THE DIRICHLET PROBLEM FOR SOME OVERDETER-MINED SYSTEMS ON THE UNIT BALL IN C^{u}

ERIC BEDFORD

A characterization is given of those functions on $\partial B^n = \{|z| = 1\}$ which can be extended to be analytic, pluriharmonic, or *n*-harmonic in $B^n = \{|z| < 1\}$.

1. Introduction. If f is a continuous function on $\partial B^n = \{z = (z_1, \dots, z_n) : |z| = 1\}$, then f can be extended to a harmonic function F in $B^n = \{z : |z| < 1\}$. That is, the Dirichlet problem is uniquely solvable. If we wish F, in addition, to be analytic, pluriharmonic, or *n*-harmonic, the extension is not always possible, and we must impose some restrictions on the function f. It is well-known that necessary and sufficient conditions for f to have an analytic extension are that f satisfy the tangential Cauchy-Riemann equation. In this paper we show that there are other systems that replace the tangential Cauchy-Riemann equations for a function to extend to be pluriharmonic or *n*-harmonic.

2. Pluriharmonic extension. Some important differential operators tangential to ∂B^n , $n \ge 2$ are:

(1)
$$\mathscr{L}_{ij} = \overline{\zeta}_i \frac{\partial}{\partial \zeta_j} - \overline{\zeta}_j \frac{\partial}{\partial \zeta_i}$$

(2)
$$\overline{\mathscr{D}}_{ij} = \zeta_i \frac{\partial}{\partial \overline{\zeta}_j} - \zeta_j \frac{\partial}{\partial \overline{\zeta}_i}$$

where we take $1 \leq i, j \leq n$ and $\zeta = (\zeta_1, \dots, \zeta_n) \in \partial B^n$. A simple computation shows that the real and imaginary parts of these operators are tangent to ∂B^n . These operators extend naturally into the interior of B^n . The following lemma shows the interplay between the action of the \mathcal{L}_{ij} on ∂B^n and in B^n .

LEMMA 1. Let \mathscr{L} be one of the operators (1) or (2), and let $u \in C^1(\partial B^n)$ be given. If $P(x, \zeta)$ is the Poisson kernel on B^n , we have:

$$(3) \qquad \qquad (\mathscr{L}_{\zeta} u) * P(z) = \mathscr{L}_{z}(u * P(z))$$

for $\zeta \in \partial B^n$, $z \in B^n$.

Proof. The operator \mathscr{L} satisfies the hypotheses of Lemma 2, and thus the right hand side of (3) is harmonic (the left hand side

ERIC BEDFORD

obviously is). Since (3) is valid for |z| = 1, it must hold for all $z \in B^n$.

LEMMA 2. An operator $\mathscr{D} = f(x, y)\partial/\partial y - g(x, y)\partial/\partial x$ preserves harmonic functions if and only if the pair (f, g) satisfies the Cauchy-Riemann equations,

$$f_x = g_y$$
$$f_y = -g_x \; .$$

Proof. It is a straightforward calculation that $(\mathcal{D}u)_{xx} + (\mathcal{D}u)_{yy} = 0$ for all harmonic u if and only if $f_x = g_y$ and $-f_y = g_x$.

COROLLARY 1. If
$$f \in L^1(\partial B^n)$$
, and $\mathscr{L}f = g$ in the weak sense,
(i.e., $\int_{|\zeta|=1} f \mathscr{L} \varphi = -\int_{|\zeta|=1} g \varphi$ for all $\varphi \in C^{\infty}(\partial B^n)$, then
 $g * P(z) = \mathscr{L}_z(f * P(z))$.

Proof. Since the Poisson kernel on B^n is $P(\zeta, z) = 1 - |z|^2/|z - \zeta^{2n}|$, one can calculate that:

$$\mathscr{L}_z P(\zeta, z) = -\mathscr{L}_\zeta P(\zeta, z)$$
.

