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IDEALS IN CONVOLUTION ALGEBRAS ON
ABELIAN GROUPS

WILLIAM E. DIETRICH, JR.

If G is a locally compact Abelian group, any subalgebra
A of M(G) that contains a dense ideal of L^G) can be map-
ped homomorphically onto C(K) for any Helson set K in the
dual group. Then, by choosing a Helson set homeomorphic
to the one-point compactification Noo of the natural numbers,
the ideal structure of A can be explored from known proper-
ties of C(Â oo). As special cases normed subalgebras are
considered and for them — by different techniques — in-
formation on their countably generated, closed ideals J can
be obtained. Necessarily Z(J) is open-closed; if G is compactly
generated and A contains such a nonzero J, G must be Zn x
C[C a compact group] and J must consist of those L1 functions
whose Fourier transforms vanish on Tn X E, where E is a
cofinite subset of the dual of C. In particular, a Segal algebra
on G (satisfying mild restrictions) can have a countably gen-
erated regular maximal ideal if and only if G is finite.

The paper continues the investigation of Banach algebras from
the algebraic point of view begun in [5] and extends some of the
theorems there. The idea of transferring properties of CiN^) to A
has also been explored for uniform algebras A in [6]. All our results
confirm the expected algebraic complexity of Banach algebras as well
as the more surprising pivotal role which the Silov boundary plays
in determining algebraic structure.

1* Prime ideals* Let G be a locally compact Abelian group
with dual group Γ, and consider any subalgebra A of M(G) which
contains a dense ideal I in Lι(G). I contains the L1 functions whose
Fourier transform have compact support, since / has void hull and
L\G) is regular. For γ e Γ , let Ir[Fr] denote the ideal of functions
in A whose Fourier transforms vanish at 7 [on a neighborhood of 7].
Notice that a prime P contained in the maximal ideal Ir necessarily
contains Fr. For if β vanishes on a compact neighborhood U of 7,
and ge A is chosen so that £(7) = 1 with supp gaU, then μ*g =
0 e P, but g £ P; whence μeP. Thus a prime of A can be contained
in at most one maximal ideal of form Ir, and if G is compact, no
prime can be properly contained in any Ir. As we shall see, the
situation is quite different in the noncompact case.

A compact set KczΓ is called a Helson set if every feC(K),
the continuous complex-valued functions on K, is the restriction to
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K of the Fourier transform of some geL\G). Notice that for such
a Ky A\K= C(K). For if feC(K) with / = g\K, geL\G), choose
he A whose transform is identically 1 on K and observe f = g*h\K.
Thus if K is a Helson set, the map φ: /—>f\K is an algebra homo-
morphism of A onto C{K). Notice if / £ J are [prime] ideals of C(K),
φ~\I) £= φ~ι(J) are [prime] ideals of A. Thus if ^ and £& are infinite
chains of primes in C(K), φ"\^) and <P~l(£2f) are infinite chains of
primes in A and 9~\<if) Π 9>~1(^Γ) = ̂ " ' ( ^ Π ^ ) .

Let Cr(X) denote the real-valued continuous functions on any
space X, and for JSc C(X), set Br = B Π Cr(Z). We have

LEMMA 1.1. P—> P + iP is a lattice preserving one-to-one corre-
spondence between the prime ideals of Cr{X) and those of C(X).

Proof. P + iP is clearly an ideal of C(X); suppose f,ge C(X)
with fgeP + iP. Then \fg\2 = fgfgeP + iP, so actually \fg\2e P.

But then | / | 2 e P or \g\2eP, hence \f\eP or \g\eP, and finally
| / | 1 / 2 e P o r \g\ίl2eP. Thus either / = | / | 1 / 2 ( | / | 1 / 2 sign f)e P + i P o r
9= lflr|1/2(|flr|1/2 sign g)eP+iP. Every prime Q in C(X) is of this
form, since Qr is prime in Cr(X) and Q = Qr + iQr [4, 3.1, p. 71].
Finally if P + iP = Q + iQ, P = (P + iP) r = (Q + ίQ)r = Q.

These simple observations lead to the following

THEOREM 1.2. Lβί G be a noncompact LCA group, A a subalgebra
of M(G) containing a dense ideal of L\G). Then for any ye Γ, there
are 2° pairwise disjoint infinite chains of prime ideals of A contained
in Iγy in particular, krull dim A— oo.

