STRICTLY LOCAL SOLUTIONS OF DIOPHANTINE EQUATIONS

Marvin J. Greenberg

For any system f of Diophantine equations, there exist positive integers $C(f), D(f)$ with the following properties: For any nonnegative integer n, for any prime p, if v is the p-adic valuation, and if a vector x of integers satisfies the inequality

$$
v(f(x))>C(f) n+v(D(f))
$$

then there is an algebraic p-adic integral solution y to the system f such that

$$
v(x-y)>n
$$

This theorem is proved by techniques of algebraic geometry in the more general setting of Noetherian domains of characteristic zero. When f is just a single equation, the method of Birch and McCann gives an effective determination of $C(f)$ and $D(f)$.

Let R be a Noetherian integral domain, K its field of fractions. We will consider Henselian discrete valuation rings R_{v} (see [4]) containing R, where v is the valuation normalized so that $v\left(R_{v}\right)$ is the set of nonnegative integers (plus ∞). If $f=\left(f_{1}, \cdots, f_{r}\right)$ is a system of r polynomials in s variables with coefficients in R, and x is an s-tuple with coordinates in an extension ring of R, we set $f(x)=$ ($f_{1}(x), \cdots, f_{r}(x)$). We define the valuation of an r-tuple (or s-tuple) to be the minimum of the valuations of its components.

THEOREM. Assume R has characteristic zero. For each system f of polynomials with coefficients in R, there exists an integer $C(f) \geqq$ 1 and an element $D(f) \neq 0$ in R with the following property: For any Henselian discrete valuation ring R_{v} containing R, and any nonnegative integer n, if an s-tuple x with components in R satisfies the inequality

$$
\begin{equation*}
v(f(x))>C(f) n+v(D(f)) \tag{1}
\end{equation*}
$$

then there is a zero y of f in R_{v} such that

$$
v(x-y)>n
$$

In particular, if R is the ring of algebraic integers in a number field, and we take $n=0, S=$ set of primes dividing $D(f)$, then we recover Greenleaf's theorem [3] to the effect that if $\mathfrak{p} \notin S$, then every
zero of $f \bmod \mathfrak{p}$ may be refined to an actual zero of f in the \mathfrak{p}-adic integers - in fact, to an actual zero of f in the algebraic \mathfrak{p}-adic integers. The theorem above strengthens Greenleaf's result by giving information about the exceptional primes $\mathfrak{p} \in S$ and by providing a precise linear estimate of how close the actual zero y is to the approximate zero x. The hypothesis that R have characteristic zero is required by Greenleaf's counterexample ([3], p. 30).

Proof. Let $f R[X]$ be the ideal in the polynomial ring $R\left[X_{1}, \cdots\right.$, X_{s}] generated by $f_{1}(X), \cdots, f_{r}(X)$, and let V be the algebraic set in affine s-space over K which is the locus of zeroes of f.

Step 1. We may assume $f R[X]$ is equal to its own radical. For let g be a system of polynomials generating the radical, and suppose the m th power of the radical is contained in $f R[X]$. If $C(g), D(g)$ are invariants for g, set

$$
C(f)=m C(g), \quad D(f)=D(g)^{m}
$$

Then inequality (1) implies that for any polynomial $h \in f R[X]$, say $h=h_{1} f_{1}+\cdots+h_{r} f_{r}$, we have

$$
\begin{aligned}
v(h(x)) & \geqq \min _{i}\left[v\left(h_{i}(x)\right)+v\left(f_{i}(x)\right)\right] \\
& \geqq \min _{i} v\left(f_{i}(x)\right)=v(f(x))>C(f) n+v(D(f))
\end{aligned}
$$

In particular, for $h=g_{j}^{m}$, with g_{j} in g, we get

$$
m v\left(g_{j}(x)\right)>m[C(g) n+v(D(g))] \quad \text { for all } j
$$

so that there is a zero y of g in R_{v} such that

$$
v(x-y)>n
$$

Since y is also a zero of f, we have found the invariants for f.
Step 2. Granted that $f R[X]$ is its own radical, we may further assume $f R[X]$ is a prime ideal. Otherwise, it is an intersection of finitely many prime ideals, so by induction on the number of these, we may assume $f R[X]$ is the intersection of two ideals generated by systems g, g^{\prime} for which invariants $C(g), C\left(g^{\prime}\right), D(g), D\left(g^{\prime}\right)$ have already been found. We set

$$
\begin{aligned}
& C(f)=\max \left(2 C(g), 2 C\left(g^{\prime}\right)\right) \\
& D(f)=D(g)^{2} D\left(g^{\prime}\right)^{2}
\end{aligned}
$$

