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STRICTLY LOCAL SOLUTIONS OF
DIOPHANTINE EQUATIONS

MARVIN J. GREENBERG

For any system f of Diophantine equations, there exist
positive integers C(f), D(f) with the following properties:
For any nonnegative integer n, for any prime p, if v is the
p-adic valuation, and if a vector x of integers satisfies the
inequality

v(f@)) > C(f)n + v(D(f))

then there is an algebraic p-adic integral solution y to the
system f such that

vx—y)>n.
This theorem is proved by techniques of algebraic geometry
in the more general setting of Noetherian domains of char-
acteristic zero. When f is just a single equation, the method

of Birch and McCann gives an effective determination of C(f)
and D(f).

Let R be a Noetherian integral domain, K its field of fractions.
We will consider Henselian discrete valuation rings R, (see [4])
containing R, where v is the valuation normalized so that v(R,) is
the set of nonnegative integers (plus «). If f=(f, ---,f») is a
system of # polynomials in s variables with coefficients in R, and
is an s-tuple with coordinates in an extension ring of R, we set f(z) =
(i), + -, fr(x)). We define the valuation of an r-tuple (or s-tuple)
to be the minimum of the valuations of its components.

THEOREM. Assume R has characteristic zero. For each system
S of polynomials with coefficients in R, there ewists an integer C(f) =
1 and an element D(f) = 0 in R with the following property: For
any Henselian discrete valuation ring R, containing R, and any
nonnegative integer n, if an s-tuple x with components in R satisfies
the inequality

(1) o(f(x)) > C(f)m + v(D(f))
then there is a zero y of f im R, such that

e —y)>mn.
In particular, if R is the ring of algebraic integers in a number

field, and we take n = 0, S = set of primes dividing D(f), then we
recover Greenleaf’s theorem [3] to the effect that if p¢ S, then every

143



144 MARVIN J. GREENBERG

zero of f mod p may be refined to an actual zero of f in the p-adic
integers — in fact, to an actual zero of f in the algebraic p-adic
integers. The theorem above strengthens Greenleaf’s result by giving
information about the exceptional primes pe S and by providing a
precise linear estimate of how close the actual zero y is to the ap-
proximate zero x. The hypothesis that R have characteristic zero
is required by Greenleaf’s counterexample ([3], p. 30).

Proof. Let fR[X] be the ideal in the polynomial ring R[X, ---,
X,] generated by fi(X), ---, f(X), and let V be the algebraic set in
affine s-space over K which is the locus of zeroes of f.

Step 1. We may assume fR[X] is equal to its own radical. For
let g be a system of polynomials generating the radical, and suppose
the mth power of the radical is contained in fR[X]. If C(g), D(g)
are invariants for g, set

C(f) =mClg),  D(f) = D" .

Then inequality (1) implies that for any polynomial ke fR[X], say
h=hf,+ -+ h.f, we have

v(h(z)) = min [v(h(@)) + v(fi(@))]
Z min v(f(z)) = v(f () > C(f)n + »(D(f)) -
In particular, for » = g7, with g; in g, we get
mv(gi(x)) > m[C(g)n + v(D(g))]  for all j
so that there is a zero y of g in R, such that
(e —y) > n.
Since y is also a zero of f, we have found the invariants for f.
Step 2. Granted that fR[X] is its own radical, we may further
assume fR[X] is a prime ideal. Otherwise, it is an intersection of
finitely many prime ideals, so by induction on the number of these,
we may assume fR[X] is the intersection of two ideals generated by

systems g, ¢’ for which invariants C(g), C(g’), D(g9), D(g9’) have already
been found. We set

C(f) = max (2C(g), 2C(¢")
D(f) = D(9y’D(¢')* .

Then for each g;e ¢ and gje g, we have g,9}e fR[X], so that as be-
fore, inequality (i) implies
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v(g:(@)) + v(gi(x)) = v(f (@) > C(fHm + v(D(f)) .

