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ASSOCIATORS IN SIMPLE ALGEBRAS

S. ROBERT GORDON

In this paper it is shown that, with suitable hypotheses
on the base field, any element of generic trace zero in an
octonion algebra is a commutator and an associator, and any
element of generic trace zero in a simple Jordan algebra is
an associator.

In 1937 K. Shoda [7] proved that every n x n matrix A of trace
zero over a field of characteristic bigger than n is a commutator
[Bf C] = BC — CB for suitable n x n matrices J?, C. His method was
to show that A is similar to a matrix all of whose diagonal entries
are zero, and then to give a specific formula for such a matrix. In
1957 A. A. Albert and B. Muckenhoupt [1] proved this theorem for
arbitrary fields by proving a more complicated similarity theorem and
giving a more complicated formula. In 1963 G. Brown [3] proved an
analogous theorem for Lie algebras: that every element of a (split)
classical Lie algebra 2 is a commutator. His result is valid over all
fields, with the exception of certain small finite fields. His method was
to show that if 2 = !Q φ Σ^o 2a is the Cartan decomposition of 2 with
respect to a Cartan subalgebra φ, then every element of 2 is conjugate
under the automorphism group of 2 to an element of Σα^o£α.

In this paper we present similar results for alternative and
Jordan algebras. If SI is a (nonassociative) algebra with multiplication
x,y\-* xy, we define the commutator of x, ye 2X to be [x, y] — xy — yx
a n d t h e a s s o c i a t o r of x, y,ze% t o b e [x, y, z] = (xy)z — x(yz). We

prove that in an octonion algebra (with the possible exception of
division algebras of characteristic 2) any element of trace zero is both
a commutator and an associator. We show that in a simple Jordan
algebra over an algebraically closed field of characteristic bigger than
the degree of the algebra, every element of trace zero is an associator
(the question of commutators does not arise). Our methods are
analogous to the above: in each case we prove that an element of
trace zero is conjugate under the automorphism group of the algebra
to one whose "diagonal entries" (in an appropriate sense) are zero.
Then we give a specific computation for such elements.

The product of two elements x, y of an associative or octonion
algebra will be denoted xy; the product of elements x9 y of a Jordan
algebra will be denoted x,y. The reader is referred to [2] and [6]
for relevant properties of octonion algebras, and to [5], especially
Chapter 5, § 6, for properties of simple Jordan algebras.
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132 S. ROBERT GORDON

1. Octonion algebras* We prove the following:

THEOREM 1. Let O be either an octonion division algebra over
a field Φ of characteristic Φ 2 or a split octonion algebra over an
arbitrary field Φ. Then every element of Ό of trace zero is both a
commutator [a, b] and an associator [α, b, c\.

Proof. We denote the canonical involution on Ό by xι-> x. The
generic trace and norm forms on O are x -f x = t(x), xx = xx — n(x)
respectively. The linearized norm form is n(x, y) = xy + yx = t(xy).
See [2] or [6] for properties of these forms.

If O is a division algebra, we give an argument of R. Brown.
Suppose α e O and t(a) ~ 0. Choose 0 Φ beΌ such that n(l, b) =
n(a, b) = 0; this is possible since <1, b)A must be at least 6-dimensional,
hence nonzero. Since n(l, b) = t(b), we have a = — a, b ~ — b, Q =
ab -I- ba = —ab — ba. Using the alternative law, we have

[6, ab] = b{ab) - (ab)b = -b(ba) - (ab)b = -b2a- ab2

= (bb)a + a(bb) = 2n(b)a.

Since 2 Φ 0 and n{b) Φ 0 (£) is a division algebra), a is a commutator.
Now choose 0 Φ ce O orthogonal to 1, α, b, ab: the orthogonal

compliment of these elements is at least 4-dimensional. Then

(ab)c — a(bc) — [a, b, c] — [c, a, b] = (ca)b — c(ab)

= {ca)b — c(ab) = (ca)b — c{ba) — (ca)b + c(ab)

= (ca)b — (ab)c = (ca)b + (ab)c

a(bc) = ~-(ca)b

[a{bc\ 6, c] = ((a(bc))b)c - (a(bc))(bc)

= {{{ca)b)b)c - a{bc)2.