Then for each $g_{i} \in g$ and $g_{j}^{\prime} \in g^{\prime}$, we have $g_{i} g_{j}^{\prime} \in f R[X]$, so that as before, inequality (i) implies

$$
v\left(g_{i}(x)\right)+v\left(g_{j}^{\prime}(x)\right) \geqq v(f(x))>C(f) n+v(D(f)) .
$$

Suppose that for one index $j, v\left(g_{j}^{\prime \prime}(x)\right)<1 / 2 v(f(x))$. Fixing that j and letting i vary, we get $v\left(g_{\imath}(x)\right)>1 / 2 v(f(x))$ for all indices i, so that

$$
v(g(x))>\frac{1}{2}[C(f) n+v(D(f))] .
$$

By definition of $C(f)$ and $D(f)$, the term on the right is at least as big as $C(g) n+v(D(g))$, so that there is a zero y of g - a fortiori of $f-$ in R_{v} such that $v(x-y)>n$. If, on the other hand, $v\left(g^{\prime}(v)\right) \geqq$ $1 / 2 v(f(x))$, the same argument gives a zero y of g^{\prime} - a fortiori of f - in R_{v} such that $v(x-y)>n$.

Step 3. Assuming $f R[X]$ is a prime ideal, we proceed by induction on the dimension m of the irreducible K-variety V. If V is empty, let $D(f)$ be any nonzero constant in $f R[X]$, and let $C(f)=1$. Then the inequality (1) is never satisfied for any n, v, and x, so the theorem is vacuously true. Assume now that V is nonempty and the theorem established in dimensions less than m. Let J be the Jacobian matrix of f, Δ the system of minors $\Delta_{(i)(j)}$ of order $s-m$ taken from J. Since the characteristic is zero, the locus of common zeros of Δ and f is a proper K-closed subset of V (the singular locus); by inductive hypothesis, there are invariants $C^{\prime \prime}, D^{\prime}$ for the system Δ plus f.

If (i) is a collection of $s-m$ indices $\leqq r, f_{(i)}$ the corresponding system of $s-m$ polynomials taken out of f, let $V_{(i)}$ be the algebraic set of zeros of $f_{(i)}$ and let $W_{(i)}$ be the union of the K-irreducible components of $V_{(2)}$ which have dimension m and are different from V. Let $g_{(2)}$ be a system of generators for the ideal of $W_{(i)}$ in $R[X]$; by inductive hypothesis, there are invariants $C_{(i)}, D_{(i)}$ for the system $g_{(i)}$ plus f (since $V \cap W_{(i)}$ is its locus). The results of Zariski (Trans. A.M.S. 62 (1947), pp. 14 and 28-29) tell us that if x is a point of $V_{(i)}$ such that for some (j)

$$
\Delta_{(i)(j)} \neq 0
$$

then x lies on exactly one component of $V_{(i)}$, that component having dimension m.

We now set

$$
\begin{aligned}
& C(f)=C^{\prime}+\max \left\{C^{\prime}, C_{(k)} \text { all }(k)\right\} \\
& D(f)=\left(D^{\prime}\right)^{2} \prod_{(k)} D_{(k)}
\end{aligned}
$$

so that $v(D(f)) \geqq v\left(D^{\prime}\right)+\max \left\{v\left(D^{\prime}\right), v\left(D_{(k)}\right)\right.$ all (k)\}. Assuming inequality (1), we then have three possibilities:
I. $v(\Delta(x))>C^{\prime} n+v\left(D^{\prime}\right)$. By inductive hypothesis, there is a singular zero y of f in R_{v} such that $v(x-y)>n$.
II. For some $(i), v\left(g_{(i)}(x)\right)>C_{(i)} n+v\left(D_{(i)}\right)$. By inductive hypothesis, there is a zero y of f in R_{v} (lying on $V \cap W_{(i)}$) such that $v(x-y)>n$.
III. For some (i) and (j),

$$
v\left(\Delta_{(i)(j)}(x)\right) \leqq C^{\prime} n+v\left(D^{\prime}\right)
$$

and for every (k), there is a polynomial $\gamma_{(k)}$ in the system $g_{(k)}$ for which

$$
v\left(\gamma_{(k)}(x)\right) \leqq C_{(k)} n+v\left(D_{(k)}\right) .
$$

By Hensel's Lemma, there is a zero y of the system $f_{(i)}$ in R_{v} such that

$$
v(y-x)>\max \left\{C^{\prime} n+v\left(D^{\prime}\right), C_{(k)} n+v\left(D_{(k)}\right) \text { all } k\right\}
$$

