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A GALOIS THEORY FOR LINEAR TOPOLOGICAL RINGS
B. L. ELKINS

Separable algebras have been studied recently by M.
Auslander, D. Buchsbaum and Chase-Harrison-Rosenberg.
The question of a Galois theory for linear topological rings
opposite to the Krull type theory obtained in the above works
was raised by H. Rohrl. In this paper, a Galois theory re-
lating the complete subalgebras of restricted type of a com-
plete algebra A to a set of subgroups of a discrete group G
of automorphisms of A is developed.

The notion of a linear topological module has been discussed in
[1], [5], [6], [7]; while the concepts pertaining to separables algebras
are now available in the monograph [4] for the most part. We
employ two results of [3] which we will state below. All rings
considered will be commutative with 1.

f
DEFINITION 0.1 [3]. Two ring morphisms A —= B are strongly

g
distinct if, for each nonzero idempotent ec B, there is ac A with
f(a)e == g(a)e. Where B is connected, f and g are strongly distinct
if and only if they are distinct.

THEOREM 0.2 [3]. Let G be a finite group of automerphisms of
the ring A having (pointwise) fixed ring k. The following statements

are equivalent:
(0) A 1is aseparable k-algebra [and the elements of G are pairwise

strongly distinct].
(1) There are families of elements of A, (@)=, (¥.)i=, with

“
; xza(yi) = 510

for each oe G, where 6,, is the Kronecker delta.

(2) For each o€ G\{1} and each maximal ideal m < A, there is
ac A with a — o(a) g m. ;

(8) For each connected k-algebra B and each pair A—3 B of

g
k-algebra morphism, there is a unique € G with og = f.

Proof. (0)— (1) — (2) — (0) is contained in [3], Theorem (1.3), and
the implication (2) — (3) is Corollary (3.2) of [3]. We establish (3) —
(2). Let m < A be a maximal ideal and suppose o€ G\{1}. Then the
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k-algebra A/m is connected, so the two k-algebra morphisms gq, oq:
A — A/m are distinct (¢ is the quotient map), otherwise ¢ = 1. Hence,
there is a € A with o — o(a) ¢ m.

DEFINITION 0.3 [3]. When any of the equivalent conditions (0)-
(3) of (0.2) hold for (4, G), we call (4, G) a Galois extension of k
with group G.

Note that when A is connected and (4, G) is a Galois extension
of k, (0.2)(3) shows that G the full group of k-algebra automorphisms
of A.

DEFINITION 0.4 [3]. Let (4, G) be a Galois extension of k and
let B be a subring of A. B will be called G-strong if the restrictions
to B of any two elements of G are either equal or strongly distinct.

THEOREM 0.5 ([3] 2.3). Let (4, G) be a Galois extension of k.
Then there is Galois correspondence (g, r) between the set of separable
k-subalgebras of A which are G-strong and the set of subgroups of G.
If B is a separable G-strong k-subalgebra of A, then g(B): = {0¢
Glao(d) = b for all be B}). Moreover, if 0@, g(6B) = og(B)a™*. A
subgroup H of G is mormal in G if and only if r(H): = {a€ A|o(a) =
a for all o€ H} is a G-invariant subalgebra of A, in which case (r(H),
G/H) is a Galois extension of k with group G/H.

We now pass to linear topological case.

DEFINITION 0.6. The ring A with a filter basis of ideals Z/(4)
has a linear topology with ae€ A having a basis of neighborhoods the
family (a+ U)U e Z(4), and the pair (4, Z'(4)) or briefly A will be
called a linear topological rimg. A linear topological k-algebra is a
continuous ring morphism

(k, z (k) — (4, Z(4)) .

1. Quasi-Galois extensions. Consider the following situation:

(0) k— A is a linear topological k-algebra.

(1) F is a final subset of Z (4).

(2) IeF implies that A/I is a connected Galois extension of
k/k N I with Galois group G;.

PROPOSITION 1.1. There is a unique contravariant monic valued
functor G: F— Gr (Gr is the category of groups) such that G(I) = G,
and such that I < I' in F tmplies the commutativity of the diagram:
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a1 88D, 4y

| b

Al —"— AT

for each o€ G(I'), where af, is the canonical quotient map.

Proof. For each ge G(I'), there is by (0.2), (3), a unique ¢’ € G(I)
such that ¢'al, = afo. We define G(I, I)(¢): = ¢’. The uniqueness
available in (0.2), (8), guarantees that G(I’, I) is a group morphism,
and the surjectivity of a!. entails the injectivity of G(I', I).

DerFINITION 1.2. The triple (4, F, G) will be called an extension
of k if:

(0) k— A is a linear topological k-algebra.