Since n{b, c) = 0 implies be — —be and n(a, c) — 0 implies ca = —ac,

we have

[a{bc), 6, c] = {{ca)b2)c + an(bc) = n(b)(cac) + an{bc)

= —n(b)(ac2) + an(bc) — n(b)n(c)a + an(bc)

= 2n(b)n(c)a .

But 2, n(b), n(c) are all nonzero, so a is an associator.
We now assume that D is a split octonion algebra. Let x0, y09 x19

Vi, ®2, V2, #s, Vz be a canonical basis for O as given by van der Blij
and Springer [2, p. 410-411]; {a?,, y%) are mutually orthogonal hyperbolic
pairs and xQ, y0 are complimentary primitive idempotents. Suppose
veΌ and ί(i ) = 0. Suppose furthermore that 1, v are linearly inde-
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pendent (this happens necessarily if the characteristic is not 2). Let
n(v) = α e Φ. Thenn(x, + ay,) = n(x,) + n(xlfayΐ) + n{ay,) = 0 + α l + 0 =
n(v), n(l, x, + ay,) = n(x0 + y0, x, + ay,) = 0 = w(l, v). Witt's theorem
therefore implies that there is an orthogonal transformation θ of O
sending 1 —> 1 and x, + ay, —• v. Let e = 0(OJO), / = 1 — e = 0(2/o). Then
w(e) = ^(#a;0) = n(xQ) = 0, ί(β) = n(e, 1) = ^(^^o, ^1) = n(x0, 1) = ί(a?0) = 1.
Hence e is a primitive idempotent of D. Also

n(e, v) = ^(to0, ^fe + ^ i )) = w(a?0, #i + ^ 0 = 0

^ + ay,) = 0 .

Using the arguments of [2, p. 411], we can identify O with the algebra
of "vector matrices" over Φ in such a way that e, f are identified with
the diagonal idempotents. Then v e (e, f}1 is a matrix with only zeroes
on the diagonal. This proves the "conjugacy" step.

We note the following formulas in the algebra of vector matrices:

0 - α \ /I 0

b 0/ \0 0

0 a

b 0

0 a\ /0 c\ ίl 0\Ί _ / 0 - δ x d

δ 0/ ' \d 0/ f \0 0/J = U x c 0

where as usual α x 6 is the usual vector product in Φ3, three-dimensional
space over Φ. This proves that v is a commutator; to prove that v
is an associator one need only show that every element of Φ3 is of the
form a x b for some .a, be Φ3. Fix 0 Φ as Φ3. By αd α we mean the
map b\-*a x 6. Since o (αx δ) = 0 (here α δ is the usual scalar product
on Φ3), the image of ad a is contained in the kernel of the linear
functional δf—»α δ. This kernel is 2-dimensional. If a = (a, β, Ύ) then
the matrix of ad a is

hence has rank 2. This means that the image of ad a equals the
kernel of δh->α δ. Given δeΦ3, choose O ^ α e Φ 3 so that α δ = 0.
Then δe Image (ad a), i.e., δ = a x c for some c.

We have assumed that 1, v are linearly independent. Finally, we
need to show that 1 e O is a commutator and an associator in charac-
teristic 2. If {χif yt} is a canonical basis of O as above then the
multiplication table given in [2] yields

[x, + y l 9 x,] = x0 - Vo

\xu x 2 , Xs\ = x0 — y0 .
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This proves the theorem.
It would of course be interesting to know whether these results

hold in division algebras of characteristic 2.1

2* Jordan algebras* In this section we prove the following:

THEOREM 2. Let $ be a simple Jordan algebra over an algebraically
closed field Φ of characteristic bigger than the degree o/$. Then every
element of £$ of generic trace 0 is an associator [a, b, c\.