In that case $g_{(k)}(y) \neq 0$, for all (k), since

$$
v\left(\gamma_{(k)}(y)\right)=v\left(\gamma_{(k)}(x)\right) .
$$

Thus $y \notin W_{(k)}$ for any (k). As we also have

$$
\Delta_{(i)(j)}(y) \neq 0
$$

y must lie on V, so y is a zero of f.
Note 1. In the last part of the above argument we used a version of Hensel's Lemma which is a strengthening of Lemma 2, p. 63 of [2]. It says that if R_{v} is a Henselian discrete valuation ring with maximal ideal \mathfrak{m}, F a system of r polynomials in s variables with coefficients in $R_{v}, r \leqq s, J$ its Jacobian matrix, $x \in R_{v}^{s}, a \in R_{v}$ so that

$$
F(x) \equiv 0 \quad\left(\bmod a e^{2} m\right)
$$

where $e=D(x), D$ being a minor of order r taken from J, then there exists $y \in R_{v}^{s}$ such that $F(y)=0$ and

$$
y \equiv x \quad(\bmod a e m)
$$

(Since $h=v(\alpha)$ is an arbitrary integer, we have applied this lemma by taking $F=f_{(i)}$ and

$$
h=\max \left\{C^{\prime} n+D^{\prime}, C_{(k)} n+D_{(k)} \text { all } k\right\}-v\left(\Delta_{(i)(j)}(x)\right)
$$

in part III above.) The idea for proving this stronger Hensel's Lemma is the same as in [2], pp. 63-64, reducing to the case $r=s$, applying Taylor's formula to $F(a e X)$, obtaining $F(a e X)=a e J(0) H(X)$, and if $y^{\prime} \in \mathfrak{m}^{s}$ is zero of H as in Lemma 1 of [2], then $y=a e y^{\prime}$ is the zero we seek.

Note 2. Birch and McCann [1] proved the special case of the theorem where R is a unique factorization domain, and f is a single polynomial (in several variables). Their method has the advantage of providing an effective (but impractical) method of calculating $D(f)$ when f is a single polynomial. If f involves s variables, they use the notation $D_{s}(f)$ because their invariant is constructed by induction on s. They omit the definition of $C_{s}(f)=C(f)$, which can be given inductively on s as follows: If $s=1, C_{1}(f)=d(f)$, where $d(f)$ is the degree of f. If $s>1$, denote by f_{i} the polynomial f regarded as having coefficients in $R\left[X_{\imath}\right]$ and involving the other $s-1$ variables. Then

$$
C_{s}(f)=\max _{1 \leq i \leq s}\left\{C_{s-1}\left(f_{2}\right)+d\left(D_{s-1} f_{2}\right)\right\}
$$

with $d\left(D_{s-1} f_{i}\right)$ being the degree in X_{\imath} of $D_{s-1} f_{i} \in R\left[X_{i}\right]$.
The proof by Birch and McCann then goes by induction on s. However, there is an error in the inductive step (their equation $D_{n-1}(\phi)=g_{1}\left(a_{1}\right)$ does not always hold, as is shown by the polynomial $f\left(X_{1}, X_{2}\right)=X_{2}^{2}-X_{1}^{2}$, with $a_{1}=0$, where $g_{1}\left(a_{1}\right)=0$ while $D_{1}(\phi)=1$). This error can be rectified by proving the following result and its corollary, since the inequality in the corollary is all they really need for their argument.

Specialization Theorem. Let R be a unique factorization domain of characteristic zero. Given $f \in R\left[X_{0}, X_{1}, \cdots, X_{s}\right]$ and $a_{0} \in R$. Denote by a bar the specialization obtained by substituting a_{0} for X_{0}. Let f_{0} be f regarded as a polynomial in the variables X_{1}, \cdots, X_{s} with coefficients in $R\left[X_{0}\right]$. Let $D_{s} f_{0} \in R\left[X_{0}\right]$ and $D_{s} \bar{f}_{0} \in R$ be the invariants defined by Birch-McCann. If

$$
\overline{D_{s} f_{0}} \neq 0
$$

then $\overline{D_{s} f_{0}}$ is divisible by $D_{s} \bar{f}_{0}$ and they have the same irreducible factors.