Thus if dS is normalized surface area, we have:

$$\begin{split} \mathscr{L}_z(f*P(z)) &= \int_{|\zeta|=1} f(\zeta) \mathscr{L}_z P(\zeta,\,z) dS \ &= -\int_{|\zeta|=1} f(\zeta) \mathscr{L}_\zeta P(\zeta,\,z) dS = \int_{|\zeta|=1} g(\zeta) P(\zeta,\,z) dS \ &= g*P(z) \;. \end{split}$$

DEFINITION. If α and β are multi-indices, then $z^{\alpha}\overline{z}^{\beta} = \prod_{j=1}^{n} z_{j}^{\alpha} \overline{z}_{j}^{\beta}$ has type (p, q) if $|\alpha| = p$ and $|\beta| = q$. If $h(z, \overline{z})$ is a sum of monomials of type (p, q), then h is of type (p, q).

Observe that if h is of type (p, q), then $\overline{\mathscr{G}}_{ij}h$ is either zero or of type (p+1, q-1). Similarly, $\mathscr{G}_{ij}h$ is either of type (p-1, q+1) or zero.

By L we will denote the matrix of operators $L = (\mathcal{L}_{ij})$.

If $K = (K_{rs})$ and $M = (M_{ij})$ are two matrices of operators, then KM will denote the tensor product of the two matrices:

$$KM(u) = K \otimes M(u) = (K_{rs}M_{ij}u)$$
.

LEMMA 3. Let $F \in C^1(\overline{B}^n)$ satisfy $\Delta F = 0$. If $\overline{L}F(z) = 0$ for all $z \in B^n$, then F is analytic.

Proof. The system $\overline{L}F = 0$ is precisely the tangential Cauchy-

Riemann equations (see [1], [2]). Thus if f is the restriction of F to ∂B^n , then f has a holomorphic extension to B^n , which must coincide with F, since F is harmonic.

REMARK. The lemma may also be proved directly without mention of the tangential Cauchy-Riemann equations.

THEOREM 1. If $u \in C^{3}(\partial B^{n})$, then

$$(4) \bar{L}\bar{L}L(u) = 0$$

if and only if u extends to a pluriharmonic function U on B^n .

Proof. If u extends to a pluriharmonic U, then we write $U(z, \overline{z}) = f(z) + g(\overline{z})$ where f and g are analytic. An entry of the matrix \overline{LLLU} looks like:

$$ar{L}(\overline{\mathscr{Q}}_{ij}\mathscr{Q}_{kl}U) = ar{L}\overline{\mathscr{Q}}_{ij}(ar{z}_k f_{z_l} - ar{z}_l f_{z_k}) \ = ar{L}\Big(z_i\Big(rac{\partialar{z}_k}{\partialar{z}_j}\Big)f_{z_l} - z_i\Big(rac{\partialar{z}_l}{\partialar{z}_i}\Big)f_{z_k} \ - z_j\Big(rac{\partialar{z}_k}{\partialar{z}_i}\Big)f_{z_l} + z_j\Big(rac{\partialar{z}_l}{\partialar{z}_i}\Big)f_{z_k}\Big) \ = ar{L} ext{ (analytic)} = 0 \;.$$

To prove the converse, we show that the harmonic extension U of u is pluriharmonic. Since U is harmonic, we may write, as before:

$$U(z, \overline{z}) = \sum_{p,q \ge 0} F_{p,q}$$
.

By Lemma 1, we have:

$$ar{L}ar{L}L(\sum F_{p,q}) = \sum\limits_{p,q \ge 0} ar{L}ar{L}LF_{p,q} = 0$$
 .

Recall that $\overline{L}\overline{L}L$ takes a polynomial of type (p, q) into one of type (p + 1, q - 1) or zero. Thus $\overline{L}\overline{L}LF_{p,q} = 0$ for each $p, q \ge 0$.

By Lemma 3, the entries of the matrix $\overline{L}LF_{p,q}$ are analytic. But on the other hand, they must be of type (p, q) or zero. Thus if $q \ge 1$, we conclude that $\overline{L}LF_{p,q} = 0$.