The assumption of algebraic closure is used to simplify appeal to
the classification theory and to guarantee the existence of square roots
in the field. It will be seen that at least one crucial lemma would
be false otherwise. The theorem may hold more generally, but a
different proof would be required. In any event, henceforth Φ is
algebraically closed.

We first note that the theorem is vacuous for algebras of degree
1 (i.e., for Φ) and easy for algebras of degree 2. The latter are the
Jordan algebras Φl © 55, 55 a vector space (of dimensional at least 2)
with a nondegenerate symmetric bilinear form (,). 55 is the space
of elements of trace zero in this algebra. If ve 55, choose 0 Φ ue 55
such that (u, v) = 0 and w e 55 such that (u, w) = 1. Then [w, u, v] = v.

In proving Theorem 2 for algebras of degree at least 3, we will
consider the algebras φ(Φ«) of symmetric n x n matrices over Φ
separately from the other algebras.

LEMMA 1. Let $ = Φ1055 be the Jordan algebra of the space 55
equipped with the nondegenerate symmetric bilinear form (, ); let e
be a primitive idempotent in $ and f = 1 — e. Suppose a — ae +
βf + x (where a, β eΦ, xe $i/2(β)) and suppose a g Φl, dim 55 Ξ> 3.

Then there is an automorphism of $ having determinant 1 and
sending a—> (a + β)e + y, for some y e $i/2(e).

Proof Let v = e - fe 55. Then e - ~-(l + v), f = -~ (1 - v),

(v, v) = v2 = 1, 31/2(e) = <i>>L = {w e SB | (v, w) = 0}. If y e 31/t(e) then

ae + /3/ + x = — (α + /3)1 + — (α - /3)v + x
Δ Δ

(a + β)e + y = —(a + β)l + ~{a + β)v + y .
Δ Δ

Since α is not a scalar, either α Φ β or α? ^ 0; in any event, —{a — β)v +

1 Since the above was written, Michel Racine has supplied the author with a proof
of Theorem 1 in this case.
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x Φ 0. It therefore suffices to find y e fti/2(e) so that — {a — β)v + x
Δ

is nonzero and has the same norm as — {a + β)v + ?/. For then Witt's
Δ

theorem implies that there is an automorphism φ of ft sending the
first of the above elements to the second (recall that the automorphism
group of ft is naturally isomorphic to the orthogonal group of 93).

/ I X1

Since dim 93 ^ 3 , \-χ-(a + β)v + y) cannot be a totally isotropic
\ Δ I

subspace; if w is a nonsingular element of it and σw is the reflection
along w, then det (σwφ) = — det φ. The desired automorphism is either
Φ or σwφ: whichever has determinant 1.

The norm of —(a- β)v + x is (—(a- β)\ + (x, x) = — (a2 +
2 V2 / 4

β2) - — aβ + (a?, a>). The norm of — (a + /S)v + 2/ is - ί (α2 + β2) +
2 2 4

— a β + (y, y). So we need to find y e (v}J such that the norm of y is
Δ

(yf y) = (χ9 x) — aβ. Since (v}1 is a nonisotropic subspace of dimension
at least 2, and since Φ is algebraically closed, (v}L contains nonzero
elements of arbitrary norm (including 0). So y can be chosen to be

nonzero, and hence — (a + β)v + y Φ 0.
Δ

LEMMA 2. Let $ be a simple Jordan algebra over Φ and let
elf •", en be a complete set of orthogonal primitive idempotents in $.
Let $ - Σigj Sij be the corresponding Peirce decomposition and suppose
dim$ 1 2 ^ 2 . / / α e ft, sα2/ α = Σ* # ^ + Σ*<i »<i («:<e Φ, aĵ  e ft^ ), α^d i/
either aλ Φ a2 or x12 Φ 0, then there is an automorphism of ft sending
a to an element (ax + cc2)e2 + Σ?=s« iβ i + Σ«i2/ϋ / o r

Proof We apply Lemma 1 to the simple Jordan algebra SI — ftu 0
ft120ft22, and conclude that there is an automorphism φ of this algebra,
of determinant 1 and sending axeγ + a2e2 + x12 to (aι + a2)e2 + yί2 for
some y12 e ft12. We wish to extend this to an automorphism of ft.

