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SETS GENERATED BY RECTANGLES

R. H. BING, W. W. BLEDSOE,

AND R. D. MAULDIN

For any family F of sets, let &{F) denote the smallest
σ-algebra containing F. Throughout this paper X denotes a
set and & the family of sets of the form Ax B, for A £= X
and B £ X. It is of interest to find conditions under which
the following holds:

(1) Each subset of X X X is a member of ^{^)

The interesting case is when

ωt < Card X ^ c ,

since results for other cases are known.
It is shown in Theorem 9 that (1) is equivalent to

There is a countable ordinal a such that
( 2) each subset of I x l can be generated

from & is a Baire process steps .

It is also shown that the two-dimensional statements (1) and
(2) are equivalent to the one-dimensional statement

There is a countable ordinal a such that
for each family H of subsets of X with

(3) Card H = Card X, there is a countable
family G such that each member of H
can be generated from G in a steps .

It is shown in Theorem 5 that the continuum hypothesis
(CH) is equivalent to certain statements about rectangles of
the form (1) and (2) with a = 2.

Rao [7, 8] and Kunen [2] have shown that

THEOREM 1. If Card l ί ^ (the first uncountable cardinal) then
(1) is true and if Card X > c then (1) is false.

The question of whether (1) is true (without the requirement
Card X <̂  ωλ) was raised by Johnson [1] and earlier by Erdos, Ulam,
and others (see [8], p. 197). The arguments in Kunen's thesis actually
showed that if Card X <̂  ωγ then

Each subset of X x X can be generated

(4) from & in 2 steps (i.e., each subset is a

member of .^ σ δ . See definitions in § 2.) .

In Theorem 5 we generalize Theorem 1 and Kunen's result (4),
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and give a new characterization of CH by showing it to be equivalent
to certain statements about rectangles of the form (1) and (4).

If CH is assumed the a appearing in statements (2) and (3) above
is 2 (see Theorem 10). This raises the intriguing (but unanswered)
question of whether a must always be 2 if (1) holds and CH is false.

It would also be interesting to know whether statements (1), (2),
and (3) are equivalent to statement (5) below. Clearly (3) imples (5).

If H is a family of subsets of X with

( 5) Card H = Card X, then there is a countable

family G for which H £ ^ ( G ) .

The equivalence of (1) and (2) means for example, (assuming CH),
that there is a countable family G from which all real Borel sets (or
analytic sets, or protective sets) can be generated in two steps (i.e.,
Borel sets S Gσδ). This is remarkable in view of the well known result
[4, 8] that if G is a countable basis for the real topology, then the
Borel sets cannot be generated from G in less than ωL steps.

As a generalization of this well known result we show in Theorem
12 that any countable family G which is closed to complementation
and which generates the Borel sets (i.e., Borel sets £Ξ &(β)) must have
order ωλ. That is

^(G) g Ga

for any countable ordinal a. Thus, even though G might generate
the Borel sets in a steps (or 2 steps if CH is assumed), the process,
nevertheless, continues to produce new members of &(G) until we
reach Gωi.

We would like to point out in conjunction with our characteri-
zation of CH that Kunen [2] has proved that if Martin's Axiom A
holds (see [6]) and Card X ^ c then (4) holds. He also proved that
if ωι < Card X <̂  c then (1) is independent of ZFC (Zermo-Frankel
Axioms + the Axiom of Choice) together with the negation of CH.

2* Notation and definitions* If G is any family of sets, let Go

be the family G, and for each ordinal a, a > 0, let Ga be the family of
all countable unions (intersections) of sets in \J7<a Gr, if a is odd (even).
Limit ordinals will be considered even. (Compare Kuratowski [3].)
Thus we have

GQ — G, Gx = Gσi G2 = Gaδi G3 = Gcδσi , Gαι .

Also Ga G Ga+ί for each ordinal a and Gωi — Gωi+1, where ωι is the
first uncountable ordinal. If a > 0, then the family Ga is closed under
countable unions (intersections) if a is odd (even).
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We define the order of G to be the first ordinal a, a > 0, such
that Gα+1 = Ga.