Proof. Since Γ is nondiscrete, it contains a Helson set E homeo-
morphic to the Cantor middle third set on the real line [16, 5.2.2,
5.6.6]. If YeE, the translate C = E - 7' + 7 is still a Helson set
equivalent to the Cantor set, and it contains 7. Since C is metrizable
and has no isolated points, we can find a sequence of distinct points
7» € C\{y} so that Ύn —»7. This sequence together with its limit point
forms a Helson set K by Tietze's extension theorem. K is homeo-
morphic to N^, the one point compactification of the natural numbers,
and composing the induced isomorphism C(K) ̂  C(NJ) with φ: A-+
C{K) above, we obtain an algebra homomorphism Φ of A onto C(NJ)
such that Φ(Ir) = Moo = {feC(NJ): /(oo) = 0}. According to [8, 14G,
p. 213] there are 2C maximal chains of prime ideals of Cr(iSL) contained
in ikL n Cr(NJ), any two of which have only M^ Π CriNJ) in common.
For any such chain <Sf, let ̂  = {Φ~\P + iP): Pe <&, P Φ M^Π Cr(iSL)}.
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1.1 and the remarks preceding it guarantee that ^ is a chain of
prime ideals of A contained in Φ~\MJ) — Ir. Plainly if 3? is any
other such chain, & Π Jf = 0 . Each chain Jf is infinite, since P—•
Φ~ι(P + iP) is a bisection ^ —> i f and ̂  is infinite. For otherwise,
ΐT would consist of distinct primes Pλ < P2 < < Pw < MM Π CriN^).
Since ^ is maximal there would be no prime ideals of CriNJ) strictly
between Pn and M^ Π Cr(NJ), in violation of, say, [4, 3.1, p. 71]. In
particular, then, ascending chains of primes in A of arbitrary length
can be exhibited, so that krull dim A — oo.

Notice that if Γ is separable, each Iγ will contain exactly 2C primes.
For in that case C(Γ) has cardinality c, the Fourier transform embeds
A in C(Γ) and the remark follows from 1.2.

Observe also that none of the primes of A constructed above can
be a finitely generated ideal. For if Φ~\P + ίP) is finitely generated,
so is Φ(φ-χP + ίP) = P + iP. But if {fl9 ••-,/*} generates the prime
P + iP over CίiSL), so does {Γ/J1/2, •••, |/J 1 / 2 h and hence this set
generates Pover Cr(NJ). But then [2, §3, Thm. 1] Pis generated by
an idempotent /, so that oo = Z(P) — Z(f) is isolated in ΛΓ̂ , an
impossible conclusion.

PROPOSITION 1.3. // G is noneompact and A is any subalgebra
of M(G) containing a dense ideal of L\G), then not every finitely
generated ideal of A is principal.

Proof. Otherwise, for any Cantor Helson set Ka Γ, C{K), as a
homomorphic image of Ay would have the same property; K would
then be a metric î -space [8, 14.25], hence discrete [8, 14N],

For A as in 1.3 and Ed Γ, let IE[FE] denote the measures in A
whose Fourier-Stieltjes transforms vanish on E [on a neighborhood of
E]. For J c A set Z{J) = f\ {/^(O): μ e J}.

PROPOSITION 1.4. Take G and A as in 1.3. If J is an ideal of
A strictly between Fr and Iγy there are ideals J, J of A so that Fγc:
J c J c J c I7 with all inclusions proper.

Proof. As before, there is an algebra homomorphism Φ of A onto
C(iSL) so that Φ(Ir) = Mo*. By [4, 4.5, p. 75], there are ideals I and
I of CiNJ so that F e . c / c Φ ί J J c Γ c i k L (strictly). The conclusion
follows with J = Φ~ι{L\J= Φ~ι(ϊ)-

By repeated use of 1.4 we conclude that through any such / we
can thread infinite ascending and descending chains of ideals of A
lying between Fγ and Ir. Although in general J will not be prime,
it can be chosen so if J is countably generated.
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PROPOSITION 1.5. Take G and A as in 1.3. If J is a countably
generated ideal of A for which Z(J) — 7, there is a prime ideal P of
A strictly between J and Ir.