We note that in a simple Jordan algebra Φ1093 any automorphism
of determinant 1 is a product of maps Uiβ-iί^z-i (U the quadratic
Jordan operator, e and / primitive idempotents). For if v = 2e — 1 e 93,
then ϋiβ-iίl) = 2(l.v).v - l.v2 = 2 - 1 = 1; and we 93 implies

U2Uw) = 2(v, w)v - w(v, v)=-(w-
(V, V)

I.e., U2e-i = — σv (where σv is the reflection along v). But every
orthogonal map of 2? of determinant 1 is the product of an even
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number of reflections, hence of an even number of negatives of reflec-
tions; and any reflection is a reflection along a vector of norm 1, since
the field is algebraically closed.

We conclude that <f> is a product of automorphism U2e-.{ei+e2), where
e is a primitive idempotent of SI. But Z72e_1 restricted to 21 is
Z78β_(βl+β2), since Uu-Λ{x) = 8(x e) e - 8x e + x for all x e $ and U2e-Ul+e2)(x)

is the same for xe 21 [4, p. 47]. Thus φ extends to an automorphism
Φ of Qf which is a product of automorphisms the form Z72β_!, e a
primitive idempotent of St. We show this φ has the desired property.

Let e be a primitive idempotent of SI, / = e1 + β2 — e. U2e^ is
the identity on $0(e) ©$i(e) and is —1 on $i/2(e). We have the Peirce
decomposition $ = Σiss; 3ίίi with respect to the idempotents e, /, e3,
• , en. So [/2e_! is the identity on Σ*,i*3 3ta If i ^ 3 then Z72β_i is
- 1 on Qfίi and + 1 on $&, hence stabilizes 3fί<Θ3fί» = 3fi/2(β + /) Π
3fi/i(βi) = 3fi/s(βi + e2) n 3fi/,(e;) = &, Θ 3 2 i . We conclude that φ is the
identity on $tj(ί, i ^ 3) and stabilizes all 3fH 0 $2;(i ^ 3); hence ^ has
the desired effect on a.

The next lemma is the conjugacy step in the argument. We recall
that in a simple Jordan algebra over Φ of degree at least 3 all the
Peirce spaces $ϋ(i Φ j) have the same dimension 1, 2, 4 or 8 [5].

LEMMA 3. Let $ be a simple Jordan algebra over Φ and elf , en

a complete set of orthogonal primitive idempotents. Assume the Peirce
spaces ̂ ^(i Φ j) with respect to these idempotents are not one-dimen-
sional. Assume also that the characteristic of Φ is 0 or bigger than n.
Then every element of $ of trace 0 is conjugate under the automor-
phism group of $ to an element of Σ;<i 3f»i

Proof. Let a — Σ* && + Σ*<i »<i with Σi ai = 0. We show by
induction on k that a is conjugate to an element Σ βtet + Σ Vu in
which at least k of the /S/s are zero. If k — 0, there is nothing to
prove. Assume the result for k. The nonzero /S/s cannot all be
equal, say, to β; otherwise (n - k)β = tr (α) = 0: but n - k Φ 0 by the
assumption on the characteristic. So choose i, i such that β% Φ β3-
are nonzero. We apply Lemma 2 and conclude that a is conjugate
to an element with k + 1 zeroes among the coefficients of the idem-
potents.