Again by Lemma 3, the entries of $LF_{p,q}$ are analytic if $q \ge 1$. But since they will be type (p-1, q+1) or zero, we conclude that $LF_{p,q} = 0$ for $q \ge 1$. This means that $\overline{F}_{p,q} = 0$ is analytic if $q \ge 1$. Thus if $p, q \ge 1$, then $F_{p,q} = 0$.

Thus we may write

$$U\!\left(z,\,ar{z}
ight) = \sum\limits_{j \geqq 1} \left({F}_{j,0} \,+\, {F}_{0,j}
ight) \,+\, {F}_{0,0}\;.$$

Hence U is pluriharmonic.

ERIC BEDFORD

REMARK. It was observed by L. Nirenberg that there is no second order operator \mathscr{D} which gives the consistency conditions for pluri-harmonic functions ∂B^n .

COROLLARY 2. Let $m \ge 2$ and $u \in C^{\infty}(\partial B^n)$ be given. Then u can be extended to U pluriharmonic in B^n if and only if (5) or (6) holds:

$$(5) \qquad \qquad \overline{L}^2 (L^2 \overline{L}^2)^m L u = 0$$

$$(6) (L^2 \bar{L}^2)^m L u = 0.$$

Proof. If u can be extended, then the above equations are clearly valid.

We prove the other implication by induction. Line (5) holds for m = 0 (Theorem 1). We assume that (6) is valid for m = k and show that (5) also holds for m = k. The other part, showing that (5) is valid for m = k implies (6) valid for m = k + 1 is identical. If U is the harmonic extension of u, Lemma 1 applied to (5) yields:

$$ar{L}^2 L^2 (ar{L}^2 L^2)^{k-1} ar{L} (ar{L} L \, U) = 0 \; .$$

Conjugating, we get:

$$(L^2 \bar{L}^2)^k L(L \bar{L} \bar{U}) = 0$$
.

Thus the entries of $L\bar{L}\bar{U}$ are pluriharmonic. Thus if we write $U = \sum F_{p,q}$, we have $\bar{L}LF_{p,q} = 0$ for $p, q \ge 1$, since $\bar{L}L$ preserves type. Thus $LF_{p,q}$ is analytic for $p, q \ge 1$. Hence $F_{p,q} = 0$ for $p, q \ge 1$. Hence $F_{p,q} = 0$ for $p, q \ge 1$.

3. Cauchy-Riemann equations.

LEMMA 4. If
$$f \in C^2(\overline{B}^n)$$
, then $\overline{\mathscr{L}}_{ij}f = 0$ if and only if $\mathscr{L}_{ij}\overline{\mathscr{L}}_{ij}f = 0$.

Proof. If $\overline{L}f = 0$, then clearly $\mathscr{L}_{ij}\overline{\mathscr{L}}_{ij}f = 0$. To prove the converse, we fix all variables except z_i and z_j and restrict f to

$$C_r = \{ \mid z_i \mid^2 + \mid z_j \mid^2 = r^2 \}$$
 .

Let dS_r be the normalized surface area, and integrate by parts:

$$\int_{\mathcal{C}_r} \overline{\mathscr{Q}}_{ij} f(\overline{\mathscr{Q}}_{ij} f) dS_r = - \int_{\mathcal{C}_r} f(\overline{\mathscr{Q}}_{ij} \overline{\mathscr{Q}}_{ij} f) = 0 .$$

Thus $\overline{\mathscr{D}}_{ij}f = 0$ on C_r . Since this must hold for all $r, \overline{\mathscr{D}}_{ij}f = 0$.

22

REMARK. If $\Omega = \{\rho = 0\}$ is a smooth domain, grad $\rho \neq 0$ on $\partial\Omega$, then we set $\overline{\mathscr{L}}_{ij} = \rho_{z_i}(\partial/\partial \overline{z}_j) - \rho_{z_j}(\partial/\partial \overline{z}_i)$. The proof above shows that for $f \in C^2(\partial\Omega)$, $\overline{\mathscr{L}}_{ij}f = 0$ on $\partial\Omega$ if and only if $\mathscr{L}_{ij}\overline{\mathscr{L}}_{ij}f = 0$ on $\partial\Omega$.