Proof. With Φ: A —> C(NJ) as in 1.4, Φ(J) is a countably generated
ideal of C(NJ) and Z(Φ(J)) = ^ . Since c>o is not isolated, F M Φ M^
and [3, Thm. 3, p. 175] yields a prime ideal Q of CiNJ) strictly
between Φ(J) and M^ Take P = Φ~ι{Q).

In particular a maximal ideal Iγ in A is never countably generated
(compare 3.10).

It is not hard to see that in 1.4 and 1.5 7 can be replaced by,
say any proper nonvoid closed subset of Cantor Helson set in Γ.
Unfortunately this interpolation method cannot be forced much beyond
that. Contrast the fluid simplicity above with the halting computations
in 3.1 below, where primes are obtained constructively.

2* Normed ideals and subalgebras* Call an ideal [subalgebra]
A of M(G) a normed ideal [subalgebra] in M(G) if A is a Banach space
under some norm || \\A which satisfies:

( i ) | |μ | | ^ a\\μ\\A (μe A, a constant)
(ii) K = {/ G L\G): supp / is compact} c A.

Consider the following conditions on a normed subalgebra A:
(iii) There is an a > 0 such that given γ e Γ there is a neighbor-

hood V of 7 so that \\k\\A ̂  α:||&||i whenever keK and supp JcaV.
(iv) There is some r > 0 so that ||7&IL ^ r\\k\\A whenever keK,

yeΓ.
Notice (iv) implies (iii). For choose any compact neighborhood C

of 0 in Γ. B = {feL\G): supp faC) is a closed subspace of both
A and L\G) by (i) and (ii). The open mapping theorem together with
(i) yields a constant β > 0 so that | | / I L ^ β | | / H i whenever feB.
For 7 e Γ set V = 7 + C; if k e K and supp k c V, ΐk e B so that | |k \\A =
||rτA;|L ^r | | τ fc |U ^ r^| |7&||i = r/SPI^. Thus condition (iii) holds with
a = rβ. The converse in false (cf. [1, §7, p. 276]).

A finite intersection A — Π* Ά* °f normed ideals [subalgebras]
is again a normed ideal [subalgebra] when given the norm \\μ\\A =
Σίlli"IUi If e a c ^ At satisfies (iii) [(iv)] with ai9 then A will satisfy
(iii) [(iv)] with a = Σ* «<•

Tensor products A ® p B of normed subalgebras A in M{G) and
5 in M{H)j completed with respect to the protective norm \\u\\v —
inf {Σi II ^<IU ll^i [|s: u — Σ . /*• ® λ»J, can also be viewed as normed sub-
algebras of Λf(G x ί ί ) . Indeed the map Σ*/*• (8) ̂ » ~~* Σ*)"* x \ is an
algebra isomorphism of i ( x ) ΰ into M(G x i ϊ ) , since it factors into

A®B - ^ A(g)B —> C(Γ x β) - ^ i Λf(G x H)
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where φ is a restriction of the natural algebra embedding C(Γ) (g)
C(Ω) — C(Γ x Ω). From the inequality

we see that A (g)J? —> ikf(G x i ϊ ) is continuous, so that it extends
continuously to the completion A®PB; in particular (i) holds with
constant ab.

If Kl9 K2 and K are the functions on G, H and G x H whose
transforms have compact support, then JSTj. <g) JKΓ2 is || ||p-dense in L\G) (x)
Lι{H); since the above embedding process gives a Banach space equi-
valence L\G)®PL\H) s L\G x H), given / e if with

s u p p / c i n t ( C Ί x C2)

[CΊ and C2 compact in G and if], we can find a sequence {/„} from
JSΓX (g) JKΓ2 SO that | | / — / n | | i — > 0 and supp Λ<^CΊ x C2 for each n.
Choose hi e K{ with hi \ C{ == 1 and observe that using (i) and the open
mapping theorem as in 2.2, we may find a, β > 0 so that ||cy]L ^ctllflrlL
and | |^ | | s ^/3| | fc | | i whenever g and h are L1 functions whose transforms
are supported on supp hx and supp h2 respectively. With

it follows that \\u\\p ^ aβM\\u\\t whenever ue Kt (g) Kz and supp δ c
d x C2. For if Σ< ̂ i ® &ί is any representation of %, w
Σ ί fc< * ̂  (g) fc{ * fc2, whence

Since L\G x H) = L^Gϊ&pL^H) isometrically, we conclude \\u\\p^

aβMinf {Σ4||fc*llil|fcίlli:^ = Σ ^ , ® ^ } = aβMWu^. Thus

| | Λ - fm\\9 £ aβM\\fn - fm\l >0 ,

w h e n c e f o r s o m e g £ A ( § ) p B , \ \ f n — g \ \ p - * 0 . B u t | | / - g\\x ^ \\f —
/»lli + α&ll/ ~ ffl|p-*0, so actually fe A(g)pB; that is, (ii) holds.

