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STRICTLY LOCAL SOLUTIONS OF
DIOPHANTINE EQUATIONS

MARVIN J. GREENBERG

For any system / of Diophantine equations, there exist
positive integers C(f), D(f) with the following properties:
For any nonnegative integer n, for any prime p, if v is the
p-adic valuation, and if a vector x of integers satisfies the
inequality

v(f(x)) > C(f)n + v(D(f))
then there is an algebraic p-adic integral solution y to the
system / such that

v(x — y) > n .

This theorem is proved by techniques of algebraic geometry
in the more general setting of Noetherian domains of char-
acteristic zero. When / is just a single equation, the method
of Birch and McCann gives an effective determination of C(f)
and D(f).

Let J? be a Noetherian integral domain, K its field of fractions.
We will consider Henselian discrete valuation rings Rυ (see [4])
containing R, where v is the valuation normalized so that v(Rv) is
the set of nonnegative integers (plus oo). If / = (fίf .. .ffr) is a
system of r polynomials in s variables with coefficients in R, and x
is an s-tuple with coordinates in an extension ring of R, we set f(x) =
(fι(%), # >/r(#)) We define the valuation of an r-tuple (or s-tuple)
to be the minimum of the valuations of its components.

THEOREM. Assume R has characteristic zero. For each system
f of polynomials with coefficients in R, there exists an integer C(f) ^
1 and an element D(f) Φ 0 in R with the following property*. For
any Henselian discrete valuation ring RΌ containing R, and any
nonnegative integer n, if an s-tuple x with components in R satisfies
the inequality

(1) </•(*)) > C(f)n + v(D(f))

then there is a zero y of f in Rυ such that

v(x — y)> n .

In particular, if R is the ring of algebraic integers in a number
field, and we take n = 0, S = set of primes dividing D(f), then we
recover Greenleaf 's theorem [3] to the effect that if p £ S, then every
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zero of / mod p may be refined to an actual zero of / in the :p-adic
integers — in fact, to an actual zero of / in the algebraic p-adic
integers. The theorem above strengthens Greenleaf 's result by giving
information about the exceptional primes p e S and by providing a
precise linear estimate of how close the actual zero y is to the ap-
proximate zero x. The hypothesis that R have characteristic zero
is required by Greenleaf's counterexample ([3], p. 30).

Proof. Let fR[X] be the ideal in the polynomial ring R[Xlf ,
X8] generated by MX), , fr(X), and let V be the algebraic set in
affine s-space over K which is the locus of zeroes of /.

Step 1. We may assume fR[X] is equal to its own radical. For
let g be a system of polynomials generating the radical, and suppose
the mth power of the radical is contained in fR[X]. If C(g), D(g)
are invariants for g, set

C(f) = mC(g), D{f) = D(g)» .

Then inequality (1) implies that for any polynomial hefR[X], say
h = hjx + + hrfr, we have

v(h(x)) ^ min [v(ht(x)) +
i

^ min v(Mx)) = v(f(x)) > C(f)n + v(D(f)) .
i

In particular, for h — gf, with g, in g, we get

mv{gό(x)) > m[C(g)n + v(D(g))] for all j

so that there is a zero y of g in Rv such that

v(x — y) > n .

Since y is also a zero of /, we have found the invariants for /.

Step 2. Granted that fR[X] is its own radical, we may further
assume fR[X] is a prime ideal. Otherwise, it is an intersection of
finitely many prime ideals, so by induction on the number of these,
we may assume fR[X] is the intersection of two ideals generated by
systems g, g' for which invariants C(g), C(g'), D(g), D(gf) have already
been found. We set

D{f) = D{gγD{gJ .

Then for each gtβg and g'όeg', we have g^efRlX], so that as be-
fore, inequality (i) implies
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<ΰ'&)) ^ v(f(x)) > C(f)n + v(D(f)) .

Suppose that for one index j , v($(x)) < 1/2 v(f(x)). Fixing that j and
letting i vary, we get v(gι(x)) > 1/2 v(f(x)) for all indices ί, so that

v(g(x))> j[C(f)n + v(D(f))] .