We note that this conjugacy theorem is false if dim$ Ί = 1. Let
$ = $(Φn) be the algebra of n x n symmetric matrices over Φ. Let

A be the matrix with ί . _ | j in the upper left-hand corner and zero

elsewhere (here i = V—l). Then A is not orthogonally similar to any
symmetric matrix all of whose diagonal entries are zero. To see this,
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we regard $ as acting on the vector space 33 with the nondegenerate
symmetric bilinear form (,) and orthogonal basis xJf •• ,ί&%. Let
A be the linear transformation of 33 whose matrix with respect to
this basis is A. Suppose ylf , yn is another orthonormal basis with
respect to which the matrix of A has all zeroes on the diagonal.
Let yk = Σ i oίjkXj. Then

0 = (Ayk, yk)

= (ttik(%i + ixz) + oίuiiXί — x2), aιkxι + a2kx2 + + ankxn)

= a\k + 2ία1A;α2Λ - a\k = (αlfc + iα:2A)2 .

Hence for all k, alk + ia2k — 0. This says that all yk belong to some
(n — l)-dimensional subspace of 33, a contradiction.

Finally, we prove Theorem 2 for Jordan algebras $ in which the
Peirce spaces ^i3 are not one-dimensional. The notation is as in
Lemmas 2 and 3. If a = Σ*<i #ϋ> we show a is an associator. By
Lemma 3, this is sufficient. But

177 (Ύ P I • /y -p • /y P —j— ΓV p. I

= —(a% + ajfyιj - ytj. {a%et + a3e3)
4

= l _ ( α + a γ - A-(a

2 + a

2 ) - - — ( a - a ) 2

if y^e^Sij. So

If we take αΊ, , an to be distinct and yι3 = —k{a}, — a3)
 2xzj, we see

that a is an associator.

We now prove Theorem 2 under the assumption that ^ = $(Φn)
for some n ^ 3; by the classification theory of Jordan algebras, this
is the only remaining case. We regard $ as the algebra of symmetric
operators on the space 33 as above. We will have occasion to use
both orthonormal and hyperbolic bases of 33; the latter are bases
&!, , %ι, Vu - ,yι or ®u - ,XhVι, -' , Vu * (depending on whether
dim 33 is even or odd) satisfying (xif x3) = (yu y3) — (xif z) = (yl9 z) = 0,
(xX7 y3) = dι3 , (z, z) = 1. The existence of bases of both kinds follows
from the algebraic closure of the field.

LEMMA 4. Let 33 be a three-dimensional vector space over Φ with
nondegenerate symmetric bilinear form ( , ) . Let σ be a nonscalar
symmetric linear transformation on 33. Then there exists a hyperbolic
basis x, y, z of 33 with respect to which the matrix of σ has the form
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Proof. Since the matrix of a symmetric transformation with
respect to a hyperbolic basis has the form

a
7

μ

β

a

V

μ

λ.

we need to find a hyperbolic basis x, y, z such that σx is a linear
combination of y and z. We first note that there exists 0 Φ X e 35
such that {x, x) = 0 and x, σx are linearly independent. Suppose
otherwise. Let x, y, z be a hyperbolic basis of S3. Then (x — (1/2)?/ +
z, α - (1/2)]/ + 2) = 2(-l/2) + 1 - 0 , (a, s) = 0, (y, y) = 0. So if the
matrix of σ is as above, then σx — ax, σy — ay, rγ = μ = β = v = 0y

and hence σz = Xz. Also σ(x — (1/2)?/ + z) = ax — (l/2)ay + Xz is a
scalar multiple of x — (1/2)?/ + z; this implies that X = a, hence that
σ ~ aX is a scalar, a contradiction.

Suppose then that (x, x) — 0 and x, σx are linearly independent.
Suppose in addition that {σx, x) = 0. There exists y'e%$ such that
{x9 y

f) — l, (era;, 2/') — 0. The two-dimensional subspace (x, y'} is non-
isotropic since the matrix of the form on it is nonsingular. So there
exists y" e (x, yr} such that (x, yffS) = 1, (y'\ y"} = 0. Since 0 Φ σx e
(xf yry L = <χ? y"}1, σx must be a nonsingular vector (otherwise it would
be orthogonal to x, y", σx, hence to all of S3). So x, y", z = x/']/{σxf σx)
is a hyperbolic basis of 53 of the desired kind.