Corollary. For any valuation v nonnegative on R,

$$
v\left(D_{s} \bar{f}_{0}\right) \leqq v\left(\overline{D_{s} f_{0}}\right) .
$$

2. Proof of the specialization theorem and the main theorem for the invariant of Birch-McCann. Recall how $D_{s}(f)$ is defined: For any polynomial g in one variable, $A(g)$ is the leading coefficient of $g, d(g)$ is its degree, and

$$
r g=g /\left(g, g^{\prime}\right)
$$

where (g, g^{\prime}) is the greatest common divisor of g and its derivative g^{\prime}. Thus $r g$ is the primitive polynomial having the same roots as g but all taken with multiplicity one. $\Delta(g)$ is the discriminant of g; if g has the linear factorization

$$
g(X)=A(g) \prod_{i=1}^{d}\left(X-\alpha_{i}\right)
$$

then

$$
\Delta(g)=A^{2(d-1)} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

Suppose f is a polynomial in s variables X_{1}, \cdots, X_{s} and g_{i} is a polynomial in X_{i} only. Let $d\left(g_{i}\right)=d_{i}$, and let $\alpha_{i j}$, with $1 \leqq j \leqq d_{i}$, be the roots of g_{\imath} counted with their multiplicities. Then the eliminant $E(Z)=E\left(f ; g_{1}, \cdots, g_{s}\right)(Z)$ is the polynomial in Z of degree $d(E)=$ Πd_{\imath} given by

$$
E(Z)=\prod_{i} A\left(g_{i}\right)^{d(E) d(f) / d d_{i}} \prod_{(j)}\left\{Z-f\left(\alpha_{1 j_{1}}, \cdots, \alpha_{s j_{s}}\right)\right\}
$$

Inductively, $D_{s}(f)$ is then defined as follows: If $s=1, D_{1}(f)=$ $A(f)^{(d-1) d^{2}} \Delta(r f)^{d}$. If $s>1$, set $g_{i}=D_{s-1}\left(f_{i}\right)$, where f_{i} has been defined before as f regarded as a polynomial in the $s-1$ variables other than X_{2}; let E be $E\left(f ; g_{1}, \cdots, g_{s}\right)$. Then

$$
D_{s}(f)= \begin{cases}\prod_{i} D_{1}\left(g_{2}\right)\left\{A(E)^{d(E)} E(0)\right\}^{d\left(g_{2}\right)} & \text { if } E(0) \neq 0 \\ \prod_{i} D_{1}\left(g_{i}\right) D_{1}(E)^{d\left(g_{i}\right)} & \text { if } E(0)=0\end{cases}
$$

We will prove the Specialization Theorem by induction on s.
Case $s=1$. Let $f_{0}\left(X_{1}\right)=A\left(f_{0}\right) X_{1}^{d}+\cdots$, and let $\left(r f_{0}\right)\left(X_{1}\right)=$ $A\left(r f_{0}\right) X_{1}^{\circ}+\cdots$, so that $\delta \leqq d$ and $A\left(r f_{0}\right)$ divides $A\left(f_{0}\right)$. Since by hypothesis $\overline{D_{1} f_{0}} \neq 0$, we have $\overline{A\left(f_{0}\right)} \neq 0$, so $\overline{A\left(f_{0}\right)}=A\left(\bar{f}_{0}\right)$ and \bar{f}_{0} has the same degree d in X_{1}. Also $\overline{\Delta\left(r f_{0}\right)}=\Delta\left(\overline{r f_{0}}\right) \neq 0$, so $\overline{r f_{0}}$ has the same degree δ and only simple roots, but may not be primitive. Let c be the greatest common divisor of the coefficients of $\overline{r f_{0}}$; then $\overline{r f_{0}}=$ $c\left(r \overline{f_{0}}\right)$. Now $\Delta\left(\overline{r f_{0}}\right)$ is homogeneous of degree $2(\delta-1)$ in the coefficients of $\overline{r f_{0}}$. Thus

$$
\overline{D_{1} f_{0}}=A\left(\bar{f}_{0}\right)^{(d-1) d^{2}} \Delta\left(c\left(r \bar{f}_{0}\right)\right)^{d}=c^{2 d(\hat{\delta}-1)} D_{1} \bar{f}_{0} .
$$

The theorem then follows from the fact that c divides $A\left(\overline{r f_{0}}\right)$ which divides $A\left(\bar{f}_{0}\right)$ which divides $D_{1} \bar{f}_{0}$.

