degree $2(\delta - 1)$ in the coefficients of $\overline{rf_0}$. Thus

$$\overline{D_1f_0}=A(\overline{f_0})^{(d-1)d^2} \varDelta(c(r\overline{f_0}))^d=c^{2d\,(\delta-1)}D_1\overline{f_0}$$
 .

The theorem then follows from the fact that c divides $A(\overline{rf_0})$ which divides $A(\overline{f_0})$ which divides $D_1\overline{f_0}$.

To carry out the induction, we will need to strengthen our result for s = 1 with the following lemma.

LEMMA 1. Let g, h be polynomials in one variable Y which satisfy

$$g = c_1^{k_1} \cdots c_s^{k_s} h$$

with each c_i dividing h, and $k_i \ge 1$. Then D_1g and D_1h satisfy the same type of relationship:

$$D_{\scriptscriptstyle 1}g = C_{\scriptscriptstyle 1}^{m_1} \cdots C_t^{m_t} D_{\scriptscriptstyle 1}h$$

with each C_i dividing D_1h .

Proof. Let e = degree h, $\gamma_i = \text{degree } c_i$, so that degree $g = \varepsilon = e + \sum_i k_i \gamma_i$, and

$$A(g) = A(c_1)^{k_1} \cdots A(c_s)^{k_s} A(h) .$$

Since each c_i divides h, g, and h have the same irreducible factors, so that rg = rh. Hence

$$D_{\scriptscriptstyle 1}g = A(g)^{\scriptscriptstyle(\mathfrak{c}-1)\mathfrak{c}^2} arDelta(rg)^{\scriptscriptstyle \mathfrak{c}} = (\prod_i A(c_{\scriptscriptstyle 1})^{k_i})^{\scriptscriptstyle(\mathfrak{c}-1)\mathfrak{c}^2} A(h)^{\scriptscriptstyle(\mathfrak{c}-1)\mathfrak{c}^2} arDelta(rh)^{\scriptscriptstyle \mathfrak{c}}$$

Now $D_1h = A(h)^{(e-1)e^2} \varDelta (rh)^e$, and if we write $(\varepsilon - 1)\varepsilon^2 = (e-1)e^2 + m$ we get

$$D_{\scriptscriptstyle 1}g = (\prod\limits_i A(c_i)^{k_i})^{(arepsilon-1)arepsilon^2} A(h)^{{m}} arepsilon(rh)^{arepsilon-e} D_{\scriptscriptstyle 1}h$$
 .

Since $A(c_i)$, A(h), $\Delta(rh)$ each divide D_ih , the lemma is proved.

The inductive step: By definition,

$$egin{aligned} D_s f_0 &= \sum\limits_{i=1}^s D_1(g_i) M^{d(g_i)} \ D_s \overline{f_0} &= \sum\limits_{i=1}^s D_1(g_i^*) M^{*d(g_i^*)} \end{aligned}$$

where $g_i = D_{s-1}f_{0i}$, f_{0i} being f_0 regarded as a polynomial in the variables X_j with $j \neq i, j \geq 1$ (so that the coefficients of f_{0i} are polynomials in X_0 and X_i); $g_i^* = D_{s-1}(\overline{f_0})_i$ is defined similarly. Also,

$$M = egin{cases} A(E)^{d(E)} E(0) & ext{if} \ E(0)
eq 0 \ D_1(E) & ext{if} \ E(0) = 0 \end{cases}$$

where $E = E(f_0; g_1, \cdots, g_s)$; and

$$M^* = egin{cases} A(E^*)^{d(E^*)}E^*(0) & ext{if} \ E^*(0)
eq 0 \ D_1(E^*) & ext{if} \ E^*(0) = 0 \end{cases}$$

where $E^* = E(\overline{f_0}; g_1^*, \dots, g_s^*)$. Our hypothesis is $\overline{D_s f_0} \neq 0$, so that $\overline{D_i(g_i)} \neq 0$ for all *i* and $\overline{M} \neq 0$.

Since $\overline{g_i} \neq 0$ (because $\overline{A(g_i)}$, which is a factor of $\overline{D_1g_i}$, is not zero), and $\overline{f_{0i}} = (\overline{f_0})_i$, the inductive hypothesis provides us with $c_i \in R[X_i]$ such that

$$\overline{g_i} = c_i g_i^*$$

with each irreducible factor of c_i being a factor of g_i^* . By Lemma 1,

 $D_1 \overline{g_i} = C_i D_1 g_i^*$

with each irreducible factor of C_i dividing $D_1g_i^*$. The step n = 1 already proved yields

$$\overline{D_{1}g_{i}} = B_{i}D_{1}\overline{g_{i}}$$

with each irreducible factor of B_i dividing $D_i \overline{g_i}$. Combining gives

$$\overline{D_{\scriptscriptstyle 1}g_{\scriptscriptstyle i}}=B_iC_iD_{\scriptscriptstyle 1}g_i^*$$

so that $\overline{D_1g_i}$ and $D_1g_i^*$ have the same irreducible factors.