By definition of C(f) and D{f), the term on the right is at least as
big as C(g)n + v(D(g)), so that there is a zero y of g — a fortiori of
/ — in Rv such that v(x — y)> n. If, on the other hand, v(g'(v)) ;>
1/2 v(f(x)), the same argument gives a zero y of gf — a fortiori of
/ — in Rv such that v(x — y) > n.

Step 3. Assuming fR[X] is a prime ideal, we proceed by induc-
tion on the dimension m of the irreducible if-variety V. If V is
empty, let D(f) be any nonzero constant in fR[X], and let C(f) = 1.
Then the inequality (1) is never satisfied for any n, v, and x, so the
theorem is vacuously true. Assume now that V is nonempty and
the theorem established in dimensions less than m. Let J be the
Jacobian matrix of /, Δ the system of minors Δ{i)U) of order s — m
taken from J. Since the characteristic is zero, the locus of common
zeros of Δ and / is a proper iΓ-closed subset of V (the singular locus);
by inductive hypothesis, there are invariants C", Dr for the system
Δ plus /.

If (ί) is a collection of s — m indices ^ r, f{i) the corresponding
system of s — m polynomials taken out of /, let V{i) be the algebraic
set of zeros of f(i) and let W{i) be the union of the iΓ-irreducible
components of Vω which have dimension m and are different from
V. Let g{ι) be a system of generators for the ideal of Wu) in R[X];
by inductive hypothesis, there are invariants C«,, D{i) for the system
g{i) plus/(since V f] W{i) is its locus). The results of Zariski (Trans.
A.M.S. 62 (1947), pp. 14 and 28-29) tell us that if x is a point of
FU ) such that for some (j)

4i)(i> =5* 0

then a? lies on exactly one component of V{i), that component having
dimension m.

We now set

C(f) = C + max {C, C{k) all (k)}

D(f) = (DJ Π Dik)

(k)

so that v(D(f)) ^ v(D') + max {v(D')f v(Dik)) all (&)}• Assuming ine-
quality (1), we then have three possibilities:
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I. v(Δ{x)) > C'n + v(D'). By inductive hypothesis, there is a
singular zero y of / in Rv such that v(x — y)> n.

II. For some (i), v(g{i)(x)) > C(i)n + v{D{i)). By inductive hypoth-
esis, there is a zero y of / in Rv (lying on F π TF(<)) such that
v(x — y) > n.

III. For some (i) and 0*),

v(4<)(i)(a0) ^ C'n + v{Df)

and for every (k), there is a polynomial y{k) in the system gιk) for
which

^ C{k)n + ^(1^)) .

By HenseΓs Lemma, there is a zero y of the system f{i) in iϋυ such that

v(y - x) > max {C'n + v{D'\ Cιk)n + v(D{k)) all &} .

In that case g{k)(y) Φ 0, for all (fc), since

v(7(Jfe)(2/)) = v(y(k)(x)) .

Thus i/g Wik) for any (&). As we also have

Λ(i){j)(y) Φ 0

y must lie on V, so # is a zero of /.

ΛΓoίβ 1. In the last part of the above argument we used a
version of HenseΓs Lemma which is a strengthening of Lemma 2,
p. 63 of [2]. It says that if Rv is a Henselian discrete valuation
ring with maximal ideal m, F a system of r polynomials in s variables
with coefficients in Rv, r^s,J its Jacobian matrix, x e Rs

v, a e Rv so that

F(x) ΞΞ 0 (mod aehή)

where e = D{x), D being a minor of order r taken from J, then there
exists y e Rs

v such that F(y) = 0 and

y = x (mod αβm) .

(Since h = v(ά) is an arbitrary integer, we have applied this lemma
by taking F = f{i) and

h = max {C'w + D', C{Jfe)w + JD(A;) all k) - v{A{ίnj)(x))

in part III above.) The idea for proving this stronger HenseΓs Lemma
is the same as in [2], pp. 63-64, reducing to the case r = s, applying
Taylor's formula to F(aeX), obtaining F(aeX) = aeJ(0)H(X), and if
y'ems is zero of H as in Lemma 1 of [2], then y = aey' is the zero
we seek.
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Note 2. Birch and McCann [1] proved the special case of the
theorem where R is a unique factorization domain, and / is a single
polynomial (in several variables). Their method has the advantage
of providing an effective (but impractical) method of calculating D(f)
when / is a single polynomial. If / involves s variables, they use
the notation Ds(f) because their invariant is constructed by induction
on s. They omit the definition of Cs(f) = C(f), which can be given
inductively on s as follows: If s = 1, CL(f) = d(f), where d(f) is the
degree of /. If s > 1, denote by f the polynomial / regarded as
having coefficients in R[Xτ] and involving the other s — 1 variables.
Then

Cs(f) = max {CUA) + diD^f)}

with d(A-i/<) being the degree in Xx of D^fe R[Xτ].
The proof by Birch and McCann then goes by induction on s.