If A and B satisfy (iii) with constants a and a\ then A(§)PB
satisfies (iii) with 2aa'. For if (yu y2)eΓ x Ω is given and if corres-
ponding neighborhoods V1 and V2 are chosen for A and 5, find compact,
symmetric neighborhoods WΊ and W2 of 0 in Γ1 and β so that m( Ŵ  +
Wί) ^ 2m(ΐF i) and 7< + W< + PΓ4c F<; choose Λ46 ίQ so that hi\yi +
Wi = 1, supp £ , c V, and ||Λ4|U ^ {m(7ί + TΓ4 + W4)/(m(T74))}1/2 ^ VT
[16, 2.6.1]. If keKt®K2 with supp λ c τx + W, x 72 + TF2 and if
Σ i <̂ ® ^ί is a representation of &, Σ * ^* * h (g) ^ί * &< is also and we
have | |A: |U^X, l l fc^^iUUfc^^iU ^ ^α:'|l^xiUIi^IU Σ , II^,IUII^Hi- Thus

Since Zi(g)
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iΓ2 is !| jlp-dense in K this inequality holds for any k e K whose trans-
form is supported on Ύλ +W1 x Ύ2 + W2. Also if (iv) holds for A and
B with constants r and r', then | |(τ, V)u\\p = infJΣt HxΛILIIWills'-
u = Σ% f% ® 9i) ^ rr'\\U\\P> s o ^ a ^ (iy) holds for A (g)p B with constant

Unfortunately A (x) J5 completed in some other cross norm cannot
always be realized as a normed subalgebra of M(G x H) in this way.
For example consider U{G) (x) L'(iϊ) completed with respect to the
biequicontinuous norm

ί fXx)f\x)dx \ g^gWyl: / 'e L~(G), g' e L~(H) ,INI* = sup

If L'(G) (g)β L
x(ίί) is a normed subalgebra of ikί(G x fί), then it embeds

in L\GxH) and \\u\\, £ a\\u\\e; since L\G x H) = L\G) (§p L\H)
i s o m e t r i c a l l y , | N | P = | | ^ ( l i ^ a | | u | | e <£ α | | t 6 | [ p , so t h a t a c t u a l l y

Applying a theorem of Grothendieck [10, Chp. II, §2.1, p. 42] when
G = Z we conclude that Lι(H) is a nuclear space. But since no infinite
dimensional Banach space can be nuclear, this conclusion is absurd
whenever H is infinite.

EXAMPLES. The essential Z/(G)-modules A in L\G) defined in [12,
39.32] are examples of normed ideals. For A = L\G)*A [12, 39.32.b.ii],
so that M(G)*A - [M(G) * L\G)] * A = L\G)*A - A) that is, A is an
ideal of M(G). (i) is [12, 39.32./]; (ii) follows since A is a dense ideal
of L\G) which, by regularity of L\G)y must contain {/ e K: supp / Π
Z(A) = 0} = UL[Z(A) = 0 ] . Algebras of this type include AP(G) [13],
the Wiener algebra ^C(JB) [12, 39.33] and its generalizations [15, p.
127]; and for compact G, both LV{G) and C(G). Each of these satisfy
(iv) with r = 1.

The Segal algebras S defined in [15, 6.2.0, p. 126] are also normed
ideals. For it follows from [15, 6.2.3, p. 128] that L\G)*S is dense
in S; the Hewitt factorization theorem [12, 32,22] then implies

Lι(G)*S = S,

and as above, S is an ideal of M(G). (i)-(ii) are [15, 6.2.2]. Actually,
we have

LEMMA 2.1. Let A be a normed ideal in M(G). The following
are equivalent: (a) A is an essential L\G)-module in Lι(G); (b) A is
a Banach algebra with an approximate identity on K; (c) A is a Segal
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algebra.