Suppose that for one index j, v(gj(x)) < 1/2 v(f(x)). Fixing that j and
letting ¢ vary, we get v(g.(x)) > 1/2 v(f(x)) for all indices 7, so that

o)) > %[C(f)n + o(D(f))] -

By definition of C(f) and D(f), the term on the right is at least as
big as C(g)n + v(D(g)), so that there is a zero y of g — a fortiori of
f — in R, such that »(x — y) > n. If, on the other hand, v(¢'(v)) =
1/2 v(f(x)), the same argument gives a zero y of ¢ — a fortiori of
f — in R, such that v(z — y) > =.

Step 3. Assuming fR[X] is a prime ideal, we proceed by induc-
tion on the dimension m of the irreducible K-variety V. If V is
empty, let D(f) be any nonzero constant in fR[X], and let C(f) = 1.
Then the inequality (1) is never satisfied for any %, v, and x, so the
theorem is vacuously true. Assume now that V is nonempty and
the theorem established in dimensions less than m. Let J be the
Jacobian matrix of f, 4 the system of minors 4, of order s — m
taken from J. Since the characteristic is zero, the locus of common
zeros of 4 and f is a proper K-closed subset of V (the singular locus);
by inductive hypothesis, there are invariants C’, D’ for the system
4 plus f.

If (4) is a collection of s — m indices = 7, fi;, the corresponding
system of s — m polynomials taken out of f, let V;, be the algebraic
set of zeros of f; and let W, be the union of the K-irreducible
components of V,,, which have dimension m and are different from
V. Let g, be a system of generators for the ideal of W, in R[X];
by inductive hypothesis, there are invariants C;, D for the system
g plus f (since V' N W, is its locus). The results of Zariski (Trans.
A.M.S. 62 (1947), pp. 14 and 28-29) tell us that if z is a point of
V. such that for some (5)

Ay # 0

then 2 lies on exactly one component of V,, that component having
dimension m.
We now set

C(f) = C" + max {C', Cy, all (k)}
D(f) = (D’)2 (II:.)[ D(k)

so that v(D(f)) = v(D') + max {v(D'), »(D,) all (k)}. Assuming ine-
quality (1), we then have three possibilities:
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I v(4(x)) > C'n + v(D'). By inductive hypothesis, there is a
singular zero y of f in R, such that v(x — y) > n.

II. For some (2), »(9.,)(x)) > Cyyyn + v(D;)). By inductive hypoth-
esis, there is a zero y of f in R, (lying on VN W) such that
(e — Y) > n.

III. For some (i) and (j),

v(dw»(@) = C'n + v(D)

and for every (k), there is a polynomial v, in the system g, for
which

v(7w(®) < Coun + v(Dy) .
By Hensel’s Lemma, there is a zero y of the system f,;, in R, such that
vy — x) > max {C'n + v(D"), Cyn + v(Dy,y) all &} .
In that case g, (y) = 0, for all (k), since
(Y (¥) = v(Vw(®)) .
Thus y¢ W, for any (k). As we also have
diyi(y) = 0

y must lie on V, so y is a zero of f.

Note 1. In the last part of the above argument we used a
version of Hensel’s Lemma which is a strengthening of Lemma 2,
p. 63 of [2]. It says that if R, is a Henselian discrete valuation
ring with maximal ideal m, F a system of » polynomials in s variables
with coefficients in R,, » <s, J its Jacobian matrix, € R;, a € R, so that

Fx)=0 (mod ae™m)

where ¢ = D(z), D being a minor of order r taken from J, then there
exists ye R such that F(y) = 0 and

Yy=2a (mod aem) .
(Since % = v(a) is an arbitrary integer, we have applied this lemma
by taking F' = f,, and
h = max {C'n + D', Coyn + Dy, all k} — v(dei(2))

in part III above.) The idea for proving this stronger Hensel’s Lemma
is the same as in [2], pp. 63-64, reducing to the case » = s, applying
Taylor’s formula to F(aeX), obtaining F(aeX) = aeJ(0)H(X), and if
y' em®is zero of H as in Lemma 1 of [2], then y = aey’ is the zero
we seek,
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Note 2. Birch and McCann [1] proved the special case of the
theorem where R is a wunique factorization domain, and f is a single
polynomial (in several variables). Their method has the advantage
of providing an effective (but impractical) method of calculating D(f)
when f is a single polynomial. If f involves s variables, they use
the notation D,(f) because their invariant is constructed by induction
on s. They omit the definition of C,(f) = C(f), which can be given
inductively on s as follows: If s =1, C.(f) = d(f), where d(f) is the
degree of f. If s> 1, denote by f; the polynomial f regarded as
having coefficients in R[X.,] and involving the other s — 1 variables.
Then

C(f) = max {C,(£) + d(Di-r f))

with d(D,_.f;) being the degree in X, of D, ,f,e R[X]].