To carry out the induction, we will need to strengthen our result for $s=1$ with the following lemma.

Lemma 1. Let g, h be polynomials in one variable Y which satisfy

$$
g=c_{1}^{k_{1}} \cdots c_{s}^{k_{s}} h
$$

with each c_{i} dividing h, and $k_{i} \geqq 1$. Then $D_{1} g$ and $D_{1} h$ satisfy the same type of relationship:

$$
D_{1} g=C_{1}^{m_{1}} \cdots C_{t}^{m_{t}} D_{1} h
$$

with each C_{i} dividing $D_{1} h$.
Proof. Let $e=$ degree $h, \gamma_{i}=$ degree c_{i}, so that degree $g=\varepsilon=$ $e+\sum_{i} k_{i} \gamma_{i}$, and

$$
A(g)=A\left(c_{1}\right)^{k_{1}} \cdots A\left(c_{s}\right)^{k_{s}} A(h)
$$

Since each c_{i} divides h, g, and h have the same irreducible factors, so that $r g=r h$. Hence

$$
D_{1} g=A(g)^{(\varepsilon-1) \varepsilon^{2}} \Delta(r g)^{\varepsilon}=\left(\prod_{i} A\left(c_{i}\right)^{k_{i}}\right)^{(\varepsilon-1) \varepsilon^{2}} A(h)^{(\varepsilon-1) \varepsilon^{2}} \Delta(r h)^{\varepsilon} .
$$

Now $D_{1} h=A(h)^{(e-1) e^{2}} \Delta(r h)^{e}$, and if we write $(\varepsilon-1) \varepsilon^{2}=(e-1) e^{2}+m$ we get

$$
D_{1} g=\left(\prod_{i} A\left(c_{i}\right)^{k_{i}}\right)^{(\varepsilon-1) \varepsilon^{2}} A(h)^{m} \Delta(r h)^{\varepsilon-e} D_{1} h
$$

Since $A\left(c_{i}\right), A(h), \Delta(r h)$ each divide $D_{1} h$, the lemma is proved.
The inductive step: By definition,

$$
\begin{aligned}
& D_{s} f_{0}=\sum_{i=1}^{s} D_{1}\left(g_{i}\right) M^{d\left(g_{i}\right)} \\
& D_{s} \overline{f_{0}}=\sum_{i=1}^{s} D_{1}\left(g_{i}^{*}\right) M^{* d\left(g_{i}^{*}\right)}
\end{aligned}
$$

where $g_{i}=D_{s-1} f_{0 i}, f_{0 i}$ being f_{0} regarded as a polynomial in the variables X_{j} with $j \neq i, j \geqq 1$ (so that the coefficients of f_{02} are polynomials in X_{0} and $\left.X_{i}\right) ; g_{i}^{*}=D_{s-1}\left(\bar{f}_{0}\right)_{i}$ is defined similarly. Also,

$$
M= \begin{cases}A(E)^{d(E)} E(0) & \text { if } E(0) \neq 0 \\ D_{1}(E) & \text { if } E(0)=0\end{cases}
$$

where $E=E\left(f_{0} ; g_{1}, \cdots, g_{s}\right)$; and

$$
M^{*}= \begin{cases}A\left(E^{*}\right)^{d\left(E^{*}\right)} E^{*}(0) & \text { if } E^{*}(0) \neq 0 \\ D_{1}\left(E^{*}\right) & \text { if } E^{*}(0)=0\end{cases}
$$

where $E^{*}=E\left(\overline{f_{0}} ; g_{1}^{*}, \cdots, g_{s}^{*}\right)$. Our hypothesis is $\overline{D_{s} f_{0}} \neq 0$, so that $\overline{D_{1}\left(g_{i}\right)} \neq 0$ for all i and $\bar{M} \neq 0$.