The condition $\overline{A(g_i)} \neq 0$ implies $d(g_i) = d(\overline{g_i})$, and since g_i^* divides $\overline{g_i}, d(\overline{g_i}) \geq d(g_i^*)$. As

$$\overline{D_sf_0}=\prod\limits_{i=1}^s\overline{D_1g_i}\;ar{M}^{d(g_i)}$$

the theorem will be proved if we can show M^* divides M and they have the same irreducible factors.

 \overline{M} is the specialization of M and is given by the same formula as M with the specialization \overline{E} of E taking the place of E. Now the function E, like Δ , commutes with specialization, so we have

$$ar{E}=E(ar{f_{\scriptscriptstyle 0}};ar{g_{\scriptscriptstyle 1}},\,\cdots,\,ar{g_{\scriptscriptstyle s}})=E(f_{\scriptscriptstyle 0};c_{\scriptscriptstyle 1}g_{\scriptscriptstyle 1}^*,\,\cdots,\,c_{\scriptscriptstyle s}g_{\scriptscriptstyle s}^*)$$
 ,

Notice also that if $E(0) \neq 0$ so $M = A(E)^{d(E)}E(0)$, $\overline{M} \neq 0$ implies $\overline{A(E)} \neq 0$, so $\overline{A(E)} = A(\overline{E})$, and $\overline{E(0)} \neq 0$, so $\overline{E}(0) \neq 0$. On the other hand, if E(0) = 0, then $M = D_1(E)$, and $\overline{M} \neq 0$ implies again $\overline{A(E)} \neq 0$, so again $\overline{A(E)} = A(\overline{E})$ and $d(E) = d(\overline{E})$.

The problem reduces to examining the relation between $\overline{E} = E(\overline{f}_0; c_1g_1^*, \dots, c_sg_s^*)$ and $E^* = E(\overline{f}_0; g_1^*, \dots, g_s^*)$ given that every root of c_i is a root of g_i^* .

Note first that $A(E^*) = \prod_i A(g_i^*)^{\delta_{id}(\overline{f}_0)}$, where $\delta_i = \prod_{j \neq i} d(g_j^*)$. If $\varepsilon_i = \prod_{j \neq i} (d(g_j^*) + d(c_j))$, then write $\varepsilon_i = \delta_i + \gamma_i$, so that

$$A(ar{E}) = A(E^*) \prod\limits_i A(c_i)^{\epsilon_i d\,(ar{f}_0)} A(g_i^*)^{\gamma_i d\,(ar{f}_0)} \;.$$

Since every irreducible factor of c_i is an irreducible factor of g_i^* , every irreducible factor of $A(c_i)$ is an irreducible factor of $A(g_i^*)$, so the above expression shows that $A(\bar{E})$ and $A(E^*)$ have the same irreducible factors.

Thus in the case where $M = A(E)^{d(E)}E(0)$, we are reduced to proving that $\overline{E}(0)$ is divisible by $E^*(0)$ and they have the same irreducible factors. This will follow from the formula

 $E(f; gh, g_2, \dots, g_s) = E(f; g, g_2, \dots, g_s)E(f; h, g_2, \dots, g_s)$

whose proof is an easy exercise. From this formula we see that the constant term of $E(f; g_1, g_2, \dots, g_s)$ is just a product of the constant terms of the various $E(f; p_1, p_2, \dots, p_s)$, where p_i runs through the irreducible factors of g_i for each $i = 1, \dots, s$. Hence $\overline{E}(0)$ is divisible by $E^*(0)$ with the same irreducible factors.

Consider finally the case where $M = D_1(E)$. Since \overline{E} is divisible by E^* with the same irreducible factors, it follows from Lemma 1 that $D_1(\overline{E})$ is divisible by $D_1(E^*)$ with the same irreducible factors. The proof for the case s = 1 showed that $\overline{D_1(E)}$ is divisible by $D_1(\overline{E})$ with the same irreducible factors.

Thus in both cases \overline{M} is divisible by M^* with the same irreducible factors.

Having demonstrated the Specialization Theorem, we can now prove that the Birch-McCann invariant $D_s(f)$ and the other invariant $C_s(f)$ defined inductively by

$$egin{aligned} C_{1}(f) &= d(f) \quad ext{if} \quad s = 1 \ C_{s}(f) &= \max_{1 \leq i \leq s} \left\{ C_{s-1}(f_{i}) + d(D_{s-1}f_{i})
ight\} \end{aligned}$$

satisfy our main theorem, if R is a unique factorization domain.

Proof. For s = 1 this is Birch-McCann's Theorem with \underline{Z} and \mathfrak{o}_p replaced by R and R_v . The proof goes over word-for-word because v has a unique extension to the algebraic closure of the field of fractions of R_v (as follows from Nagata, *Local Rings*, statement (30.5), p. 105). Notice also that in this case (s = 1), the zero y = b is unique.

