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THE DIRICHLET PROBLEM FOR SOME OVERDETER-

MINED SYSTEMS ON THE UNIT BALL IN O

ERIC BEDFORD

A characterization is given of those functions on dBn =
{| z I = 1} which can be extended to be analytic, pluriharmonic,
or ti-harmonic in Bn — {| z | < 1}.

1* Introduction* If / is a continuous function on dBn = {z —
(A, , zn): I z I = 1}, then / can be extended to a harmonic function
F in Bn = {z: \z\ < 1}. That is, the Dirichlet problem is uniquely
solvable. If we wish F, in addition, to be analytic, pluriharmonic,
or ftr-harmonic, the extension is not always possible, and we must
impose some restrictions on the function / . It is well-known that
necessary and sufficient conditions for / to have an analytic extension
are that / satisfy the tangential Cauchy-Riemann equation. In this
paper we show that there are other systems that replace the tangential
Cauchy-Riemann equations as consistency conditions. We also give the
consistency conditions for a function to extend to be pluriharmonic or
π-harmonic.

2* Pluriharmonic extension* Some important differential opera-
tors tangential to dBn, n ^ 2 are:

/ i \ .-v? -p O -p O

ps ps

where we take 1 <g i, j ^ n and ζ = (ζl9 , ζn)e dBn. A simple
computation shows that the real and imaginary parts of these operators
are tangent to dBn. These operators extend naturally into the interior
of Bn. The following lemma shows the interplay between the action
of the Sfa on dBn and in Bn.

LEMMA 1. Let £? he one of the operators (1) or (2), and let
ue C\dBn) be given. If P(x9 ζ) is the Poisson kernel on Bn, we have:

( 3 ) (J^u)*P(z) = JZl(u*P(z))

for ζ G dB%

y z e Bn.

Proof. The operator Sf satisfies the hypotheses of Lemma 2,
and thus the right hand side of (3) is harmonic (the left hand side
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obviously is). Since (3) is valid for | z | = 1, it must hold for all ze Bn.

LEMMA 2. An operator & = f(x, y)d/dy — g(x, y)d/dx preserves
harmonic functions if and only if the pair (/, g) satisfies the Cauchy-
Riemann equations.

fv— —Qx

Proof. It is a straightforward calculation that {&u)xx + (&u)yy = 0
for all harmonic u if and only if fx — gy and — /„ = gx.

COROLLARY 1. If feLι(dBn), and £?f = g in the weak sense,

(i.e., ( f^fφ = - ( gφ for all φ e C°°(dBn), then
JlCI = l JICI=1

Proof. Since the Poisson kernel on Bn is P(ζ, z) = 1 - | z |2/| z - ζ2κ |,
one can calculate that:

ζ, z) = -£?ζP(ζ, z) .

Thus if dS is normalized surface area, we have:

= \
J|ζ| = l

ζ, z)dS = \ g{ζ)P{ζ, z)dS
JlCI=i

DEFINITION. If a and β are multi-indices, then zazβ = Πi=i ̂ "
has type (p, q)iί \a\ = p and | β \ = q. If h(z, z) is a sum of monomials
of type {p, q), then h is of type (p, q).

Observe that if h is of type (p, q)f then S^^h is either zero or of
type (p + 1, q — 1). Similarly, ^ y fc is either of type (p — 1, q + 1)
or zero.

By L we will denote the matrix of operators L = (=S1;).
If ϋΓ = (Krs) and Λf = (Miά) are two matrices of operators, then

KM will denote the tensor product of the two matrices:

KM(u) = K®M{u) = (KrgMi>v>)

LEMMA 3. Let Fe C\Bn) satisfy ΔF = 0. If LF(z) = 0 for all
zeBn, then F is analytic.

Proof. The system LF — 0 is precisely the tangential Cauchy-
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Riemann equations (see [1], [2]). Thus if / is the restriction of F to
dBn, then / has a holomorphic extension to Bn, which must coincide
with F, since F is harmonic.

REMARK. The lemma may also be proved directly without
mention of the tangential Cauchy-Riemann equations.

THEOREM 1. // ueC\dBn), then

(4) LLL(u) = 0

if and only if u extends to a pluriharmonic function U on Bn.