Proof, (a) implies (b) is [12, 39.32.g]; if (b) holds, K(zA(zL\G).
For if {/„} c K is an approximate identity for A, then for each μ e A,
if**!1} contains a sequence {fa%*μ} converging to μ. This sequence
is Cauchy in L\G) by (i), and converges to some feL\G). Again
by (i) we see that for fixed ΎeΓ,f(i) = lim^^ fan(i)μ(i) = β(y), so
that μ — fe &{G). Since L\G)* A is obviously dense in A, (a) holds.

If (c) holds, then so does (b) [15, 6.2.3, p. 128]. If (b) holds, we
see as above that K is A-dense in AaL\G). It follows that A is a
Segal algebra [1, p. 275].

Other examples of normed ideals include M(G) itself; in fact any
closed ideal of M(G) containing L\G). Thus MQ{G), the measures
whose Fourier-Stieltjes transforms vanish at ©o, and Lι(G)1/2, the
intersection of all maximal ideals of M(G) containing L\G) are normed
ideals in M(G). All such examples satisfy (iv).

Suppose a is a positive, regular Borel measure on Γ (not neces-
sarily finite). For pe [1, H , set Ap(σ) = {μe M(G): μe Lp(σ)}. With
the norm 11 μ \\p = \ \ μ | | + 11 μ |\Pf Ap(σ) is a normed ideal of M(G). Indeed,
Kcz Ap(σ) since σ is finite on compact sets; completeness is standard.
By judicious choice of σ, one obtains normed ideals exclusive of those
above. If σ is continuous, Ap(σ) satisfies (iii) but typically not (iv).

All the examples above satisfy | |λ*μ|U ^ fe||λ|| | |μ|U(λe M(G),
μe A, b constant), and finite intersections of such will also. However,
since this module property plays no role in what follows, we have
excluded it from our definition of normed ideal.

Plainly any closed subalgebra of a normed ideal which contains
if is a normed subalgebra. Examples include the closed subalgebras
of M(G) containing L\G)— in particular the L-subalgebras of Taylor
[15, 16] whose maximal ideal spaces coincide with Γ, as well as MU(G),
the measures whose transforms are uniformly continuous on Γ. The
"normed ideals" of L\G) introduced by Cigler [1] are also normed
subalgebras of M(G).

It is not hard to see that the completed tensor product of Segal
algebras A, B is again a Segal algebra. Indeed it follows from

L\G) ®p L\H) s L\G x H)

that A (g)p B is a (dense) ideal of Lι(G x H); if {μa} and {vβ} are
approximate identity for A and B, {μa (g> vβ} is an approximate identity
for A (g)p B. Since A (g)p B is a Banach algebra, the remark follows
from 2.1. We obtain new examples of Segal algebras in this way:
Ar(R) (g)pA

8(R), for instance, is not embedded in U(R2) as A9(R2) for
any q. A corresponding observation can be made for Cigler's normed
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ideals in L\G) [1].

3* Countably generated ideals. Since K is a dense ideal of
Lι(G), 1.2-1.5 apply to any normed subalgebra in M(G). We also have

THEOREM 3.1. Let A be a normed subalgebra in M(G) and {μn}
a sequence in M(G) such that μn*AaA for all n. If E = Π βήιφ)
has a nonempty boundary dE in Γ and J is a closed ideal of A with
Z(J) c E, then there is a prime ideal P of A so that for some 7 e dE,

ΐ but J (£ P.

Proof. I = Σ ^ * ^ . denotes the vector sum of the subspaces
{μn*A}. Clearly we may assume \\μn\\Λ S 2~n. Fix Ί^dE and take
some compact neighborhood C of y0. Φ = Σ~=i I A* I is a continuous
function on Γ whose zero set is E, so we may select a sequence
{yn} of distinct points of C so that 0 < φ(yk) < 1/kl. The set {yn}
has some accumulation point γ e C Π dE. Standard arguments (ex-
hibited in [9, 2.1]) yield a sequence {fn} c K so that/„(%») = 1 = | |/»||i,
supp/Λ c C and suppΛ Π supp/ m = 0 if n Φ m. Since yn ί Z(J),
there is some Xne J with λ n ( τ j = 1. Modification of [16, 2.6.3] yields
for fixed ε > 0 and each n, some kn e Lι(G) so that fcΛ(τΛ) = 1 = I! K ||L and
P^λJI, <1 + e.