(1) F is a final subset of U(A); so F is a filter basis.

(2) G: F— Gr is a contravariant monic valued functor such that

(i) G(I) is a finite subgroup of the group of k/k N I-auto-
morphisms of A/I;

(ii) for each I < I in F and oecG(I') the diagram of (1.1) is
commutative. .

If for each Ie F, (A/I, G(I)) is a Galois extension of k/k N I with
Galois group G(I), we will call (4, F, G) a quasi-Galois extension of
k with group G.

An immediate consequence of (1.1) is the

CorOLLARY 1.3. If (A, F, G) is a quasi-Galois extension of k, and
iof for each Ic€ F, A/l is connected, then the fumctor G is uniquely
determined.

Let (4, F, G) be an extension of K. We will define a group G
of continuous k-automorphisms of A

(A= lim A/T and 7Z(A) = (ker (4 2, A/DIe 722 (A))

Tew(4)

and show that when (4, F, G) is a quasi-Galois extension of %, then
there is a Galois correspondence (g, ») between a specific class of
subgroups of G and a class of complete k-subalgebras of A. Each of
these classes is characterized by the quality of their approximations,
i.e., we require that their approximations satisfy a specific condition
for each Ic F.

Since F' is a filter basis, the family (G(I));.» of groups is cofiltered,
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and we can form the colimit G: = hm G(I), the colimit being taken
over Ic F. We denote by g¢g;: G(I)——»G the canonical colimit mor-
phisms; they are injective, and for I < I' in F yield a commutative
diagram:

G, I)

G(I) =1, G(I)

Another useful description of G is obtained as follows. Fix I'e F
and consider any I < I’ in F. We then have a commutative diagram:

41 S804 p

la{, laﬁ,

Al —— AT

for each o¢ G(I'). Evidently, the family of morphism (G(I', 1)(0)),-;
is filtered and compatible with the quotient maps a’, so we can form
the limit & of this family, obtaining, for each I < I’, the commutative
diagram:

A2 LA
b e
A S0

We let H denote the set of all such ¢ for I'e F' and ¢ G(I’) arbi-
trary. The foregoing diagram shows that each J is a continuous
k-automorphism of A. If 0,7¢ H, say o€ G(I') and te G(¢"”), we define
0t = {1, where p = G(I', I)(0)-G(I", I)(z) and [ < I', I”. Since F is
a filter basis, /£ does not depend on I, and so is well-defined; moreover,
this multiplication makes H a group.

ProrosiTiON 1.4. The mapping H— é, gtven by ¢ — g/o), where
oeG(I), its a group isomorphism.

Proof. Define h;: G(I)— H by putting h,(6) = 6. The &, are then
group morphisms compatible with the inclusions G(I, I) for I < I’;
hence, there is a unique group morphism h: G — H such that gh =
h, for all Ie F. Next, define ¢g: H— G by putting ¢(3) = g,(0) if
ge G(I). To see that ¢ is well-defined, let 6 = 7, where o€ G(I’) and
7€ G(I"), and choose I<I', I”. Then



A GALOIS THEORY FOR LINEAR TOPOLOGICAL RINGS 93

1=0o(@)" =[G, D))" [GI", )"
= [G(I", I)()G(I", I)(z™H]" .

This shows that the diagram:

At LA

o o

AT — AT

is commutative, where ¢t = G(I', I)(6)G(I"”, I)(z™"). But a, is surjective,
so we conclude that /£ =1, and so G(I', I)(o) = G(I", I)(7), proving
that g,.(0) = 9,(G(I, I)(0)) = gG(I", I)(z)) = gr.(7) as required.

A similar argument shows that ¢ is a group morphism. Finally,
let 0 e G(I), then h(g(6)) = Mg(0)) = h (o) = 6. On the other hand,
each element x of G has the form g:(0) for some I€ F, since F' is a
filter basis. It follows that g(h(x)) = gh(g:(0)) = g(hi(0)) = g(d) =
9:/(0) = x. Thus, we have the group identities 1 = gh and 1 = hyg
showing that ¢ is a group isomorphism.

ProPosITION 1.5. If (4, F, G) is an extension of k such that for
eaciAL Ie F, the fixed ring of G(I) is k/k N I, then the fixed ring of G
is k.