Since $\overline{g_{i}} \neq 0$ (because $\overline{A\left(g_{i}\right)}$, which is a factor of $\overline{D_{1} g_{i}}$, is not zero), and $\overline{f_{0 i}}=\left(\overline{f_{0}}\right)_{i}$, the inductive hypothesis provides us with $c_{\imath} \in R\left[X_{i}\right]$ such that

$$
\overline{g_{i}}=c_{i} g_{i}^{*}
$$

with each irreducible factor of c_{i} being a factor of g_{i}^{*}. By Lemma 1,

$$
D_{1} \overline{g_{i}}=C_{i} D_{1} g_{i}^{*}
$$

with each irreducible factor of C_{i} dividing $D_{1} g_{i}^{*}$. The step $n=1$ already proved yields

$$
\overline{D_{1} g_{i}}=B_{i} D_{1} \overline{g_{i}}
$$

with each irreducible factor of B_{i} dividing $D_{1} \bar{g}_{i}$. Combining gives

$$
\overline{D_{1} g_{i}}=B_{i} C_{i} D_{1} g_{i}^{*}
$$

so that $\overline{D_{1} g_{i}}$ and $D_{1} g_{i}^{*}$ have the same irreducible factors.
The condition $\overline{A\left(g_{i}\right)} \neq 0$ implies $d\left(g_{i}\right)=d\left(\overline{g_{i}}\right)$, and since g_{i}^{*} divides $\overline{g_{i}}, d\left(\overline{g_{i}}\right) \geqq d\left(g_{i}^{*}\right) . \quad \mathrm{As}$

$$
\overline{D_{s} f_{0}}=\prod_{i=1}^{s} \overline{D_{1} g_{i}} \bar{M}^{d\left(g_{i}\right)}
$$

the theorem will be proved if we can show M^{*} divides \bar{M} and they have the same irreducible factors.
\bar{M} is the specialization of M and is given by the same formula as M with the specialization \bar{E} of E taking the place of E. Now the function E, like Δ, commutes with specialization, so we have

$$
\bar{E}=E\left(\bar{f}_{0} ; \bar{g}_{1}, \cdots, \overline{g_{s}}\right)=E\left(f_{0} ; c_{1} g_{1}^{*}, \cdots, c_{s} g_{s}^{*}\right)
$$

Notice also that if $E(0) \neq 0$ so $M=A(E)^{d(E)} E(0), \bar{M} \neq 0$ implies $\overline{A(E)} \neq$ 0 , so $\overline{A(E)}=A(\bar{E})$, and $\overline{E(0)} \neq 0$, so $\bar{E}(0) \neq 0$. On the other hand, if $E(0)=0$, then $M=D_{1}(E)$, and $\bar{M} \neq 0$ implies again $\overline{A(E)} \neq 0$, so again $\overline{A(E)}=A(\bar{E})$ and $d(E)=d(\bar{E})$.

The problem reduces to examining the relation between $\bar{E}=$ $E\left(\bar{f}_{0} ; c_{1} g_{1}^{*}, \cdots, c_{s} g_{s}^{*}\right)$ and $E^{*}=E\left(\bar{f}_{0} ; g_{1}^{*}, \cdots, g_{s}^{*}\right)$ given that every root of c_{i} is a root of g_{i}^{*}.

Note first that $A\left(E^{*}\right)=\Pi_{\imath} A\left(g_{i}^{*}\right)^{\delta_{i} d\left(\overline{f_{0}}\right)}$, where $\delta_{i}=\Pi_{j \neq i} d\left(g_{j}^{*}\right) . \quad$ If $\varepsilon_{\imath}=\Pi_{j \neq i}\left(d\left(g_{j}^{*}\right)+d\left(c_{j}\right)\right)$, then write $\varepsilon_{\imath}=\delta_{i}+\gamma_{i}$, so that

$$
A(\bar{E})=A\left(E^{*}\right) \prod_{i} A\left(c_{i}\right)^{\varepsilon_{i} d\left(\bar{f}_{0}\right)} A\left(g_{i}^{*}\right)^{r_{i} d\left(\bar{f}_{0}\right)}
$$

Since every irreducible factor of c_{\imath} is an irreducible factor of g_{i}^{*}, every irreducible factor of $A\left(c_{2}\right)$ is an irreducible factor of $A\left(g_{i}^{*}\right)$, so the above expression shows that $A(\bar{E})$ and $A\left(E^{*}\right)$ have the same irreducible factors.