Finally, suppose {σx, x) Φ 0. Embed x in the hyperbolic basis
x, y, z and let σx = ax + yy + μz. Note that {σx, x) = Ί Φ 0. Let

/^ = μ + V{σx, σx) = μ

Hence (/i, - μ)2 = /̂ 2 + 2ατ and thus /ί? - 2μμι = 2ατ. Let

= ~{2ay + 2μμ1)/2Ύ = -a - μμjy

Then

(2/i, σa?) = îV + Tα + /ift = ( - « - ^ 7 7 ) 7 + 7α + / ^ - 0

(yl9 y,) - 2^7 + μ\ = 2(~/Λ2/27)7 + μ\ - 0
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i, x) = (σx, x) - (yl9 x) = β - β = 0

, 2/i) = (<ra - 2/!, y ) = 0 .

Since (x, x) = 0 and (#, τ/0 = 7, we see that a?, W7, l̂/l/fai, Si) is a
hyperbolic basis of S3. It is as desired since σx = yt + zx. This proves
the lemma.

Note that the lemma is false without the assumption that the
field is algebraically closed. Suppose 53 is a real vector space with
hyperbolic basis x, y, z. Let σ be the linear transformation whose
matrix with respect to this basis is

Let x' = Θx + -fry + ψz be a singular vector: i.e., 2θψ + φ2 = 0. Then
σ(χf) = (θ - Sγ)x + (-SΘ + ψ)y - 2φz, so

χ\ σx') = 2(0 -

6ψθ + 3t2) = -Q(θ - t ) 2 ^ 0

Suppose #', /̂f, 2;; is a hyperbolic basis of 53 with respect to which the
matrix of σ is as required in Lemma 4. Then (σx\ σxr) = {yy* +
μz\ jy' + μz') = μ2 ^ 0. We conclude that μ = 0. Also (at/', στ/0 =
v2 ^ 0 so y = 0. And λ = 0 since λ is the trace of σ. Therefore, the
matrix of σ with respect to x', y\ z' is

/0

\0

which is impossible since σ is nonsingular.
The next lemma is the conjugacy step.

LEMMA 5. Let S3 be an n-dimensional vector space over Φ (n ^ 2)
with nondegenerate symmetric bilinear form (,). Let σ be a symmetric
linear transformation on S3 of trace zero. Assume the characteristic
of Φ is 0 or bigger than n. Then there is a hyperbolic basis of S3
with respect to which the matrix of σ has all diagonal entries equal
to zero.

Proof. If IX is a nonisotropic subspace of S3 then S3 = U^U1.
For x e U define σn(χ) to be that element ueU such that there exists
ve U with σx = u + v. Then clearly σu:U—>U is a symmetric linear
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transformation on 11. The matrix of σ with respect to a basis of 93

C D)y

where A is the matrix of σu and D the matrix cru±.

We proceed by induction on n. The lemma is trivially true if
n = 2 (in this case any hyperbolic basis will do, since the diagonal
entries in the matrix of σ must be equal, hence both zero) and true
if n = 3 by Lemma 4 (note that σ is not a scalar, since 3^0) . Assume
n^£. It will be sufficient to find a 2-dimensional nonisotropic sub-
space II of 93 such that tr (σu) = 0. For by induction the lemma applies
to σuL, which has dimension n — 2 >̂ 2; note that tr(<7ui) = tr(cr) —
tr (σu) = 0. So if xl9 yγ is any hyperbolic basis of U and xi9 y2f is the
hyperbolic basis of 11L whose existence is guaranteed by induction,
then xl9 yl9 x2y y2y is the desired basis of 93.