Proof. We have already observed that G(I) < Auto,c,km(A/I)
implies that the elements of G are k- automorphlsms of A. Now
suppose a € A belongs to the fixed ring of G. Then we have com-
mutative diagram:

P e > A5 4

Js oo o

or o AT

where p,, v and v are the canonical inclusions and wv = p: kb — A is
the limit of the morphisms p; and where ¢ e G(I). k[a] has the
topology induced by v, so all the morphisms are continuous. By
hypothesis, va,0 = vda; = va;, so that va; factors through the fixed
ring of G(I), namely k/k N I. Let the factorization be wa; = w;0;.
For I<TI in F, we have w;klLpo, = w;0,a}, = va,al, = va, = w0
and since p; is monic, w;k! = w,. Thus, we obtain a family (w,)Ie F
compatible with the morphisms kI:k/k N I— k/k N I'. Passing to the
limit, we obtain a commutative diagram
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Ela] ———Fk

| J«

Bl —"——k/kn I

for each Ie F. w is continuous, and va; = w,0; = wk;0; = w(uv)a,
for each Ie F, so passing to the limit again, v = (ww)v. But v is
monic, so we conclude that 1 = ww showing that u is surjective.
Since u is already injective, u is an isomorphism and we conclude
that aek as desired.

THEOREM 1.6. Let (4, F, G) be an extension of k such that for
each Ie F, the fived ring of G(I) is k/k N I. Then the following state-
ments are equivalent.

(0) (4, F, Q) is a quasi-Galois extension of k.

(1) For each Ge @\1 and each open, mazimal ideal m < A, there
iswe A with x — 6(x) ¢ m.

In addition, if Ie F implies that A/I is connected, (0) and (1)
are equivalent to a third condition.

(2) A is a quasi-separable k-algebra, i.e., Ie F implies A/l is
a separable k/k N I — algebra.

Proof. Consider the diagram

7 ~
— A

i

a

A/l

where ¢ is the canonical limit morphism, and «; and a; are the quo-
tient maps. Let m < A be an open, maximal ideal and let d¢ G\l.
We may suppose Ic F' is such that m = ker (a;) and ¢ = g/(0). Since
1-'(m) is an open, maximal ideal of A, a;(7(m)) is a maximal ideal of A/1,
and o € G\l shows that there is a € A/I such that a — d(a) ¢ a,(+7'(m)),
assuming (0), by (0.2). Suppose ye A is such that «,(y) = a, then
i(y) — Gi(y) ¢ m; otherwise, a,i(y) — a,;6i1(y) = a,(y) — oa(y)€ a;(m) =
a;(17'(m)) contrary to our choice of a;(y) = a. Thus, i(y) — di(y) ¢ m
as desired.

Now suppose m is a maximal ideal of A/I and let 0 € G(I)\l. Then
a7'(m) is an open, maximal ideal of A, and g:(0) = d¢ @\1. We obtain,
therefore, z € A with & — 6(x) ¢ a7*(m). It follows that a,(x) — a,6(x) =
a;(x) — oa,(x) ¢ m showing that A/I is a Galois extension of k/kN I
with Galois group G(I) by (0.2).

If, in addition, I€ F implies that A/I is connected, and (0) holds,
then by definition A is a quasi-separable Fk-algebra. The converse
implication follows from (0.2).
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COROLLARY 1.7. Suppose (4, F, G) is an extension of k such that
for each Ie F, the fized ring of G(I) s k/k N I. If the condition (x)
below holds, then (A, F, G) is a quasi-Galois extension of k.

(%) For each k-algebra B and each pair of continuous k-algebra
morphisms f, g: A— B, there is a unique € G such that § = 1.

Proof. Let 6e G\l and let m < A be an open, maximal ideal.
If @ —G(a)em for all aec A, then the two k-algebra morphisms
q: A— A/m and Gq agree on A, so by (*) we must have that 6 =1
which is a contradiction. We conclude that there is ae A with
a — d(a)¢m, and so by (1.6) (4, F, G) is a quasi-Galois extension
of k.

DerFINITION 1.8. Let (4, F, G) be an extension of k. For each
subgroup H of G let r(H) denote the pointwise fixed ring of H and
let H;: = g7'(H). For each k-subalgebra B of A let 9(B) denote the
subgroup of G fixing B elementwise.

For I< I in F we then have a commutative diagram:

H—" ¢

o
H—"
TJ} TG(I’, I)
H—" o)

where h, h;, and h; are the canonical inclusions, and J, and J% are
the monomorphisms induced by g, and G(I", I) respectively.

ProPosITION 1.9. The colimit of the family (Hy J%) is H with
the colimit morphisms being the J,.

Proof. We have just observed the compatibility of the family
of morphisms J; with the mappings J7, for I < I’ in F), and it remains
to establish their universality. Let x,: H; — X be any family of group
morphisms compatible with the mappings JL(I < I’ in F'). Define
x: H— X by putting 2(6): = z,(0), if g, (0) = . If g,(0’) = d also,
choose I” < I, I' so that J¢'(¢) = J4'(¢’). Then x,(0) = x;.(J7"'(0)) =
x7.(J3'(0")) = x;(0") shows that x is a group morphism, and the equality
J = x; for I¢ F shows that « is uniquely determined. Hence, J;: H;—
H is a colimit for (H;, J7.).