However, there is an error in the inductive step (their equation
Dn~\{Φ) — #i(c&i) does not always hold, as is shown by the polynomial
f(Xl9 X2) = Xt - XI with a, = 0, where g^a,) = 0 while D^φ) = 1).
This error can be rectified by proving the following result and its
corollary, since the inequality in the corollary is all they really need
for their argument.

SPECIALIZATION THEOREM. Let R be a unique factorization do-
main of characteristic zero. Given feR[X0, Xlf •••, Xs] and aoeR.
Denote by a bar the specialization obtained by substituting a0 for XQ.
Let f0 be f regarded as a polynomial in the variables Xu , Xs with
coefficients in R[X0]. Let Dsfoe R[X0]and DsfoeR be the invariants
defined by Birch-McCann. If

o

then Dsf is divisible by Dsf0 and they have the same irreducible
factors.

COROLLARY. For any valuation v nonnegative on R,

v(DJ0) <Ξ v(DJ0) .

2- Proof of the specialization theorem and the main theorem
for the invariant of Birch-McCann* Recall how Ds(f) is defined:
For any polynomial g in one variable, A(g) is the leading coefficient
of g, d(g) is its degree, and

rg = g/(g, gf)
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where (g, g') is the greatest common divisor of g and its derivative
g\ Thus rg is the primitive polynomial having the same roots as g
but all taken with multiplicity one. A(g) is the discriminant of g;
if g has the linear factorization

g(X) = A(g)jl(X-ai)

then

A(g) = A2{d~1] Π (cίi - a3f .

Suppose / is a polynomial in s variables Xl9 , Xs and gi is a poly-
nomial in Xi only. Let d(g) = dίf and let ai3 , with 1 fg j ^ du be
the roots of g% counted with their multiplicities. Then the eliminant
E{Z) = E(f; glf , g,)(Z) is the polynomial in Z of degree d{E) =
Π ^̂  given by

E(Z) = Π A(gt)
d{E)i{f)Idi U{Z - f(aljl9 -, α s i)} .

* (i)

Inductively, A(/) is then defined as follows: If s = 1, A(/) =
Ά(/)(ίί~1)d2^(^/)ίZ. If s > 1, set ̂  = A-i(/<)> where /< has been defined
before as / regarded as a polynomial in the s — 1 variables other
than X,; let £7 be E(f; glt , ̂ ) . Then

( Π A(^){A(£?)d ί l ϊ )^(0)}< l (^> if E(0) Φ 0

( f) = i *
n i ) if

We will prove t h e Specialization Theorem by induction on s.

Case s = 1. Let f^X,) = A(fo)X* + . . . , and let (r/0)(-Xi) -

A(rfo)X! + •••, so t h a t δ £ d and A(r/0) divides A(fQ). Since by

hypothesis A/o Φ 0, we have A(/o) Φ 0, so A(/o) = A(f0) and / 0 has t h e

same degree d in Xt. Also Λ(r/0) = A(rfQ) Φ 0, so r/0 has t h e same

degree δ and only simple roots, b u t may not be primitive. Let c be

the greates t common divisor of t h e coefficients of r/0; t h e n rf0 —

c(r/0). Now A(rfQ) is homogeneous of degree 2(8 — 1) in the coefficients

of rf0. Thus

AT; =

The theorem then follows from the fact that c divides A(rf0) which
divides A(fQ) which divides A/ϊ

To carry out the induction, we will need to strengthen our
result for s = 1 with the following lemma.

LEMMA 1. Let g, h be polynomials in one variable Y which
satisfy
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g = cf1 Ck

8*h

with each c{ dividing h, and k{ ^ 1. Then Dtg and DJi satisfy the
same type of relationship:

D,g = CT1 C?*DJi

with each C{ dividing DJi.