The proof by Birch and McCann then goes by induction on s.
However, there is an error in the inductive step (their equation
D,_\(¢) = 9:(a,) does not always hold, as is shown by the polynomial
fX, X)) = X — X2, with a, =0, where g,(a,) =0 while D,(g) =1).
This error can be rectified by proving the following result and its
corollary, since the inequality in the corollary is all they really need
for their argument.

SPECIALIZATION THEOREM. Let R be a unique factorization do-
main of characteristic zero. Given fe R[X,, X, ---, X|] and a,e R.
Denote by a bar the specialization obtained by substituting a, for X,.
Let f, be f regarded as a polynomial in the variables X,, ---, X, with
coefficients in R[X,]. Let D,f,e R[XJand D,f,e R be the invariants
defined by Birch-McCann. If

D.fy #0

then D.f, is divisible by D,f, and they have the same irreducible
factors.

COROLLARY. For any valuation v nonnegative on R,
o(D, fy) < v(D,f,) -

2. Proof of the specialization theorem and the main theorem
for the invariant of Birch-McCann. Recall how D,(f) is defined:
For any polynomial ¢ in one variable, A(g) is the leading coefficient
of g, d(g) is its degree, and

rg = 9/(g, 9")
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where (g, ¢') is the greatest common divisor of g and its derivative
9. Thus rg is the primitive polynomial having the same roots as g
but all taken with multiplicity one. 4(g) is the discriminant of g;

if g has the linear factorization

9(X) = Alg) T (X - @)

then
4(g) = A I (@ — @)«
1<j
Suppose f is a polynomial in s variables X, --., X, and g, is a poly-

nomial in X, only. Let d(g.) = d,, and let «a;;, with 1 <75 <d,; be
the roots of g, counted with their multiplicities. Then the eliminant
E(Z)=E(f; 9, -, 9)(Z) is the polynomial in Z of degree d(E) =
I d. given by
E(Z) = I1 A(g)* ™14 1 {Z — flaus, -+ -, @)} -
P €}

3)
Inductively, D,(f) is then defined as follows: If s=1, D(f)=
A(F) e 08 g(rf)?. If s> 1, set g, = D,_(f,), where f; has been defined
before as f regarded as a polynomial in the s — 1 variables other
than X,; let E be E(f; 9, ---, 9.). Then

II Di(g{A(E) O EO)* ' if E(0) = 0

Ds(f) = H Dl(gi)Dl(E)d(gi) if E(O) =0.

We will prove the Specialization Theorem by induction on s.

Case s =1. Let f(X) = A(f)X!+ ---, and let (r)(X) =
A(rf)X? + -+, so that 6 <d and A(rf,) divides A(f,). Since by
hypothesis D, f, == 0, we have A(f;) = 0, so A(f;) = A(f,) and f, has the
same degree d in X,. Also A(rf,) = 4(rf,) # 0, so rf, has the same
degree ¢ and only simple roots, but may not be primitive. Let ¢ be
the greatest common divisor of the coefficients of »f; then 77, =
e(rfy). Now A(rf,) is homogeneous of degree 2(6 — 1) in the coefficients
of rf,. Thus

D.fy = A(f) ™" Me(rf)) = ¢* D, .

The theorem then follows from the fact that ¢ divides A(rf;) which
divides A(f;) which divides D, f,.

To carry out the induction, we will need to strengthen our
result for s = 1 with the following lemma.

LEMMA 1. Let g, h be polynomials in one variable Y which
satisfy
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g =ck...clep

with each ¢; dividing h, and k, = 1. Then D,g and Dh satisfy the
same type of relationship:

Dg=Crm...CrDh
with each C,; dividing D h.
Proof. Let e = degree h, v, = degree ¢;, so that degree g = ¢ =

e+ >k, and
A(g) = A(e,)*r + -+« A(e,)rsA(R) .