Thus in the case where $M=A(E)^{d(E)} E(0)$, we are reduced to proving that $\bar{E}(0)$ is divisible by $E^{*}(0)$ and they have the same irreducible factors. This will follow from the formula

$$
E\left(f ; g h, g_{2}, \cdots, g_{s}\right)=E\left(f ; g, g_{2}, \cdots, g_{s}\right) E\left(f ; h, g_{2}, \cdots, g_{s}\right)
$$

whose proof is an easy exercise. From this formula we see that the constant term of $E\left(f ; g_{1}, g_{2}, \cdots, g_{s}\right)$ is just a product of the constant terms of the various $E\left(f ; p_{1}, p_{2}, \cdots p_{s}\right)$, where p_{\imath} runs through the irreducible factors of g_{\imath} for each $i=1, \cdots, s$. Hence $\bar{E}(0)$ is divisible by $E^{*}(0)$ with the same irreducible factors.

Consider finally the case where $M=D_{1}(E)$. Since \bar{E} is divisible by E^{*} with the same irreducible factors, it follows from Lemma 1 that $D_{1}(\bar{E})$ is divisible by $D_{1}\left(E^{*}\right)$ with the same irreducible factors. The proof for the case $s=1$ showed that $\overline{D_{1}(E)}$ is divisible by $D_{1}(\bar{E})$ with the same irreducible factors.

Thus in both cases \bar{M} is divisible by M^{*} with the same irreducible factors.

Having demonstrated the Specialization Theorem, we can now prove that the Birch-McCann invariant $D_{s}(f)$ and the other invariant $C_{s}(f)$ defined inductively by

$$
\begin{gathered}
C_{1}(f)=d(f) \text { if } s=1 \\
C_{s}(f)=\max _{1 \leqslant i \leq s}\left\{C_{s-1}\left(f_{i}\right)+d\left(D_{s-1} f_{i}\right)\right\}
\end{gathered}
$$

satisfy our main theorem, if R is a unique factorization domain.
Proof. For $s=1$ this is Birch-McCann's Theorem with $\underline{\underline{Z}}$ and \mathfrak{o}_{p} replaced by R and R_{v}. The proof goes over word-for-word because v has a unique extension to the algebraic closure of the field of fractions of R_{v} (as follows from Nagata, Local Rings, statement (30.5), p. 105). Notice also that in this case ($s=1$), the zero $y=b$ is unique.

For $s>1$, we proceed by induction on s. Take $f \in R\left[X_{0}, X_{1}, \cdots, X_{s}\right]$, $a \in R^{s+1}$, and let $\bar{f}_{0}\left(X_{1}, \cdots, X_{s}\right)=f\left(a_{0}, X_{1}, \cdots, X_{s}\right)$, and similarly denote throughout by a bar the result of substituting a_{0} for X_{0}. Now $D_{s} f_{0} \in R\left[X_{0}\right]$ so can be written $g_{0}\left(X_{0}\right)$. Suppose

$$
v(f(a))>C_{s}\left(\bar{f}_{0}\right) n+v\left(D_{s} \bar{f}_{0}\right) .
$$

Then the inductive hypothesis gives us a zero $b \in R_{v}^{s}$ of $\overline{f_{0}}$ such that $v\left(a_{i}-b_{i}\right)>n$ for $i=1, \cdots, s$; hence $\left(a_{0}, b_{1}, \cdots, b_{s}\right)$ is the required zero for f. Otherwise

$$
v(f(a)) \leqq C_{s}\left(\bar{f}_{0}\right) n+v\left(D_{s} \bar{f}_{0}\right) .
$$

In this inequality we propose to replace $C_{s}\left(\bar{f}_{0}\right)$ by $C_{s}\left(f_{0}\right)$ and $D_{s} \bar{f}_{0}$ by $\overline{D_{s} f_{0}}=g_{0}\left(a_{0}\right)$. If $g_{0}\left(a_{0}\right)=0$, we get infinity on the right side. So
suppose $g_{0}\left(a_{0}\right) \neq 0$. Then by the corollary to the Specialization Theorem, $v\left(D_{s} \overline{f_{0}}\right) \leqq v\left(\overline{D_{s} f_{0}}\right)=v\left(g_{0}\left(a_{0}\right)\right)$. We need

Addendum to Specialization Theorem. Under the same hypotheses, $C_{s}\left(\overline{f_{0}}\right) \leqq C_{s}\left(f_{0}\right)$.