Proof. If u extends to a pluriharmonic U, then we write
U(z, z) — f(z) + g(z) where / and g are analytic. An entry of the
matrix LLLU looks like:

dz3

= L (analytic) = 0 .

To prove the converse, we show that the harmonic extension U
of u is pluriharmonic. Since £7 is harmonic, we may write, as before:

,q

U(z, z) = Σ Fp

By Lemma 1, we have:

LLL(Σ FPJ = Σ LLLFp,q = 0 .

Recall that LLL takes a polynomial of type (p, q) into one of type
(p + 1, q — 1) or zero. Thus LLLFp,q = 0 for each pf q ^ 0.

By Lemma 3, the entries of the matrix LLFp,q are analytic. But
on the other hand, they must be of type (p, q) or zero. Thus if q ^ 1,
we conclude that LLFp,q = 0.

Again by Lemma 3, the entries of LFP)Q are analytic if q ^ 1.
But since they will be type (p — 1, q + 1) or zero, we conclude that
LFp>q — 0 for q ^ 1. This means that Fp,q = 0 is analytic if q ^ 1.
Thus if p, q ^ 1, then Fp,q = 0.

Thus we may write

U(Z, Z) =

Hence U is pluriharmonic.
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REMARK. It was observed by L. Nirenberg that there is no second
order operator 3f which gives the consistency conditions for pluri-
harmonic functions δJ3\

COROLLARY 2. Let m^>2 and ue C°°(dBn) be given. Then u can
be extended to U pluriharmonic in Bn if and only if (5) or (6) holds:

(5) L\UU)mLu = 0

( 6 ) (L2L2)mLu = 0 .

Proof, If u can be extended, then the above equations are clearly
valid.

We prove the other implication by induction. Line (5) holds for
m — 0 (Theorem 1). We assume that (6) is valid for m = k and show
that (5) also holds for m = k. The other part, showing that (5) is
valid for m = k implies (6) valid for m = k + 1 is identical. If U is
the harmonic extension of uf Lemma 1 applied to (5) yields:

DL\UU)k-ιL{LLU) = 0 .

Conjugating, we get:

(L2L2)kL(LLU) = 0 .

Thus the entries of LLU are pluriharmonic. Thus if we write
U = Σ Fp,q> w e ^ v e LLFp,q = 0 for p9 q :> 1, since LL preserves
type. Thus LFp,q is analytic for p, q7>l. Hence Fp,q = 0 for p9 q :> 1.
Hence Fp,q = 0 for p, q ^ 1.

3* Cauchy-Riemann equations*

LEMMA 4. If fe C2(Bn), then j ^ / = 0 if and only if

Proof. If L/ = 0, then clearly Sfa^f = 0. To prove the con-
verse, we fix all variables except z{ and zό and restrict / to

Let dSr be the normalized surface area, and integrate by parts:

[
cr

Thus JS^ / = 0 on Cr. Since this must hold for all r, ]piSf = 0.
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REMARK. If Ω = {p = 0} is a smooth domain, grad p Φ 0 on 3ί2,
then we set =S^_= Pzββz3) — p^(d\dzl). The proof above shows that
for fe C2(dΩ), jg^ / - 0 on 3Ω if and only if J ^ JS^ / - 0 on dΩ.

THEOREM 2. Le£ m ^ 1 απd % e Cm{dBn) be given. Then u can
be extended to an analytic function on Bn if and only if:

( 7 ) ^ ( ^ f ^ ' M Q - 0 (m odd)

(8) ^ ( ^ i ^ ĵ MC) = 0 (m even)

for all ζeδBn and 1 ^ ί, j ^ n.

Proof. In Lemma 4 we have shown that Range {^iά) (Ί Null ( i ^ ) = 0.
Similarly, Range ( j % ) Π Null ( ^ , ) = 0. Thus equations (7) and (8)
will hold if and only if J^jU = 0. Since Lu is the tangential Cauchy-
Riemann system, (7) and (8) will hold if and only if u can be extended
to an analytic function.

REMARK. The above theorem remains valid for f e C°°(dΩ), as in
the remark following Lemma 4.