For each A g I (or i g l x X), let A' be the complement of
A with respect to X (or X x X), and for each family G of subsets
of X (or X x X) let i f (G) be the family of complements of G. Note
that if <έ?(G) S G, or even if <ίf (G) S Gωi, then the family Gβl is the
family «^(G), the σ-algebra generated by G. Thus, since

(4xί)' = 4xffU4'x Xe ^ ,

it follows that ^p β l - &(&).
If G is a family of subsets of X, let F G - { 4 x B : 4 g I , J5e G},

and let HG = {A x B: Ae G, 5 s X}.
If Z gΞ X x X and a? e X, let Zx denote the vertical section of Z

at x, Zx = {y:(x, y)eZ).

3* Results* The following lemma is easily proved by transfinite
induction.

LEMMA 2. If I ^ a < ωι and A e Ga, then there is a set B in Gι

such that A Q B.

THEOREM 3. If G is a countable family of subsets of X, ZQ Xx X,
and 0 < a < ω19 then Ze (VG)a if and only if Zxe Ga for each xe
domain Z.

Proof. By considering the natural projections of the sets involved
on the second coordinate axis, it is easily seen that

if Ze (VG)a, then Zx e Ga for each x e domain Z .

Now suppose that Zx e Ga, for each x e domain Z, and let G =
{0i, #2, ̂ s, •}• We complete the proof by transfinite induction on a.

Case 1. a = 1.

For each n, let An = {x e domain Z: θn £ Zx}f and let Zn — An x θn.
Then Zn e VG, for each n, and

Now suppose 1 < a < β)lf and that the theorem holds for every
7, 0 < 7 < a.

Case 2. a is even.
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Let {in}Z=ι be a sequence of odd ordinals less than a such that
each odd ordinal less than a appears infinitely often in {7j?=ι. For
each x e domain Z, let

be a sequence such that D,{x) e G
r
. for each i, and

Z
x
 = f\ Dlx) .

This can be done in view of Lemma 2. For each ί, let

Z*= U {«} x Dt(x) .
dxedorαpin

First note that Z = Γ)?=ιZ\ Also each nonempty section (Z% of Zi

is equal to D(x) e Gr.. Hence, by the induction hypothesis, Z*e (VG)r.,
for each ί, and therefore

Z=ΓiZie(VG)af

by the definition of the family (VG)a.

Case 3. a is odd and greater than 1.

For each x e domain Z> let {JD,(O;)}Π=I be a sequence of members of
G*-! for which Zx = UΓ=i A(»), and let Z* = Uxβdo^m m W x A(»),
for each i.

Again it follows that Z* e Ga^19 for each i, and

Z= [JZ'

COROLLARY 4. If Z ^ X x X is the graph of a function then

Proof. Let G be a countable basis for the real topology and note
that, for each x e X, Zx is a singleton and hence Zx e G2. Thus by
Theorem 3, Ze (VG)2 g . ^ 2 S , ^ ( ^ ) . Also see [7].

THEOREM 5. Le£ X be the real numbers and let G be a countable
base for the usual topology on X. The following three statements are
equivalent:

(1) CH holds
( 2 ) ifZ^XxX, then Z^A n B, where Ae(VG)2 and Be (HG)2

and
(3 ) if ESiXx X, then E = C U D, where Ce &(VG) and D e
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Proof. First, assume CH and suppose Z s X x X. As is well
known [7], the complement of Z is the union of two sets H and K
such that each vertical section of H is countable and each horizontal
section of K is countable.

Let A be the complement of H and let B be the complement of
K. Then each vertical section of A is a G2 set and by Theorem 3,
A e {VG)2. Similarly, Be (HG)2. Of course, Z = Af]B.

Since Ae (VG)2 £ ^?2 and Be (HG)2 £ ^P2 and ^?2 is closed under
finite intersections, Ze &2. Thus, if CH holds, then the order of &
is <Ξ 2. Since the graph of the identity function, f(x) = α>, is not in
^ ϋ , it follows that the order of & is 2.

Now, suppose statement 2 holds and E s X x X Then, the
complement of i£ can be expressed as the intersection of sets A and
B with A e (VG)2 and 5 e (i?G)2. It follows that A! e (VG)t £ ^ ( FG)
and B'e(HG)3 £ &(HG). Thus, £7 is the union of two sets C and
A where Ce^T(FG) and De^(HG).