Next, let H be a subgroup of G, and obtain the diagram:
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r(H)—— A —"— A

B e e

r(H,) —t—s AJT ——"— AJI

jr}, laf, la{,,
@ 4

r(H,) — s AT ——— AT

which is commutative, where «, a;, a; are inclusions providing their
respective domains with the induced topology. For each o¢ H,, aa,0 =
ada; = aa;, so that a, factors through r(H,), defining r;. Then aa; =
ra; for all Te F. Similarly, if I< I’ in F, and ¢'¢G(I') and 0 =
G(I', I)(¢"), then 0;al.0' = a,al, so that «! factors through »(H,),
defining »/.. Then rLa, = aal. Still using the above diagram, we
obtain from the equality »,«; = r;rLa; the relation », = ;7! since
«; is monic. This shows that the mapping #,: »(H)— »(H;) are com-
patible with the mapping (»;)I < I’ in F.

PROPOSITION 1.10. The mappings r;: v(H)— r(H;,) form a limit
for the family (r(Hy), r1).

Proof. Let z;: X — »(H;) be any family of continuous ring mor-
phisms compatible with the ;.. Composing this family coordinatewise
with the family (a;)Ic F, we obtain a family (x,a;)Ie F compatible
with the canonical quotient maps af.. Hence, there is a unique con-
tinuous mapping #: X — A such that za, = x,a, for each Ie F. Now
let 6e H, say 6 = g,(0) for some I'e F. For all I £ I in F, »6a; =
za,G(I, I)(0) = x,0,G(I', I)(0) = x,0; = za, since G(I', I)(o)e H;. This
being true for all small I¢ F, passing to the limit, we have zJ = z,
showing that x must factor through »(H). Let z = ya for some
y: X — r(H). v is then unique, since « is monic, and yr;a; = yaa; =
xe; implies that y», = «; since «, is monic. This completes the proof.

REMARK. The topology induced by « on #(H) coincides with
the limit topology for ker (r;) = ker (r;a;) = ker (aa;). For the re-
mainder of this section we assume (A4, F, G) is a quasi-Galois exten-
sion of k.

For each subgroup H of G we are led to a commutative diagram:

6

r(H)=—=—— r(H) ——— A A
161 - J”r[ " la, i la,
r(H), r(H,) Al AT
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where r(H) is the image of aa; and »(H); < r(H,), since ¢ € H, implies
e;;0 = e;«;, where e,a; is the canonical factorization of a; through
r(H);. Since e; is surjective, ajo = a; shows that »(H); < r(H;), say
m;: r(H); — r(H;) so that «; = m,a;. Since «; is monic and e;m;a; =
0, e;m; = 75, so the first square is commutative.

It follows immediately from the definitions that H < gr(H) for
each subgroup H of G.

LEMMA 1.11. Suppose H < G satisfies the condition Ie F— H; =
g[r(H);], where g is appropriately defined. Then gr(H) = H.

Proof. Of course, by g¢[r(H);] we mean the set
(o€ G)|ze r(H), —> o) = z} .
Let 6 € gr(H) and suppose ¢g,(¢) = ¢. Then the equality m,a;0 = m;a;

shows that o€ g[r(H);] = H; by hypothesis; hence ¢ = g,(0) e H.

DEFINITION 1.12. Call a k-subalgebra B of A G-strong if for each
Ic F, B, is a G(I)-strong subalgebra of 4/I.

LEMMA 1.13. Let H G. The Sollowing statements are equi-
valent:

1.14. (0) Ie F— r(H); = r(H)), i.e., v 15 surjective. .

(1) IeF— H;, = g[r(H),] and r(H) is a G-strong separable k-
subalgebra of A.

Proof. Suppose (0), then since (4, F, G) is a quasi-Galois extension
of k, »(H); = r(H;) shows that »(H)) is a G(I )-strclng separable k/k N
I-subalgebra of A/I for I cF. r(H) is a closed k-subalgebra of the
complete separated ring A, i.e., is complete. Finally, H, = gr(H,) =
glr(H);] by (0) and (0.5). Conversely, if (1) holds, then

r(H;) = rg[r(H),] = r(H),

since r(H) is a G-strong quasi-separable k-subalgebra of A and rg =
1 by (0.5).

COROLLARY 1.15. If H < G satisfies (1.14), gr(H) = H.

Now let B be a complete k-subalgebra of A and put H = 9(B).
We obtain the following supplement to the last diagram

B—" )
lbz N 161
B, —_, v(H),




98 B. L. ELKINS
for each Ie F. For evidently B < rg(B) = r(H).

LEMMA 1.16. Suppose B is a complete IE—subadebm of A satisfying
the condition.