For assuming yn = 0, set λ — Xn and δ = ε/4(l + | |λ | | ) , pick a
compact Ka G so that \X\(G\K) < δ, let TF - {ΎG Γ: |1 - (α?, ̂ ) | < δ,
x e K) and find a compact neighborhood of 0 in Γ so that V~ Vc W.
Choose s, t e L\G) whose Plancherel transforms are lv and Z_F, and
define k(x) = s(x)t(x)/m(V) where m is Haar measure on Γ. fc(0) =
1 — H&lli and since

s) = \ {k(x - y) - k(x)}dX(y) + ( k(x)dX(y) ,
JG JG

|i ^ \ \\ky — k
JG

Computation [16, p. 50] reveals that the integral on the right hand
side is less than ε; thus ||k^X]^ < 1 + ε. If yn is arbitrary, apply the
above argument to ynxn, and for the k so obtained, set kn = ynk.
Certainly kn(yn) = 1 - \\K\\, and

B = {ge L\G): supp g c C} is a closed subspace of both A and
because of (i) and (ii). The open mapping theorem together with (i)
yield a constant β > 0 so that \\g\\A ^ βWgll for all # e ΰ . Thus the
series ^7=iZ~nfn*kn*Xn is normally convergent in A and defines an
element / in the closed ideal J . S = {fm *σ:σe A\Ir and m :> 0 or
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a ~ δ0 and m > 0} is a multiplicatively closed set in A which we claim is
disjoint from Σ (μn * A + Cμn). For suppose on the other hand, fm *σ =
Σ t i μi*(Pι -f ccd f° r some nonnegative integer m, σe {δ0} (j
A, α'̂ G C Find a S > 0 and a neighborhood F of 7 so that
3 for /SG 7. Infinitely often j k lies in V and for such &,

/ I \m

1= i

But this is quite impossible, since, as the kth term in the MacLaurin
series for ea, ak/kl —•> 0 for all ae C.

In particular, IΠ S = φ and applying Zorn's lemma, we find a
prime ideal P of A containing I and disjoint from S. Clearly Id
P(zlγ and J ς£ P.

The following easy corollary significantly generalizes [5, 3.1].

COROLLARY 3.2. Let A he a normed suhalgehra in M(G). If J
is a closed, countably generated ideal in A, then Z(J) is open-closed
in Γ.

Proof. If {μn} generates J, J = Σ i" * A + Cμn and
But if Z(J) is not open, the proof of 2.2 yields some f eJ\Σ μn*A +

ex.
For a normed subalgebra A of M(G) and a closed ideal I of

L\G), set Γ = {μe A: K*μa I}. Notice J' is a closed ideal of A. For
(i) makes it closed; if μe Γ, λ6 A and / e K, f*(μ*X)e I*\cz I. This
last inclusion follows from a corollary to Cohen's factorization theorem
[5, 1.5]: I - I*Ip[peZ(I)], so that I*λ = I*(IP* λ)cz I*L 1(G)c J.
Further, the map /—> /' is injective. For if ge Γ Π if with supp g =
C, we may find some & e iΓ whose transform is identically 1 on C, so
that g = lc*geK*gc:L Thus if Γ = Jf, IΠ K = Γ f) K = J'f) K =
J Π K, and taking closures in L\G) and using an L1 approximate
identity from K, we have I = J.

Since plainly Z(T) = Z(Γ), Helson's theorem [12, 39.42] indirectly
yields uncountably many closed ideals of A with common zero set E
whenever E is a set of nonsynthesis for Lι(G). Since such a set
cannot be open in Γ, 3.2 implies that none of them are countably
generated.

Using an Lι approximate identity, we see that if A is contained
in L1(G)1 Γ = If) A; since every closed ideal of a Segal algebra A is
of this form [12, 39.32.fe], I—>Γ is a bijection, and we conclude
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COROLLARY 3.3. If E is a set of nonsynthesis for L\G), no
closed ideal in a Segal algebra A whose zero set is E can be countably
generated.