Finally, assume statement 3 holds. Let T be a totally imperfect
subset of X of cardinality c. The existence of such a set can be
proven without assuming CH [3, p. 514]. Let E — T x T and let
E=Cl)D, with Ce^(VG) and De^(HG). Then each vertical
section of C is a subset of T which is a Borel set. Since an uncountable
Borel set contains a perfect set and T contains no perfect set, we
have that each vertical section of C is countable. Similarly, each
horizontal section of D is countable. But, as is well known [10] this
implies CH.

This completes the proof of Theorem 5.
The following two lemmas are well known.

LEMMA 6. If F is a family of sets, a is a countable ordinal, and
A e Fa9 then there is a countable subfamily J of F for which A e Jα.

LEMMA 7. If F is a family of sets, ^(F) s F, and A e
then there is a countable subfamily J of F and a countable ordinal
a for which Ae Ja

THEOREM 8. (a) The following two statements are equivalent:
( i ) For each subset Z of X x X there is a countable ordinal a

such that Ze &a.
(ii) If H is a family of subsets of X and Card H = Card X,

then there is a countable family G of subsets of X and a countable
ordinal a for which H £ Ga.

(b) If a is a countable ordinal, the following two statements are
equivalent:

( i ) Each subset of X x X is a member of &a.
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(ii) If H is a family of subsets of X and Card H = Card X then
there is a countable family G of subsets of X for which H £ Ga.

Proof. The proof of part (b) is similar to that of part (a) which
is given below.

First suppose (i) holds, and suppose that H satisfies the hypotheses
of (ii). Define the subset Z ξΞ? X x X by letting each member of H
be a vertical section of Z. More precisely, let / be a 1-1 function
from X to H and let

Z=\J{x}xf{x).
xeZ

By (i) there is a countable ordinal a such that Ze &a and hence by
Lemma 6, there is a countable subfamily J of & for which ZeJa.
Let

G = {B:Ax BeJ),

note that Ze (VG)a and use Theorem 3 to conclude that Hs Ga.
Now suppose (ii) holds, and that Z ε X x X. Let H be the family

of vertical sections of Z, and use (ii) to secure a countable family G
and a countable ordinal a for which H s Ga. Thus Zx e £r« for each
a? 6 domain Z and by Theorem 3

THEOREM 9. The following four statements are equivalent:
( i ) Each subset of X x X is a member of &(&).
(ii) If H is a family of subsets of X and Card H = Card X then

there is a countable family G and a countable ordinal a for which

(iii) There is a countable ordinal a such that, for each family H
of subsets of X with Card H = Card X, there is a countable family G
for which H S Ga.

(iv) There is a countable ordinal a^2 such that each subset of
X x X is a member of &a*

Proof. Statements (i) and (ii) are equivalent by Lemma 7 and
Theorem 8a. Clearly (iii) implies (ii) and (iv) implies (i). Also by
Theorem 8b it follows that (iii) implies (iv). a cannot be equal to 1
in (iv) because by (i) the identity function f(x) — x is not in &λ.

We complete the proof by showing that (ii) implies (iii). Since
this result is immediate if X is countable we will assume that
Card X^ωιm

Suppose that (ii) holds and that (iii) does not. Then for each
a < ωίf there is a family H(a) of subsets of X for which Card H(a) =
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Card X and

(1) for each countable G, H(a) g= Ga .

Let H' - U fZfa). Thus Card iP = Card X and hence by (ii) there
a«oι

is a countable family G' and a countable ordinal #' for which Hr S G«/.
But then #(<*') S IP S Gv in contradiction of (1).

Therefore (ii) implies (iii).

In part (ii) above the family G can be chosen so that Gωi is closed
to complementation (i.e., is a σ-algebra).

In view of condition (ii) of Theorem 9, it is interesting to note
that R. Mansfield has shown that if G is a countable family of
Lebesgue measurable sets, then B(G) does not contain all analytic
sets [5].

As was mentioned in the introduction it would be interesting to
know whether the formula "H £ Gα" in Theorem 9 could be replaced
by H s .^(G). We do not know the answer to this question.

THEOREM 10. If CH holds, Card X = c, H is a family of subsets
of X, and Card H — c, then there is a countable family G for which
H£G2.

Proof. By Theorem 5 each subset Z of X x X is a member of
^P2. The desired conclusion now follows from Theorem 8b.