1.17. Ie F— B; = r[g(B).]. . .
Then B is a G-strong quasi-separable k-subalgebra of A, rg(B) = B,
and g(B) satisfies Condition 1.14.

Proof. Since B; = r[g(B),] is the fixed ring of a subgroup of G(I),
it follows from (0.5) that B; is a G(I)-strong separable k/k N I-sub-
algebra of A/I, proving our first assertion. Next, we have the
equalities:

B = lim B, = lim ([¢(B),]) = r(lim [¢(B)) = r9(B)

by (1.9) and (1.10). Using this fact, we obtain [rg(B)]; = B; = r[g(B),]
showing that (1.14) holds for g(B).

REMARK. If H < G satisfies Condition 1.14, then r(H) satisfies
Condition 1.17 for »(H); = r(H,) = »[(9r(H)),] since H = gr(H).

THEOREM 1.18. Let (4, F, G) be a quasi-Galois extension of k.
Then the pair of maps (g, r) is a Galois correspondence between the
set of all complete ﬁ-subalgegras of A satisfying Condition 1.17 and
the set of all subgroups of G satisfying Condition 1.14.

Proof. We need only observe that gr =1 and rg =1 are valid
equations when restricted to the sets mentioned in the statement of

the theorem.

PROPOSITION 1.19. Suppose H is normal subgroup of G satisfying
Condition 1.14. Then for each Ic F, H; is a normal subgroup of G(I).

Proof. Form the diagram:

(H) rH) —* , A_¢ 3
e N 2 . |os 0 Jos
(H), (H), AT AL

Our hypotheses on H show that r; is surjective. Now let e G(I)
and ke H;. Then r,a,07he = a(c™)Y héa; = aa; = r¢;, since

(c™hée H.



A GALOIS THEORY FOR LINEAR TOPOLOGICAL RINGS 99

However, r, is surjective, so «,07'h¢ = «;, and we conclude that
07 'ho € H; since gr(H,) = H,. Hence, H, is a normal subgroup of G(I).
Consider the following diagram of groups:

0 H—" ,q_—% ,GH 0
r s t
N S VI M

where the rows are exact, » and s are monomorphisms, while ¢ is the
unique group morphism making the right square commutative.

LeEmmA 1.20. If (H', r, k') is a pullback for h and s, then t is a
monomorphism.

Proof. Let t(2’) =1, then ¢'(¥') = 2’ for some y'eG’, and so
9s(y’) = 1. Hence h(z) = s(y’) for some zec H. But since H' is a
pullback, there is 2’ € H' such that »(2') = z and #'(2') = y’. Therefore,
1=g¢r{EF)=d¢W) =2, and we conclude that ¢ is a monomorphism.

Now suppose H is a normal subgroup of G satisfying condition
(1.14). For each I< I in F we are led to a commutative diagram
of groups:

0 H —" ey —'— GU/H, —
IJ}, IG(I’, I) IG/H(I’, I)
0 g M er " euyH, 0

where ¢; and ¢, are the canonical quotient maps, and G/H(I’, I) is
the map produced by the remainder making the whole diagram com-
mutative with exact rows. Since J7, and G(I’, I) are monic, while
H,, is a pullback, it follows from our foregoing Lemma that G/H(I', I)
is also a monomorphism.

Thus, we obtain a contravariant monic valued functor G/H: F—
G such that Ie F implies that G/H(I) = G(I)/H, is the Galois group
of r(H;) over k/k N I by (0.5). Finally, the diagram

G/H(I', I)(3)

r(Hy) ———— r(H,)
17‘}', ) lrﬁl
r(H;) ° _ ,r(Hp)

is commutative for each e G/H(I'). For if ¢ = q,(0), then G/H(I,
I)(6) = q(G(I', I)(0)) and the corresponding diagram
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G(I, I)(o)

A/l s AT
laf, la}
Alr 2 AT

is commutative.
This establishes the corollary below.

COROLLARY 1.21. Let A be a separated and complete linear
topological k-algebra. Suppose (A, F, G) is a quasi-Galois extension
of k, and suppose H is a normal subgroup of G satisfying condition
(1.14). Then there is a final subset F' of F such that (r(H), F' N r(H),
G/H) is a quasi-Galois extension of k, where

F'0r(H) = {I' N\ r(H)|I'e F'} .

Proof. Define F' to be the smallest subset of F' such that for
each intersection »(H) N I with Iec F, there is I'e F" with n(H)N I' =
r(H) N I. Because 7(H) has the induced topology, F" is final in Z/ (r(H))
and our foregoing constructions show that (r(H), F' N r(H), G/H) is
a quasi-Galois extension of k.