For s > 1, we proceed by induction on s. Take $f \in R[X_0, X_1, \dots, X_s]$, $a \in R^{s+1}$, and let $\overline{f_0}(X_1, \dots, X_s) = f(a_0, X_1, \dots, X_s)$, and similarly denote throughout by a bar the result of substituting a_0 for X_0 . Now $D_s f_0 \in R[X_0]$ so can be written $g_0(X_0)$. Suppose

$$v(f(a)) > C_s(\overline{f_0})n + v(D_s\overline{f_0})$$
.

Then the inductive hypothesis gives us a zero $b \in R_v^s$ of $\overline{f_0}$ such that $v(a_i - b_i) > n$ for $i = 1, \dots, s$; hence (a_0, b_1, \dots, b_s) is the required zero for f. Otherwise

$$v(f(a)) \leq C_s(\overline{f}_0)n + v(D_s\overline{f}_0)$$
.

In this inequality we propose to replace $C_s(\overline{f_0})$ by $C_s(f_0)$ and $D_s\overline{f_0}$ by $\overline{D_sf_0} = g_0(a_0)$. If $g_0(a_0) = 0$, we get infinity on the right side. So

suppose $g_0(a_0) \neq 0$. Then by the corollary to the Specialization Theorem, $v(D_s\overline{f_0}) \leq v(\overline{D_sf_0}) = v(g_0(a_0))$. We need

Addendum to Specialization Theorem. Under the same hypotheses, $C_s(\overline{f_0}) \leq C_s(f_0)$.

Proof by induction on s: For s = 1, C_1 is just the degree in the variable X_1 , which stays the same or decreases under specialization. Assume the result for s - 1. Then $C_{s-1}(\overline{f_{0i}}) \leq C_{s-1}(f_{0i})$ for all $i = 1, \dots, s$. In the notation of the proof of the Specialization Theorem, $\overline{D_{s-1}f_{0i}} = \overline{g_i} = c_i g_i^* = c_i D_{s-1}\overline{f_{0i}}$, so that

$$d(D_{s-1}\overline{f_{\circ i}}) \leq d(\overline{g_i}) = d(g_i) = d(D_{s-1}f_{\circ i}) \; .$$

So by definition of C_s , $C_s(\overline{f_0}) \leq C_s(f_0)$, proving the addendum.

We have thus obtained, arguing with respect to any other variable X_i as we have for X_0 , the inequality

$$(2) v(f(a)) \leq C_s(f_i)n + v(g_i(a_i))$$

for all $i = 0, 1, \dots, s$. Combining with our hypothesis (1) on v(f(a)), with a = x, we obtain

$$(3) \qquad \qquad [C_{s+1}(f) - C_s(f_i)]n + v(D_{s+1}f) < v(g_i(a_i))$$

for all $i = 0, 1, \dots, s$, where by definition of $C_{s+1}(f)$, the coefficient of n in the left side is nonnegative, hence

$$(\,4\,) \hspace{1.5cm} v(D_{s+1}f) < v(g_i(a_i))$$

for all $i = 0, 1, \dots, s$.

Arguing exactly as in Birch-McCann, we next show that inequality (4) implies that for every root $\alpha = (\alpha_0, \dots, \alpha_s)$ of (g_0, \dots, g_s) such that $v(\alpha - \alpha) > v(M)$ — and there exist such roots by (4) and the theorem for 1 variable applied s + 1 times — we must have $f(\alpha) = 0$. Thus E(0) = 0, and hence $M = D_1(E)$.

By definition of C_{s+i} , the coefficient of n in inequality (3) is at least equal to $d(g_i)$, and by definition of D_{s+i} , we have $v(D_{s+i}f) \ge v(D_ig_i)$ for all i. So we can apply the theorem for one variable to obtain a unique zero α_i of g_i such that $v(a_i - \alpha_i) > n$, for each $i = 0, 1, \dots, s$.

Applying the definition of D_{s+1} again and using inequality (4), we obtain

$$d(g_i)v(M) + v(D_{\scriptscriptstyle 1}g_i) < v(g_i(a_i))$$

for all i, hence by the theorem for one variable again there is a

unique zero β_i of g_i in R_v such that $v(a_i - \beta_i) > v(M)$ for each *i*. Define

$$\gamma_{i} = egin{cases} lpha_{i} & ext{if} \ n \geqq v(M) \ eta_{i} & ext{if} \ n \leqq v(M) \ . \end{cases}$$

Then, as remarked before, we must have $f(\gamma) = 0$, which proves the theorem.

References

1. B. J. Birch and K. McCann, A criterion for the p-adic solubility of Diophantine equations, Quart. J. Math., Oxford, (2), 18 (1967), 59-63.

2. M. J. Greenberg, Rational points in Henselian discrete valuation rings, Publications Mathématiques, No. **31** (1966), I.H.E.S., 59-64.

3. N. Greenleaf, Irreducible subvarieties and rational points, Amer. J. Math., 87 (1965), 25-31.

4. M. Raynaud, Anneaux Locaux Henséliens, Lecture Notes in Mathematics 169, Springer-Verlag, 1970.

Received November 20, 1972.

UNIVERSITY OF CALIFORNIA, SANTA CRUZ