Notice also in passing that Malliavin's theorem [16, 7.6.1], together
with the above injection, implies that spectral synthesis fails for every
normed subalgebra of M(G) whose maximal ideal space is Γ whenever
Γ is not discrete. Examples include the L-subalgebras of Taylor such
as Lι(G)ιμ, as well as tensor products of such, since the spectrum of
a product is the product of the factors' spectrums [14, 4.2],

Since all the specific examples mentioned in §2 satisfy (iii), their
intersection with M0(G) will also, and we have a sufficient plenty to
which the following generalization of [5, 3.6] applies.

THEOREM 3.4. Let G and H be LCA group with duals Γ and Ω
respectively] suppose H is compact and Γ is connected. Let A be a
normed subalgebra of M0(G x H) satisfying (iii). Then

(a) if G is nondiscrete, 0 is the only closed, countably generated
ideal of A whereas

(b) if G is discrete, a closed ideal J in A is countably generated
if and only ifj~ IΓxEaK where E is a cofinite subset of Ω.

Proof. Let J be a closed, countably generated ideal in A. Z(J)
is open-closed (3.2), and hence of the form Γ x E, EczΩ.

J = Σ μ^A + Σ cμn

for some sequence {μn} c J c M0(G x H) with || μn || ^ 1/2*. Let Σ A x C
denote the direct sum of countably many copies of A x C, and An the
subspace of sequences whose entries past the %th one are all zero.
An is a Banach space with norm ||{λi, tfj|| = Σ?=ill̂ <IU + !^l> a n d
with the final topology induced by the inclusions AnQ^Ax C, Σ ^ χ

C is the strict inductive limit of the An. The mapping T: Σ A x C—>
J given by T({Xi9 αj) = Σ μi*(\ + <**) is linear, continuous and surjec-
tive. A theorem of Dieudonne and Schwartz [7, Thm. 1, p. 72]
implies T is open. Hence if U = {{\, α j e Σ ^ . x C: \\W\A ̂  1 and
\cb\ g 1 for all i), there is a 8 > 0 so that J3(0, δ)c T(U). It follows
that there is a constant M > 0 so that given μeJ, there are λL, ,
Xre A and al9 , areC with

(*) μ = ΣiμM\ + <χi), \\\\\A ^ M\\μ\\A

i=ί

and

i = l, 2, .- , r .
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Since | |/^| | <£ 1/2% we may choose n so large that ΣΠ=*+i (1 +
< 1/2, where a and α are the universal constants in (i) and

(iii). Let ε = 1/2(1 + a)Mna and choose C c Γ x Ω compact so that
I A(% V) I < e/2 off C for i = 1, , n.

(a) If E = Ω we are done. If η0 e E% then since Γ is not compact,
(To, Vo) £ C for some τ0 e Γ. Define σ̂  e ikf(G) by

= \ Vo(vWi(x, y) .
JFxH

Since ^(7) = μ<(7, %), I £*(%>) I < ε/2 for i = 1, , w. Choose a neigh-
borhood V of (7o, %) i n Γ x Ω satisfying condition (iii), and then a
compact neighborhood W of 70 in .Γ so that W x ^0 c: F. Exactly as in
2.2, we can find some k e L\G) so that supp ίcaW, fc(τ0) = 1 = ! I &! li and
11^**11! < ε for i = 1, , π. Since ^0/c: (α?, 2/) —> Vo(y)k(oή is in
ϋΓ, α ^ i * ̂ ofc G J, where αΛ; = | ^ (TO, 7̂O) I /j"<(70, %) whenever ^(TO, %) =F= 0,1
ottiexwise. Computations with transforms show that aiμi^TjC;k(xf y) —
arfQ(y)(?i*k(x). Applying (iii) we see

The series Σ-^i #*£*** %& is therefore normally convergent in A and
defines an element μ in the closed ideal J .

Select ^ e i and ζ^eC satisfying (*) for μ. For λ< = vjα'i and
β, = ζjai9 we see that μ = Σ l = i ^ / ^ * ( ^ + βι) and Ijλ JU ^ M||/^|U,

In particular,

Σ I A(%, ^o)l = Σ ^ , ( 7 o , ty ^
i i l

But then if |λ;(70, η0) + βi\ < 1 for i = 1, , r, the inequality forces
βi(Ύo, Vo) = 0 for all i. But this implies (70, %)£ ^GΌ> a contradiction.
We conclude \λ3(yQ, Vo) + /3y| ^ 1 for some i, and since |!α:<μt**o&|L4 ^
α 11^*^11! for all i, we reach the following absurdity:

1 g αllλylU + \βj\ ^ (1 + a)M||i«!L ^ Σ (1 + α)Jlία11^*fe ||L

+ Σ (1 + ^Mα'pJUI/ΛH < (1 + α)ilf^α'ε + — = 1 .