2. Examples. In this section we will show how to construct a
number of examples of the foregoing material. Two lemmata are
useful in this direction.

LEMMA 2.1. Let X and Y = (Y)),.; be distinct indeterminants
over the ring A. Let fe A[X] be a monic polynomial, and suppose
I < (AIXV/(NIY] is an ideal. Let I' be the ideal generated by the
image of Iin A[X, Y] under the canonical inclusion A[X]/(f)C AlX,
Y]. Then we have (A[X)/(NIY/I = AlX, Y]/(FA[X, Y] + I').

Proof. We have a commutative diagram:

0— FAIX] @, A[Y] — A[X] @, A[Y] — AEl @, A1¥]— 0

| P

0 —— fA[X, V] ———— A[X, Y] — A(%{i[ﬂ 0

with exact rows. Hence, ker (o) = fA[X, Y]. If B is the quotient
mapping (A[X]/(/NIY]— (AIXI/(NIY]/I and Ba(P) = 0, then a(P)e
I, so there is Qe I' such that a(P)e I' + fA[X, Y]. Evidently, this
latter ideal is contained in ker (af), completing the proof.
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LEMMmA 2.2. Suppose I < k[X,, -+, X,] G E[X], X = (X))iz:. Then
KIXI/([X] - I + E[X] A Xupsy Xosoy -+ )) 2 K[X,, - -+, X]/L

Proof. Let k[X]——k[X,, ---, X,] ——>Ek[X,, ---, X.]/I be the
composition of the evaluation at the point (X, X, ---, X,, X,, 0,0, ---)
followed by the canonical quotient morphism +r. Clearly, k[X]-1I +
k[X]+-<{X,:, +++) is contained in the kernel of the surjection @vr; if
Y(@(f)) = 0, then f = (f — @(f)) + O(f) € k[X] shows that

Fe kX + Ek[X] <Xy =++) .

1. Example of a quasi-Galois extension. Suppose A, is a com-
plete Noetherian local ring with residual field k,. Let &k, <k, < -+
be a tower of finite Galois field extensions of k, with corresponding
Galois groups G(k./k,).

Since k, is a finite Galois extension of %k, we can find a monic
polynomial f,e A,[X.] such that k[X.]/(f.) = k., where f, is the reduc-
tion of f, modulo j(4,), the Jacobson radical of A,. Following [8] p.
63 we see that A, = A,[X]/(f) is a complete Noetherian local ring
which is an A, -algebra of finite type; moreover, A, is a Galois extension
of A, with Galois group isomorphic to G(k,/k,) in the sense of [3].

Since k, is a finite Galois extension of k%, we repeat the above
construction obtaining a monic polynomial f,€ 4,[X,] such that 4,: =
A [X;)/(f,) is a Galois extension of A, with Galois group G(k,/k,).

We have the ring inclusions 4, =< A,[X]/(f)) = (A[X)/(FIDIXL/(f>2)-
Since f, is monie, we can view f,€ A[X, X;] and apply Lemma 2.7
to obtain the isomorphism:

AJX] oy 1/ry = AX, X] _ AJX, X
) [A[X, Xo] + fAlX, X o o
Iterating the above, we obtain 4,,, = A[X,, -+, X,. 1/ < f1, **, Fary

and have that A,., is a finite Galois extension of 4, with Galois group
Gk, /k.); A,y is also a finite Galois extension of A, with Galois group
Gk i:/dyo).

Now define ideals I, < B: = A[X, X,, ---] as follows:

In::B<f1y"'yf'n>+B'<Xn+bXn+2’"'> for %21-
Lemma 23. 1) [, =1,.,.
(2) L.n A, =(0).
(3) B/I,=A,.

Proof. (1): Since f,., € A4,[X, ---, X, ] © B, it follows that
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Bf,..cI, so that I, = I,...

(2): Is clear.

(3): Follows from Lemma (2.2).

Let U(B) have as filter basis the family (I,),»;. Then for I, =
I,., we have a commutative diagram

A— A, = B/In+1: G(kn+1/ko)

| |

A, — A, = B/I1,: G(k.,[k,)

where A; is a Galois extension of 4, with group G(k./k,)(¢ = n, n + 1).
By (1.1) there is a group morphism G(k,/k,) — G(k,../k,) which is
injective and satisfies the commutativity criterion of (1.1).

Letting F = (L,),>; and G: F— Gr be such that G(I,) = G(k./k,)
we obtain a quasi-Galois extension (B, F, G) of A,.