4* Generating Borel sets* Let R be the set of reals, and let
H be the family of all Borel subsets of R. This family has cardinality
c. Suppose G is a countable family of subsets of R such that i ϊ ϋ Gωi

and G(Ol is closed to complementation. The next two theorems show
that, even if the family G generates all the Borel sets at an early
stage, the order of G is ω1# This is a generalization of the well known
result [4, 9] that if G is a countable basis for the real topology then
G has order ωλ. Our proof which is a usual "diagonal" type argument,
parallels somewhat Lebesgue's proof of that result [3, p. 368].

Let G = {Vl9 V2, F3, •••}, let N be the set of irrational numbers
between 0 and 1 and let K be the family {θl9 θ2, θZy •} of all inter-
sections of the members of G with N,

θ% = V, Π N .

It will be shown that the order of K is ωγ. It then follows that the
order of G is o)x.

For each ze N, let (zl9 z2, z3, ) be the sequence of integers
appearing in the continued fraction expansion of z. This defines a
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reversible transformation from N onto the set of all sequences of
positive integers. Let

zι = (zlf zs, z5, ) (odd indices)

Z = (Z2, Z6, ZLOf ' ' )

Z2n-1, Z3.2n-1, Z6.2n-l,

This defines a homeomorphism between iVand N*° (see Kuratowski
[3], p. 369). Also note that if /is a continuous function from N into N,
then the functions fn from N into the space of positive integers are
continuous, where

( ) / ( ) M) ) or (/n(«) - /(«).) .

Recall that K = {θu θ2, θz, •}. The family Ka which appears in
Theorem 11 is defined in §2.

THEOREM 11. For each countable ordinal a, a > 0, there is a
function Ua from N onto Ka such that if f is a continuous function
from N into N, then the set

Af = {z:ze Ua(f(z))}
is in &(K)

Proof. Let UJ^z) = U*=i^Λ» f° r e a c ^ ^eiV. Clearly Uι maps N
onto Kγ.

Let / be a continuous function from N onto N.
We have

- \z:ze\JθfΔ

= l){z:zeθfniz]} .

For each n,

where JWί = {«:/Λ(^) = i}. Since each /Λ is continuous it follows that
each Jn. is open and therefore the set Af belongs to Gωi.

Suppose 1 < a < <̂ i and suppose that the function Ur has been
defined for each ordinal 7 with 1 <£ 7 < α. (Induction hypothesis.)

If α is odd, let
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Utt(z) = U UcUzn), for zeN.

Clearly Ua maps N onto Ktϊ.
If a is even, let {7%}Γ=i be a sequence of odd ordinals less than

a such that each odd ordinal less than a appears infinitely often in
{7*}~=] ^nd let

Ua(z) = ή U7n(z*), for zeN.
n = l

If Ae Ka (a is still even), then

A = n A* ,

where Dn e KTn, for each n. For each n, let #w be a point of N such
that

And let z be the point mapped by the transformation described by

(*) to the point (yl9 y2, y5, •) of N*°. Thus

^ ( ^ - A

and f7α maps N onto iΓα..
This completes the definition of the functions Ua. Now let / be

a continuous function from N into N. It will be shown that if a is
even the set

Af = {z:ze Ua(f(z))}

is in Gωi. The argument for the case a is odd is similar.
We have

Af=\z:zeΠUTn(if(z)r)

= Π{z:zeUΐn((f(z)r)}.

But, for each n, the function z —> (f(z))n, being the composition
of two continuous functions, is a continuous function from N to N.

Thus by the induction hypothesis, the sets {z: z e Uϊn((f(z))n)} are
in the family Gωi. Therefore Af e Gωi.

THEOREM 12. If G is a countable family of subsets of real numbers
with ^(G) £ G, αtidl eαcA Borel set is a member of &(G) then G has
order (βγ.
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Proof. Let a be any countable ordinal, and let

Ia = {z:z$ Ua(z)}.

Suppose IaeKa, and let Ua(z) = Ia. If ze Ia then ze Ua(z). But
this contradicts the definition of Ia. If z£ Ia, then ze Ua(z) = Ia, ze Ia.
This contradiction shows that Ia&Ka.

Since &F(G) = Gωχ (because 9T(G) £ G), and Γa = {z:ze Ua(z)} e Gωi

by Theorem 11, it follows that Ia e GWί — Ga. Thus Ga Φ Gωi, and hence
G has order ω1 [3, p. 371],
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