Since each ¢; divides %, g, and A have the same irreducible factors,
so that rg = rh. Hence

D.g = A(g)“"?4(rg)* = (I Ale)*) " A(R) ™ A(rh) .

Now Db = A(h)“2¢4(rh)’, and if we write (¢ — 1)¢* = (¢ — 1)¢* + m
we get
Dig = (IT Ae))=* A(R)4(rh)~*Dih

Since A(c;), A(h), 4(rh) each divide D,h, the lemma is proved.
The inductive step: By definition,

D.f, = 3, Dy(g) Mo

D.J, = 3, Dy(gr) M+

where ¢; = D,_, f,,, f.. being f, regarded as a polynomial in the varia-
bles X; withj = 14,7 =1 (Sf that the coefficients of f;, are polynomials
in X, and X)); gf = D,_(f,): is defined similarly. Also,

_ [A(B)Y®E(©0) if E0)=0

~ | DuE) if E(0)=0

where E = E(f; g, -+, 95); and

_ [AEB**EEX0) it E*(0) =0
~ | DJ(E™) if E*(0) =0

where E* = E(f,; 9, +-+, 9¥). Our hypothesis is D,f, = 0, so that
D,(g.) # 0 for all 4 and M = 0.

Since 7 == 0 (because A(g,), which is a factor of D,g,, is not zero),
and f; = (f);, the inductive hypothesis provides us with ¢, ¢ R[X]]
such that

M*
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0: = ¢ 9f
with each irreducible factor of ¢; being a factor of gf. By Lemma 1,
Dyg; = C.D,g¢

with each irreducible factor of C, dividing D,g¥. The step n =1
already proved yields

D.g, = B,D.g;

with each irreducible factor of B, dividing D.g;. Combining gives

m = B,C.D,g;
so that D,g, and D,g} have the same irreducible factors.
The condition A(g,) = 0 implies d(g.) = d(7;), and since g} divides
7, d(7;) = d(g7). As

D.f, = fIl_D1—!]~;Md(“)
the theorem will be proved if we can show M* divides M and they
have the same irreducible factors.

M is the specialization of M and is given by the same formula
as M with the specialization £ of E taking the place of E. Now
the function E, like 4, commutes with specialization, so we have

E_' = E(.?O; Ely MY 5@) = E(fo; clg;k, tt ng;k) .

Notice also that if E(0) = 0 so M = A(E)*® E(0), M =+ 0 implies A(E) =
0, so A(E) = A(E), and E(0) = 0, so E(0) = 0. On the other hand, if
E@©0) =0, then M = D,(E), and M = 0 implies again A(E) = 0, so
again A(E) = A(E) and d(E) = d(E).

The problem reduces to examining the relation between E =
E(fy; egt, « -, cg¥) and E* = E(fy; gF, ---, g¥) given that every root
of ¢; is a root of gf.

Note first that A(E*) = [I. A(g¥)**0, where &, = [I,.. d(g¥). If
&, = Ilj.: (d(gF) + d(c;)), then write ¢, = 0; + v,, so that

AE) = A(E") T1 A(c) 7 A(gEy o .

Since every irreducible factor of ¢, is an irreducible factor of g,
every irreducible factor of A(e,) is an irreducible factor of A(g}), so
the above expression shows that A(E) and A(E*) have the same
irreducible factors.

Thus in the case where M = A(F)*®E(0), we are reduced to
proving that E(0) is divisible by E*(0) and they have the same irre-
ducible factors. This will follow from the formula
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E(f; gh, Oy * gs) = E(f; 9, 9y * g-S)E(f’ h’r Oz * 93)

whose proof is an easy exercise. From this formula we see that

the constant term of E(f; g, g. -+, g,) is just a product of the con-
stant terms of the various E(f; p,, D, - Ds), Where p, runs th_rough
the irreducible factors of g, for each ¢ =1, ---, s. Hence E(0) is

divisible by E*(0) with the same irreducible factors.