2. Another quasi-Galois extention. Let K, < K, < --- be a
tower of Galois field extensions (all finite), K,,, is a finite Galois
extension of K,, so K,.; = K,[X,..]/(fxs:) for a monic polynomial f,,,,
and repeating the technique of 1, we get for A = K[X,, X,, ---] and
F = (I,).s;, I, appropriately defined, that A/I, = K, so that finally (4,
F, @) is a quasi-Galois extension of K, with G(I,) = G(K,/K,).

REMARK. In 1 each term B/I, is a local ring, while in 2 each
term A/I, is an integral domain. These are two general classes of
connected rings. Later we will give an example of a quasi-Galois
extension where the approximating terms are not connected, i.e., have
proper idempotents.

3. Quasi-Galois extensions im rings of continuous functions.
This example is fairly complicated, so I first state the results. Let
(X)):e; be a cofiltered family of topological spaces such that 7 <7 in
I implies z,;: X; — X; is an inclusion for which the identity

277 (Top (X.)) = Top (X,)

holds. Let X = 11_1;!)11 X, and let z,: X; — X be the colimit morphisms.

Then the z, are injective.

Next, let C: Top — RIN be the functor assigning to each top-
ological space X, the ring of continuous real valued functions with
domain X, where Top denotes the category of topological spaces.

Lemma 24. C(X) = l(i_r’nz C(X)) via f — (%:f)ies-

Now suppose (G.);c; is a cofiltered family of groups such that
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1 <j implies g,;: G;— G; is the monomorphism, and let G = lim, G,
with ¢;: G, — G being the canonical colimit morphisms. The 57: are
injective. We will suppose that G, acts continuously on X, G;: X, —
X,, in such a way that for + < j in I we have a commutative diagram
for all 0 G,:

X35

X, ——X;
G lgl](a)
v >
X, % X,

LEMMA 2.5. G acts continuously on X, and if g€ G, there is Ie
I for which g(o) = g and the diagram below is commutative:

Ty

X — X

4 Jg=gl(0) .
l o
X, — X

Due to the foregoing assumptions we obtain commutative diagrams:

Xij

X, - Xf C(Xj/Gj) — C(Xj)
b oo 1
X6 e X,G, C(X,/G) —— C(X)

for ¢+ <7 in I, where X,/G, is the space of G,-orbits of X, with the
quotient topology, while ¢, is the canonical quotient morphism. A
more general result than (2.4) is the following:

LEmMA 2.6. C(X/G) = 1(i£1, C(X,/G) via f— (fi)er, where q.f; =
2.qf and q: X — X/G is the quotient map.

Finally, suppose the following conditions are fulfilled.

(a) Each X, is compact.

(b) G X,— X, is a finite group without fixed points.

(e¢) Both C(X)— C(X)) and C(X/G) — C(X,/G,) are surjective.
Then:

(0) ker[C(X)— C(X)] N CX/G) = ker [C(X/G) — C(X,/G.)].

(1) (C(X), F, H) is a quasi-Galois extension of C(X/G), where
F = (ker [C(X) — C(X)]);.; and H (ker [C(X)— C(X))]) = G..

Proof. Draw the diagram:
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X —" . x —L LR
b b
X/G,—" s x6—" R

and assume 2,f =0 and ¢f = f. Then ¢%.f =0 implies Z,f = 0
which implies f ¢ ker [C(X/G) — C(X,/G,)]. Conversely, Z,f = 0 implies
2qf =0 and qf: = fe C(X/G) N ker [C(X) — C(X,)] which completes
the proof of (0).

For (1), it follows that for each i< I the diagram

C(X/G) ———— C(X)

l J

is commutative. H(ker [C(X)— C(X))]) = G, acts on C(X,) by the
formula af(z) = f(o(x)) for all x € X, and g€ G,. Since X, is compact
and G, acts without fixed points, it follows from (0.2), (2), that C(X,) —
C(X,) is a Galois extension with group G,. Moreover, we have for
1 <7 in I, a commutative diagram

C(G3,(o .
ox) - ox): 6, Cla,,(0)
l l )[Gu =:H(Z=7)
cx) —9 ex: 6, C(o)

since the corresponding diagram omitting the C’s is commutative.

Letting U(C(X)) have as filter basis the family F' = (ker [C(X)—
C(X)]):e; we see that (C(X), H, F) is a quasi-Galois extension of
C(X/G).

As example of such a situation as described above, let, for each
n = 1, X, be the topological coproduct of 3" copies of [0, 1], and let
G, the cyclic group of order 3" acting on X, by permuting the sum-
mands. G, acts continuously and has no fixed points, while X, is
compact. We have lir_}m,@1 G, = Z(3~) and li_rll,,21 X, is simply the copro-
duct of a countable number of copies of [0, 1], where we interpret
always X, < X,.,, and G, < G,,,. Itis clear that the diagrams following
(2.4) and (2.5) are commutative, and that the conditions (a)-(c) are
fulfilled in this case.