Proof by induction on s : For $s=1, C_{1}$ is just the degree in the variable X_{1}, which stays the same or decreases under specialization. Assume the result for $s-1$. Then $C_{s-1}\left(\overline{f_{0 i}}\right) \leqq C_{s-1}\left(f_{02}\right)$ for all $i=$ $1, \cdots, s$. In the notation of the proof of the Specialization Theorem, $\overline{D_{s-1} f_{0 i}}=\overline{g_{i}}=c_{i} g_{i}^{*}=c_{i} D_{s-1} \overline{f_{02}}$, so that

$$
d\left(D_{s-1} \overline{f_{0 i}}\right) \leqq d\left(\overline{g_{i}}\right)=d\left(g_{2}\right)=d\left(D_{s-1} f_{0 i}\right)
$$

So by definition of $C_{s}, C_{s}\left(\bar{f}_{0}\right) \leqq C_{s}\left(f_{0}\right)$, proving the addendum.
We have thus obtained, arguing with respect to any other variable X_{i} as we have for X_{0}, the inequality

$$
\begin{equation*}
v(f(a)) \leqq C_{s}\left(f_{i}\right) n+v\left(g_{\imath}\left(a_{i}\right)\right) \tag{2}
\end{equation*}
$$

for all $i=0,1, \cdots, s$. Combining with our hypothesis (1) on $v(f(a))$, with $a=x$, we obtain

$$
\begin{equation*}
\left[C_{s+1}(f)-C_{s}\left(f_{i}\right)\right] n+v\left(D_{s+1} f\right)<v\left(g_{i}\left(a_{i}\right)\right) \tag{3}
\end{equation*}
$$

for all $i=0,1, \cdots, s$, where by definition of $C_{s+1}(f)$, the coefficient of n in the left side is nonnegative, hence

$$
\begin{equation*}
v\left(D_{s+1} f\right)<v\left(g_{i}\left(a_{i}\right)\right) \tag{4}
\end{equation*}
$$

for all $i=0,1, \cdots, s$.
Arguing exactly as in Birch-McCann, we next show that inequality (4) implies that for every root $\alpha=\left(\alpha_{0}, \cdots, \alpha_{s}\right)$ of (g_{0}, \cdots, g_{s}) such that $v(a-\alpha)>v(M)$ - and there exist such roots by (4) and the theorem for 1 variable applied $s+1$ times - we must have $f(\alpha)=$ 0 . Thus $E(0)=0$, and hence $M=D_{1}(E)$.

By definition of C_{s+1}, the coefficient of n in inequality (3) is at least equal to $d\left(g_{i}\right)$, and by definition of D_{s+1}, we have $v\left(D_{s+1} f\right) \geqq$ $v\left(D_{1} g_{2}\right)$ for all i. So we can apply the theorem for one variable to obtain a unique zero α_{i} of g_{i} such that $v\left(\alpha_{i}-\alpha_{i}\right)>n$, for each $i=$ $0,1, \cdots$, .

Applying the definition of $D_{\varepsilon+1}$ again and using inequality (4), we obtain

$$
d\left(g_{i}\right) v(M)+v\left(D_{1} g_{i}\right)<v\left(g_{\imath}\left(a_{i}\right)\right)
$$

for all i, hence by the theorem for one variable again there is a
unique zero β_{i} of g_{i} in R_{v} such that $v\left(\alpha_{i}-\beta_{v}\right)>v(M)$ for each i. Define

$$
\gamma_{\imath}= \begin{cases}\alpha_{i} & \text { if } n \geqq v(M) \\ \beta_{i} & \text { if } n \leqq v(M)\end{cases}
$$

Then, as remarked before, we must have $f(\gamma)=0$, which proves the theorem.

References

1. B. J. Birch and K. McCann, A criterion for the p-adic solubility of Diophantine equations, Quart. J. Math., Oxford, (2), 18 (1967), 59-63.
2. M. J. Greenberg, Rational points in Henselian discrete valuation rings, Publications Mathématiques, No. 31 (1966), I.H.E.S., 59-64.
3. N. Greenleaf, Irreducible subvarieties and rational points, Amer. J. Math., 87 (1965), 25-31.
4. M. Raynaud, Anneaux Locaux Henséliens, Lecture Notes in Mathematics 169, Springer-Verlag, 1970.

Received November 20, 1972.
University of California, Santa Cruz