Proof. Let e = degree h, τ< = degree c£, so that degree # = ε =

e + Σ kM, and

A(flf) = Afo)* - A(c.)k A(h) .

Since each c{ divides h, g, and h have the same irreducible factors,
so that rg = rh. Hence

D,g = A(gyε~l)ε24(rg)ε = (Π A{c^ψ~l)s2A(hYε-l)ε2A(rh)ε .
i

Now DJi = A{h){e-ι)e2A{rh)\ and if we write (ε - l)ε2 = (e - l)β2 + m
we get

Aflr - (Π Aic.Yψ-^AihYΔirhy-'D.h .

Since A(c<), -A(fe), J(rfe) each divide DJi, the lemma is proved.
The inductive step: By definition,

Dsfo - Σ A(ί/;)ΛP(α<)

i = i

A Jo = Σ Ad/DM ^ i'
i = i

where ^ = i?β_1/oί, /0< being /0 regarded as a polynomial in the varia-
bles X, with j =£ i,j *>1 (so that the coefficients of /o ι are polynomials
in Xo and Xt); gf = JD,-I(/0)< is defined similarly. Also,

if ί ? (0)^ 0

if E(Q) = 0

where £7 = E(f0; gίf , flf,); and

if JE7*(O) ^ 0
M ~~ (DAE*) if E*(0) = 0

where E* = E(fQ; g?, - ,_gϊ). Our hypothesis is Dsf0^0, so that
0 for all i and ikf ^ 0.

Since gl Φ 0 (because -£(&), which is a factor of A ^ ? is not zero),
and fi = (/0)ΐ, the inductive hypothesis provides us with cz e R[Xi]
such that
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9l = ctgt

with each irreducible factor of c< being a factor of gf. By Lemma 1,

with each irreducible factor of C< dividing Dxgf. The step π = 1
already proved yields

with each irreducible factor of Bt dividing Aί/ϊ Combining gives

Affc -

so that A^» a n ( i Afltf have the same irreducible factors.
The condition A{gτ) Φ 0 implies d(gx) = d((^), and since gf divides

gl,d(m)^d(gf). As

A/o - Π A&
* = 1

the theorem will be proved if we can show M* divides M and they
have the same irreducible factors.

M is the specialization of M and is given by the same formula
as M with the specialization E of E taking the place of E. Now
the function E, like Δ, commutes with specialization, so we have

E = E(f0; £ , . . . , Js) = E(f0; Clg*f , csgί) .

Notice also that tf E(0) Φ 0 so M = A(^)d(ί)S(0), iί?^ 0 implies Z(F) ^
0, so Ί(E) = A(E), and JS7(0) Φ 0, so ^(0) ^ 0. On the other hand, if
E(0) = 0, then M = A(J^), and iί? Φ 0 implies again A(S) Φ 0, so
again ACe) = A(E) and d ^ ) - d(E).

The problem reduces to examining the relation between E =
E(fQ; cγgf, , csgί) and E* = E(f0; gf, , gf) given that every root
of d is a root of g*.

Note first that A(E*) = Π ^ ( α * ) M ( / o ) , where δ, = Π ^
εz = TίiΦi (d{gf) + d(Ci)), then write et = δtf + 7<, so that

Since every irreducible factor of c% is an irreducible factor of gf,
every irreducible factor of A(ct) is an irreducible factor of A(gf), so
the above expression shows that A(E) and A(E*) have the same
irreducible factors.

Thus in the case where M = A(E)d{E)E(0), we are reduced to
proving that £7(0) is divisible by 2?*(0) and they have the same irre-
ducible factors. This will follow from the formula
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E(f; gh, gif , gs) = E(f; g, g2, , gs)E(f; h, g2, , gs)

whose proof is an easy exercise. From this formula we see that
the constant term of E(f; gί9 g2, , gs) is just a product of the con-
stant terms of the various E(f; ply p2, p s), where p% runs through
the irreducible factors of g% for each i = 1, •••, s. Hence E(0) is
divisible by i?*(0) with the same irreducible factors.