We will now prove assertions (2.4), (2.5), and (2.6).

LEmMmA 2.4. C(X) = 1<i_lzll C(X)).

Proof. For each 7 <j in I, we have by definition a commutative
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diagram:
| [
X; X,

If (fi)er€lim C(X;), then for ¢ < j we have a diagram
LN, ¢

J

|l 2

X, — LR

so there is a unique f: X— R such that z,f = f; for 7€ I. This

shows that f — (x,f);.r is bijective, and the uniqueness guarantees
that this mapping is a ring morphism.

LeMMA 2.5. G acts continuously on X.

Proof. G is formed by taking colimits of diagrams like:

X, —% X
lo 1!]“(0)
Xi I — Xj

where j = ¢ for all e G(¢). This leads to commutative diagrams:

X; %, x
lgij(o) lg
X,—% X

where g = lil)n,»gi 9:5(0). It follows immediately that x7'¢7(0) € Top (X})
for all j = 4 and all 0€ Top (X); moreover, if k< I, let j = 4, k, then
2797 (0) = xr}e7'g'(0) € Top (X,) = X:}(Top (X;)) by definition of

Top (X,) .

Hence, ¢ is continuous.
Lemma 2.6. C(X/G) = l(iil'l[ C(X,/G:) via f — (Zif)ies-

Proof. Let y: X,/G;— Y be such that Z,;y; =y, for 2+ <j in L
Then composing ¢;: X; — X;/G,; with y, yields a family (¢,¥,);.; compatible
with the z,;: X; — X; for ¢ < j. Hence, there is a unique y: X— Y
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such that x,y = gy, for e I by (2.4). Next, let ge G, say g = g.(0)
for o€ G(7). We then have the equations: z,;0y = ¢:;(0)x;y = x;i since
y is constant on G;-orbits of X, i.e., #;4 = ¢;y;. Passing to the colimit
over j = 1, we get gy = y showing that v is constant on G-orbits of
X. Hence, there is a unique %: X/G — Y such that y = q¥y. Since
q; is surjective and qy; = %% = x,9Y = ¢,%Y, we conclude that y, =
Z,y for all i€ I. Thus, the mapping f — (Z,f):.; is bijective and as
before the uniqueness assures that it is a ring morphism.

4. A mon-connected quasi-Galois extension. Let (4, F,G) be a
quasi-Galois extension of & and let » =2 2. Put A"=An.--- 1A (n
factors) and F'™ = {[*|Ic F'}. The diagonal map 4: k — A" makes A
a k-algebra, and I€ F implies A"/I" = (A/I)". Moreover, I<I in F
induces (af): (A/I)* — (A/I')" which is surjective. It follows from
[2] (Chapter IX 87, Prop. 7.3) by induction that (4/I)" is a separable
k;-algebra via the diagonal map 4,: k;, — (A/I)", where k, = k/k N L.

Next, let G"(I) = G(I)x - -- #G(I) (n factors) and let H(I) denote
the diagonal subgroup of G*(I), that is the image of the diagonal
map 4: G(I) — G™(I). G"(I) acts componentwise on (4/I)". Let H be
any subgroup of the symmetric group of n letters which moves all
the letters to all positions, e.g., the cyclic group of order n. We
think of H as acting on each (4/I)" as a permutation of the factors.
Finally, let K(I) be the normal product of H with H{(I), so that each
element of K(I) may be put in the form 7m4(¢) with #e H and oe
H(I).

LEMMA 2.7. (a) K(I) acts on (A/I)" with fixed ring 4,(k/k N I)
for IeF.

(d) (A/I)" is a Galois extension of k/k N I with group K(I) for
Ie F.

Proof. 1t is clear how K(I) acts on (A/I)" using the represen-
tation of elements of K([I) in the form rmd(s). If (a, ---, a,) is fixed
by K(I), then because K(I) moves each component to every other
component, and each component lies in k/k N I-1, we must have that
the element (a,, ---, a,)€ 4,(k/k N I), proving (a).

Next, let (x,), (v.) be two families of elements of A/I such that
S 0(y,) = 0, for all 0 € G(I). Such exist by (0.2), (1). Then we have
Sy A )wd(o)d(y:) = 4; (3l 2.0(y,)) = 4(015) = 0150 = O1za0); hence, (b)
holds using (0.2), (1), again.

There is an evident group morphism K(I') — K(I) extending G(I') —
G(I) which is monic. We denote the so generated functor by K: F/* —
G, and obtain a quasi-Galois extension (4", F'”, K) of k such that
(A/I)" is not connected.
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