THEOREM 2. Let $m \ge 1$ and $u \in C^{m}(\partial B^{n})$ be given. Then u can be extended to an analytic function on B^{n} if and only if:

(7)
$$\overline{\mathcal{L}}_{ij}(\mathcal{L}_{ij}\overline{\mathcal{L}}_{ij})^{(m-1)/2}u(\zeta) = 0 \qquad (m \text{ odd})$$

(8)
$$\mathscr{L}(\mathscr{L}_{ij}\overline{\mathscr{L}}_{ij})^{m/2}u(\zeta) = 0$$
 (*m* even)

for all $\zeta \in \partial B^n$ and $1 \leq i, j \leq n$.

Proof. In Lemma 4 we have shown that Range $(\mathscr{L}_{ij}) \cap \text{Null}(\overline{\mathscr{L}}_{ij}) = 0$. Similarly, Range $(\overline{\mathscr{L}}_{ij}) \cap \text{Null}(\mathscr{L}_{ij}) = 0$. Thus equations (7) and (8) will hold if and only if $\overline{\mathscr{L}}_{ij}u = 0$. Since $\overline{L}u$ is the tangential Cauchy-Riemann system, (7) and (8) will hold if and only if u can be extended to an analytic function.

REMARK. The above theorem remains valid for $f \in C^{\infty}(\partial \Omega)$, as in the remark following Lemma 4.

4. N-Harmonic functions.

DEFINITION. Let Γ be the set of subsets of $\{1, 2, \dots, n\}$. For $\gamma \in \Gamma$, we say that u is γ -regular if $\partial u/\partial \bar{z}_k = 0$ when $k \in \gamma$ and $\partial u/\partial z_k = 0$ when $k \notin \gamma$. We define a new operator $T = (\mathscr{L}_{ij} \overline{\mathscr{L}}_{ij})$. For $\gamma \in \Gamma$, we define $T^{\gamma}(\text{resp. } L^{\gamma})$ to be T(resp. L) with the variables z_k and \bar{z}_k interchanged whenever $k \notin \gamma$.

The function z_1 , for instance, is γ -regular for many γ , but $z_1\overline{z}_1$ is not γ -regular for any γ . Note that every γ -regular function is *n*-harmonic.

LEMMA 5. If f is harmonic on B^n , then $T^{\gamma}f = 0$ if and only if f is γ -regular.

Proof. We have established in Lemma 4 that Tg = 0 if and only if g is analytic. Consider the real linear map $\gamma: \mathbb{C}^n \to \mathbb{C}^n$

$$\gamma(x_1, y_1, \cdots, x_n, y_n) = (\zeta_1, \cdots, \zeta_n)$$

where

Any γ -regular function f can be obtained from some analytic g by composition:

$$f = g \circ \gamma$$
.

Hence $T^{\gamma}f = Tg = 0$ if and only if f is γ -regular.

THEOREM 3. A function $u \in C^{\infty}(\partial B^n)$ can be extended to a function U which is n-harmonic in B^n if and only if:

$$(9) \qquad \qquad (\prod_{\tau \in \Gamma} T^{\tau})u = 0 .$$

(Since the T^{γ} 's do not commute, the product (9) is taken in an arbitrary but fixed order.)

Proof. We shall show that the harmonic extension U of u is *n*-harmonic if and only if (9) holds. The function U is *n*-harmonic if and only if we may write:

$$U = \sum\limits_{ au \in arGamma} u^{ au} \, ext{ where } \, u^{ au} \, ext{ is } \, \gamma ext{-regular }.$$

The "if" is clear since each u^r is *n*-harmonic. The "only if" follows because we may use the Cauchy integral formula in z_1 to write:

$$u(z, \overline{z}) = f(z_1, w) + g(\overline{z}_1, w) \quad w = (z_2, \overline{z}_2, \cdots, z_n, \overline{z}_n)$$

where f and g are *n*-harmonic. If we continue and split each part in a similar fashion we obtain the desired representation.