(b) Since Ω is discrete, the compact set C is contained in a product
Γ x F,FaΩ finite. But then if the complement of E is infinite,
there is some Vo ί F U E. Taking any 70 e Γ, we have (70, Vo) $ C U ^(Γ'
and the argument above yields the required contradiction; that is,
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must be empty or a finite set {rjlf •••, rjr). Since Γ is compact, J c
IΓXE = {/ e I/(G x iϊ): supp / c /* x Ec) c iΓ; in fact the A-topology and
the ZΛtopology agree on IΓxE by the open mapping theorem and (i).
J is therefore a closed ideal of L\G x H) with zero set Γ x E, and
the regularity of L\G x if) yields I Γ x i 5 = J* The converse is obvious,
since g(x, y) = Σi=i^fe(l/) generates / Γ X J E .

COROLLARY 3.5. Suppose A is a normed subalgebra of M0(G)
satisfying (iii). Then A is a countably generated ideal of itself if
and only if G is discrete.

Proof. Certainly if G is discrete, M(G) = L\G) ̂
is generated by its identity. Suppose on the other hand, G is non-
discrete and A = Σ ^ * i + Σ Cμn for some sequence {μn} c A. Ex-
amine the proof of 3.4 with H — 0, J — A: since Z(J) = 0 and .Γ is
not compact, we can still pick % ί C u Z(J) and obtain the required
contradiction.

COROLLARY 3.6. If G is a normed subalgebra of M0(G) satisfying
(iii) and Γ is connected, then no nonzero closed ideal of A can be
countably generated.

Proof. Suppose J is a countably generated, closed ideal in A.
Then Z(J) = Γ or φ (3.2). Plainly if Z{J) = Γ, J = 0; if Z(J) = φ,
3.4.a with H = 0 implies G is discrete.

COROLLARY 3.7. (Compare [9, §4> p. 424].) If G is nondiscrete,
A is a normed ideal in MQ(G) satisfying (iii) and Γ is connected,
then no nonzero subspace of the form Σ ^ * A ^n^MJfi), is closed
in A.

Proof. Otherwise, 3.1 and a simplification of the argument in 3.4
shows, as in 3.6, that G is discrete.

Condition (iii) can be deleted if we assume A is Tauberian on Γ.
For example we have

PROPOSITION 3.8. If A is a Segal algebra on G and Γ is con-
nected, then no nonzero proper subspace of the form X μn * A, μ% e
M(G), is closed in A.

Proof. Otherwise, the zero set of the closed ideal J — X ^ * A
is φ or Γ (3.1); since A is Tauberian (2.1, [12, 39.32.g], [12, 39.27])
and semisimple, J = A or 0.
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THEOREM 3.9. Let G be a compactly generated LCA group and
A a normed subalgebra of MQ(G) satisfying (iii). Then a nonzero
closed ideal J of A is countably generated if and only if G is Zn x C, C
a compact group, and J consists of those f e K whose Fourier
transforms vanish on Tn x E where E is a cofinite subset of the
dual of C.

Proof. G is a group of the form Rm x Zn x C, C a compact group
[11, p. 90]. If A has a nonzero closed, countably generated ideal J,
then 3.4.a applied to H = C shows that m = 0. Thus G = Zn x C
and 3.4.b applied to H = C gives J the required form.

COROLLARY 3.10. Let G be an LCA group, A a normed subalgebra
of M0(G) satisfying (iii). Then A has a countably generated ideal of
the form Ir, je Γ, if and only if G is finite.

Proof. If Ij is countably generated, 3.2 implies 7 is isolated in
Γ, so that G is compact. But 3.9 then implies the singleton {7} is
cofinite in Γ, so that actually Γ is finite; since finite Abelian groups
are self dual, we see G is also. Of course if G is finite, the proof of
3.4 shows that every ideal is principal.

Since Γ is the maximal ideal space of a Segal algebra on G, we
have in particular

COROLLARY 3.11. A Segal algebra on G which satisfies (iii) has a
countably generated regular maximal ideal if and only if G is a finite.
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