Consider finally the case where M = D^E). Since E is divisible
by E* with the same irreducible factors, it follows from Lemma 1
that DX(E) is divisible by D^E*) with the same irreducible factors.
The proof for the case s = 1 showed that Dt{E) is divisible by DX(E)
with the same irreducible factors.

Thus in both cases M is divisible by M* with the same irreducible
factors.

Having demonstrated the Specialization Theorem, we can now
prove that the Birch-McCann invariant Ds(f) and the other invariant
Cs(f) defined inductively by

Cι(f) = d(f) if 8

Cs(f) = max {CUfd +

satisfy our main theorem, if R is a unique factorization domain.

Proof. For s = 1 this is Birch-McCann's Theorem with £ and op

replaced by R and Rv. The proof goes over word-for-word because
v has a unique extension to the algebraic closure of the field of
fractions of Rv (as follows from Nagata, Local Rings, statement
(30.5), p. 105). Notice also that in this case (s = 1), the zero y — b
is unique.

For s > l , we proceed by induction on s. Take/e R[X0, Xι, , Xs],
a G Rs+\ and let fQ(Xίf , Xs) — f(a0, Xlf , Xs)f and similarly denote
throughout by a bar the result of substituting α0 for Xo. Now
DsfoeR[Xo] so can be written go(Xo). Suppose

v(f(a)) > Cs(f0)n + v(Dj0) .

Then the inductive hypothesis gives us a zero be Rs

v of /0 such that
v(ai — bi) > n for i = 1, , s; hence (α0, bu , bs) is the required
zero for /. Otherwise

v(f(a)) £ Cs(f0)n + v(DJ0) .

In this inequality we propose to replace Cs(f0) by Cs(f0) and Dsf0 by
Dsf0 = go(aQ). If ^0(α0) = 0, we get infinity on the right side. So
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suppose go(ao) Φ 0. Then by the corollary to the Specialization
Theorem, v(D.fό) ^ v(DJ0) = v(gQ(a0)). We need

Addendum to Specialization Theorem. Under the same hypothe-
ses, Cs(fQ) ^ C.(/o).

Proof by induction on s: For s = 1, CΊ is just the degree in the
variable Xlf which stays the same or decreases under specialization.
Assume the result for s - 1. Then Cs_XjQ ^ CS_L(/OJ for all i =
1, , 8. In the notation of the proof of the Specialization Theorem,
Di-ίfoi = 9i = c,gf = CiDs^f^, so that

xΰ) ^ d(Vd = d(gt) = d(Ds_JQi) .

So by definition of C8, Cs(f0) <Ξ Cs(f0), proving the addendum.

We have thus obtained, arguing with respect to any other varia-
ble Xi as we have for XOf the inequality

( 2 ) v(f(a)) £ CB(ft)n + v(gι(at))

for all i = 0, 1, , s. Combining with our hypothesis (1) on v(f(a)),
with a = x, we obtain

(3 ) [C.+1(/) - C.{f%)\n + v(Ds+J) < vigAflt))

for all i = 0, 1, , s, where by definition of Cβ+1(f), the coefficient
of % in the left side is nonnegative, hence

(4) v(D.+1f) < vigfa))

for all i = 0, 1, , s.
Arguing exactly as in Birch-McCann, we next show that inequality

(4) implies that for every root a = (aQ, , as) of (gQ, , g8) such
that v(a — a) > v(M) — and there exist such roots by (4) and the
theorem for 1 variable applied s + 1 times — we must have f{a) —
0. Thus E(0) = 0, and hence M - Dλ(E).

By definition of C,+1, the coefficient of n in inequality (3) is at
least equal to d{gx)> and by definition of Ds+1, we have v(Ds+1f) :>
'KAfiO for all i. So we can apply the theorem for one variable to
obtain a unique zero at of #* such that v(ai — a%) > n, for each i =
0,1, . . . , * .

Applying the definition of Ds+ί again and using inequality (4),
we obtain

d(gt)v(M) + v(Digi) < v(gt(at))

for all i, hence by the theorem for one variable again there is a
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unique zero βι of g{ in Rv such that v(at — βz) > v(M) for each i.
Define

d if n ^
Ί% ~ 1/9, if w ^ v(Jlf) .

Then, as remarked before, we must have f(y) = 0, which proves
the theorem.
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