Consider finally the case where M = D,(E). Since E is divisible
by E* with the same irreducible factors, it follows from Lemma 1
that D.(E) is divisible by D,(E*) with the same irreducible factors.
The proof for the case s = 1 showed that D,(F) is divisible by D,(E)
with the same irreducible factors.

Thus in both cases M is divisible by M* with the same irreducible
factors.

Having demonstrated the Specialization Theorem, we can now
prove that the Birch-McCann invariant D,(f) and the other invariant
C,(f) defined inductively by

C(f)=d(f) if s=1
Cs(f) = {2?; {Cs—-l(.fi) + d(DS—lf';)}

satisfy our main theorem, if R is a unique factorization domain.

Proof. For s = 1 this is Birch-McCann’s Theorem with Z and o,
replaced by R and R,. The proof goes over word-for-word because
v has a unique extension to the algebraic closure of the field of
fractions of R, (as follows from Nagata, Local Rings, statement
(30.5), p. 105). Notice also that in this case (s = 1), the zero y = b
is unique.

For s>1, we proceed by induction on s. Take fe R[X,, X, ---, X,],
ae R, and let fy(X,, -+, X,) = f(a,, X,, - -+, X.), and similarly denote
throughout by a bar the result of substituting a, for X,. Now
D, f,e R[X,] so can be written g,(X,). Suppose

v(f(@) > Cfon + v(D.f) -

Then the inductive hypothesis gives us a zero be R: of f, such that
v(a; — b)>n for ¢ =1, ---,s; hence (a, b, ---, b,) is the required
zero for f. Otherwise

v(f(@) = Cf)n + v(D.f) -

In this inequality we propose to replace C.(f;) by C.(f,) and D,f, by
D.f, = 9fa). If go(a,) =0, we get infinity on the right side. So
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suppose  ¢,(a,) * 0. Then by the corollary to the Specialization
Theorem, v(D,f,) < v(D.f,) = v(9,(a,)). We need

Addendum to Specialization Theorem. Under the same hypothe-

ses, C(f)) < C.(f).

Proof by induction on s: For s =1, C, is just the degree in the
variable X, which stays the same or decreases under specialization.
Assume the result for s — 1. Then C,_(f,) < C._(f,) for all ¢ =
1, ..., 5. In the notation of the proof of the Specialization Theorem,
D._.fu = 9. = c.g} = ¢.D._.f,, so that

d(DS—lf-:i) é d(a) - d(gl) - d(Ds—le)z‘) .
So by definition of C,, C.(f) < C.(f,), proving the addendum.

We have thus obtained, arguing with respect to any other varia-
ble X; as we have for X, the inequality

(2) v(f(a)) = Cfi)n + v(g.(a:))

for all ¢ =0,1, ---, s. Combining with our hypothesis (1) on v(f(a)),
with a = z, we obtain

(3) [C.ii(f) — Cu(f)]n + v(D.:nf) < v(gi(a))

for all ¢ =0, 1, ---, s, where by definition of C,.,(f), the coefficient
of n in the left side is nonnegative, hence

(4) VD1 f) < v(g:(a:))

forall 1 =0,1, -.-, s.

Arguing exactly as in Birch-McCann, we next show that inequality
(4) implies that for every root a = (ay, ---, &) of (g, -+, gs;) such
that v(e@ — a) > v(M) — and there exist such roots by (4) and the
theorem for 1 variable applied s + 1 times — we must have f(a) =
0. Thus E(0) =0, and hence M = D,(E).

By definition of C,.,, the coefficient of » in inequality (3) is at
least equal to d(g;), and by definition of D,,,, we have v(D,., f) =
v(D,g,) for all <. So we can apply the theorem for one variable to
obtain a unique zero «; of g, such that v(a; — a;) > n, for each 7 =
0,1, ---,s.

Applying the definition of D,,, again and using inequality (4),
we obtain

d(g)v(M) + v(D.g;) < v(9.(a:))

for all 7, hence by the theorem for one variable again there is a
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unique zero B3; of g, in R, such that v(a; — B8,) > v(M) for each 1.
Define

_{ai if n=v(M)
T e it n< o) .

Then, as remarked before, we must have f(v) =0, which proves
the theorem.
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