4* iV-Harrαonic functions*

DEFINITION. Let Γ be the set of subsets of {1, 2, •••, n). For
7 e Γ, w e s a y t h a t u i s y - r e g u l a r i f du/dzk — 0 w h e n k e y a n d du/dzk = 0
when kg 7. We define a new operator T ~ ( i ^ i ϊ ^ ). For T G Γ , we
define Γ ;(resp. Lr) to be T(resp. L) with the variables zk and Sfc

interchanged whenever k <£ y.
The function zlf for instance, is 7-regular for many 7, but z^ is

not 7-regular for any 7. Note that every 7-regular function is
^-harmonic.

LEMMA 5. If f is harmonic on B%, then Trf — 0 if and only if
f is 7-regular.

Proof. We have established in Lemma 4 that Tg = 0 if and only

if g is analytic. Consider the real linear map 7: Cn —> Cn

?i, 2/1, , a?w, 2/n) = (Ci, , ζ«)

w h e r e

Cfe = % + ii/fc if ft e 7

Cλ = a?* - iyk if ft ^ 7 .
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Any 7-regular function / can be obtained from some analytic g
by composition:

/ = 9°y

Hence Trf — Tg = 0 if and only if / is 7-regular.

THEOREM 3. A function ue C°°(dBn) can be extended to a function
U which is n-harmonic in Bn if and only if:

(9) (Π
γeΓ

(Since the Tr's do not commute, the product (9) is taken in an arbitrary
but fixed order.)

Proof. We shall show that the harmonic extension U of u is
^-harmonic if and only if (9) holds. The function U is w-harmonic if
and only if we may write:

U = Σ wr where ur is 7-regular .
γeΓ

The "if" is clear since each ur is ^-harmonic. The "only if" follows
because we may use the Cauchy integral formula in zι to write:

u(z, z) = f(zu w) + g(zif w) w = (z2, z2, , z%, zn)

where / and g are ^-harmonic. If we continue and split each part in
a similar fashion we obtain the desired representation.

Now we show that if / is 7-regular, then so is Tf. We compute:

In expression (10), / will be multiplied by the variable ξ only if fξ Φ 0.
Thus if / is 7-regular so is Tf.

If we perform the analogous computation for T°, we can use the
same argument to show that if / is 7-regular then so is T°f.

Now if U is ^-harmonic, then U = Σ σ e r ^ σ ; and

Π Tru° = UTrTσJl Truσ

rer rι r2

= 0 .

This is because Π Tru° is σ-regular and will be annihilated by T°.
To prove the converse we establish the following result:

LEMMA 6. Let v, vίf , vk be harmonic. If vj is jrregular and

(11) Trv = v, + + vh ,
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then we may write v = u + ux + + uk where u3 is yrregular, and
u is y-regular.

Proof of lemma. Let u0 = uγ + + uk be the sum of all mono-
mials of v that are Ti-regular for some j = 1, 2, , k. Thus u0 is
harmonic and so is v — uQ. We now claim that Tr(v — uQ) is zero.

By the construction of u0, every monomial zazβ of v — u0 is not
7rregu\a,r for any j — 1, 2, , k. From an inspection of (10), one can
see that if Tr(v — u0) is nonzero, then it will be a sum of monomials,
none of which is yrregular for any j = 1, 2, , fc.

On the other hand, from (11) and the construction of uQ9 it is clear
that Tr(v) — Tru0 is a sum of Ty-regular functions. Hence Tr(v — u0)
must vanish. By Lemma 5, we conclude that v — u0 — u is 7-regular,
concluding the proof of this lemma.

Proof of theorem. We iterate Lemma 6 several times and find
that if (8) is valid, then

U — ̂  ur , as desired .
γeΓ

COROLLARY 3. A function u e C°°(dBn) can be extended to a function
U = Σ*=i Ms* where uά is yrregular if and only if

(fl = 0 .

Proof. This follows easily from Lemma 6.

REMARK. All of the above results remain valid if the boundary
differential operators are interpreted in the weak sense of Corollary 1.

I wish to thank Professor B. A. Taylor for his generous help and
encouragement.
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