Now we show that if f is γ -regular, then so is Tf. We compute:

(10)
$$\begin{aligned} \mathscr{L}_{ij}\mathscr{L}_{ij}f &= z_i \overline{z}_i f_{z_j \overline{z}_j} - z_i \overline{z}_j f_{z_i \overline{z}_j} \\ &- z_j \overline{z}_i f_{z_j \overline{z}_i} + z_j \overline{z}_j f_{z_i \overline{z}_i} - \overline{z}_j f_{\overline{z}_j} - \overline{z}_i f_{\overline{z}_j} \end{aligned}$$

In expression (10), f will be multiplied by the variable ξ only if $f_{\xi} \neq 0$. Thus if f is γ -regular so is Tf.

If we perform the analogous computation for T^{σ} , we can use the same argument to show that if f is γ -regular then so is $T^{\sigma}f$.

Now if U is *n*-harmonic, then $U = \sum_{\sigma \in \Gamma} u^{\sigma}$; and

$$\prod_{\tau \in T} T^{\tau} u^{\sigma} = \prod_{T_1} T^{\tau} T^{\sigma} \prod_{T_2} T^{\tau} u^{\sigma}$$
$$= 0.$$

This is because $\prod T^{\gamma}u^{\sigma}$ is σ -regular and will be annihilated by T^{σ} .

To prove the converse we establish the following result:

LEMMA 6. Let v_1, v_1, \dots, v_k be harmonic. If v_j is γ_j -regular and

(11)
$$T^{\gamma}v = v_1 + \cdots + v_k,$$

then we may write $v = u + u_1 + \cdots + u_k$ where u_j is γ_j -regular, and u is γ -regular.

Proof of lemma. Let $u_0 = u_1 + \cdots + u_k$ be the sum of all monomials of v that are γ_j -regular for some $j = 1, 2, \cdots, k$. Thus u_0 is harmonic and so is $v - u_0$. We now claim that $T^{\gamma}(v - u_0)$ is zero.

By the construction of u_0 , every monomial $z^{\alpha}\overline{z}^{\beta}$ of $v - u_0$ is not γ_j -regular for any $j = 1, 2, \dots, k$. From an inspection of (10), one can see that if $T^{\gamma}(v - u_0)$ is nonzero, then it will be a sum of monomials, none of which is γ_j -regular for any $j = 1, 2, \dots, k$.

On the other hand, from (11) and the construction of u_0 , it is clear that $T^{\gamma}(v) - T^{\gamma}u_0$ is a sum of γ_j -regular functions. Hence $T^{\gamma}(v - u_0)$ must vanish. By Lemma 5, we conclude that $v - u_0 = u$ is γ -regular, concluding the proof of this lemma.

Proof of theorem. We iterate Lemma 6 several times and find that if (8) is valid, then

$$U = \sum_{\substack{\gamma \in \Gamma}} u^{\gamma}$$
, as desired.

COROLLARY 3. A function $u \in C^{\infty}(\partial B^n)$ can be extended to a function $U = \sum_{j=1}^{k} u_j$, where u_j is γ_j -regular if and only if

$$\left(\prod_{j=1}^k T^{\gamma_j}\right) u = 0$$
.

Proof. This follows easily from Lemma 6.

REMARK. All of the above results remain valid if the boundary differential operators are interpreted in the weak sense of Corollary 1.

I wish to thank Professor B. A. Taylor for his generous help and encouragement.

References

1. L. Hörmander, An Introduction to Complex Analysis in Several Variables, 1966.

Received October 4, 1972.

UNIVERSITY OF MICHIGAN

^{2.} B. Weinstock, Continuous boundary values of analytic functions of several complex variables, Proc. Amer. Math. Soc., **21** (1969), 463-466.

^{3.} _____, An approximation theorem for $\overline{\partial}$ -closed forms of type (n, n-1), Proc. Amer. Math. Soc., **26** (1970), 625-628.