Let zl9 - - - 9 zn be an orthonormal basis of 93 and let the matrix of σ
with respect to this basis be (α^ ). If i Φ j exist with ai% = aβj = 0,
then tl = (zi9 z/> is the desired subspace. If no such iy j exist then
in any event there must exist i9 j with au Φ aj3- (otherwise we would
have 0 = tr (σ) = nan and since n Φ 0, all au = 0). Say an Φ a22;
then (zly z2y z3} — 2δ is a nonisotropic subspace such that σ^ is not a
scalar. By Lemma 4 applied to σm there is a 2-dimensional subspace
U of 3S such that σn = (o*as)u has trace zero. This completes the proof.

Finally, we let 93 be as in Lemma 5 and $ be the Jordan algebra of
symmetric operators on 93, and prove Theorem 2 for £5. Let τ be a
linear transformation on 93 skew-symmetric with respect to the form.
Then τ = [σl9 σ2] — σ1σ2 — σ2σ1 for some σl9 σ2e S Indeed if zl9 , zn

is an orthonormal basis of 93, then the matrix of τ with respect to
this basis is skew-symmetric, while $ consists of all transformations
with symmetric matrices. I.e., τ ~ ^ < y ctaifi-j — βn), where the eΊ

are the usual matrix units in Horn (93, 93). If βl9 , βn e Φ are distinct,
then [ei3 , Σ ^ βkekk] = (βj - βt)eίj and so

1 °ίia In _L p \ ^
i \ra ^ Vj,)y ^

Now let α e S have trace zero and choose a hyperbolic basis xl9 y19

"'9 %ι, Vu ^ n d (possibly) z as in Lemma 5. Let β19 , βt e Φ be such
that βl9 , βl9 — βl9 , — βl9 0 are all distinct. Let r be the linear
transformation whose matrix with respect to the hyperbolic basis is
diagonal, with diagonal entries (in order) βl9 —βίy β2y —β2y , βl9 —βl9

and (possibly) 0. Then τ is skew-symmetric. We rename the diagonal
entries of r, calling them yί9 τ2,

 # ,72i, and (possibly) y2l+i. The
eigenvalues of the map ad τ: p —+ [r, ô] for all p e Horn (93, 93) are 0,
Ίi — 7j(i Φ j); the kernel of ad τ is the set of diagonal matrices (the
Ίi are distinct), and ad τ maps Horn (93, 93) into the space of matrices
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all of whose diagonal entries are 0. Also ad τ stabilizes $ (since τ is
skew), hence stabilizes & = {/0 e $ I the matrix of p has all diagonal
entries zero}. Since ad τ | & is nonsingular, we conclude that ad τ
maps & onto Qf1# I.e., σ = [τ, ,o] for some peQ. Now the previous
paragraph implies that τ = [ρίf ρ2] for some plf p2 e Qf So

o [[PPάp]

Hence σ is an associator in Qf. This proves Theorem 2.
We note that, by the computations in [4, § 5], Lemmas 3 and 5

may be stated in the following single conjugacy theorem.

THEOREM 3. Let $ be a simple Jordan algebra over an algebrai-
cally closed field Φ of characteristic equal to 0 or bigger than the
degree of Qf. Let ξ> be a Cartan subalgebra of the derivation algebra
of $ and let $ = Σ«3α be the corresponding decomposition o/$ into
weight spaces relative to φ. Then any element of Qf of trace 0 is
conjugate under the automorphism group of$ to an element o/Σ^o3ία,
the sum of the nonzero weight spaces.

It would be interesting to have a more conceptual, Lie-theoretic
proof of Theorem 3.

We conclude with an open question: if $ is as in Theorem 3, is
it true that any derivation of Qf has the form [Rx, Ry] for some x, y e ίj
(where Rxe Horn (3>, $) is defined as usual by Rx(a) = x.a)Ί We saw
above that this holds if Q> is the algebra of n x n symmetric matrices.
Theorem 3 and this result (if true) together easily imply Theorem 2.
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