ON A SPLITTING FIELD OF REPRESENTATIONS OF A FINITE GROUP

Toshiniko Yamada

Abstract

The theorem of \mathbf{P}. Fong about a splitting field of representations of a finite group G will be improved to the effect that the order of G mentioned in it will be replaced by the exponent of G. The proof depends on the Brauer-Witt theorem and properties of cyclotomic algebras.

Let Q denote the rational field. For a positive integer n, ζ_{n} is a primitive nth root of unity. Let χ be an irreducible character of a finite group G (an irreducible character means an absolutely irreducible one). Let K be a field of characteristic 0 . Then $m_{K}(\chi)$ denotes the Schur index of χ over K. The simple component of the group algebra $K[G]$ corresponding to χ is denoted by $A(\chi, K)$. Its index is exactly $m_{K}(\chi)$. If L / K is normal, $\mathscr{G}(L / K)$ is the Galois group of L over K.

In this paper we will prove the following:

Theorem. Let G be a finite group of exponent $s=l^{a} n$, where l is a rational prime and $(l, n)=1$. Let $k=Q\left(\zeta_{n}\right)$ if l is odd, let $k=Q\left(\zeta_{n}, \zeta_{4}\right)$ if $l=2$. Then, $m_{k}(\chi)=1$ for every irreducible character χ of G.

Remark. In Fong [2, Theorem 1], the above s denoted the order of G (instead of the exponent of G).

First we review

Brauer-Witt Theorem. Let χ be an irreducible character of a finite group G of exponent s. Let q be a prime number. Let K be a field of characteristic 0 with $K(\chi)=K$. Let L be the subfield of $K\left(\zeta_{s}\right)$ over K such that $\left[K\left(\zeta_{s}\right): L\right]$ is a power of q and $[L: K] \not \equiv 0$ $(\bmod q)$. Then there is a subgroup F of G and an irreducible character ξ of F with the following properties: (1) there is a normal subgroup N of F and a linear character ψ of N such that $\xi=\psi^{F}$ and $L(\xi)=L$, (2) $F / N \cong \mathscr{G}(L(\psi) / L)$, (3) $m_{L}(\xi)$ is equal to the q-part of $m_{R}(\chi)$, (4) for every $f \in F$ there is a $\tau(f) \in \mathscr{G}(L(\psi) / L)$ such that $\psi\left(f n f^{-1}\right)=\tau(f)(\psi(n))$ for all $n \in N$, and (5) $A(\xi, L)$ is isomorphic to the crossed product $(\beta, L(\psi) / L)$ where, if S is a complete set of coset representatives of N in $F(1 \in S)$ with $f f^{\prime}=n\left(f, f^{\prime}\right) f^{\prime \prime}$ for $f, f^{\prime}, f^{\prime \prime} \in S$, $n\left(f, f^{\prime}\right) \in N$, then $\beta\left(\tau(f), \tau\left(f^{\prime}\right)\right)=\psi\left(n\left(f, f^{\prime}\right)\right)$.

Proof. See, for instance, [1] and [4].
Remark. The above crossed product is called a cyclotomic algebra (cf. [3]).

Corollary. Let p be a prime number. Denote by Q_{p} the rational p-adic field. Suppose that $p \nmid s$ if $p \neq 2$, and that $4 \nmid s$ if $p=2, s$ being the exponent of G. Then $m_{Q_{p}}(\chi)=1$ for every irreducible character χ of G.

Proof. Set $K=Q_{p}(\chi)$. Then $m_{K}(\chi)=m_{Q_{p}}(\chi)$. Let q be any prime number. By the Brauer-Witt theorem, the q-part of $m_{k}(\chi)$ equals the index of some cyclotomic algebra of the form $(\beta, L(\psi) / L)$, where $Q_{p} \subset K \subset L \subset L(\psi) \subset Q_{p}\left(\zeta_{s}\right)$. It follows from the assumption that the extension $Q_{p}\left(\zeta_{s}\right) / Q_{p}$ is unramified, a fortiori, $L(\psi) / L$ is unramified. Because the values of the factor set β are roots of unity, it follows that $(\beta, L(\psi) / L) \sim L$. As q is an arbitrary prime, we conclude that $m_{K}(\chi)=1$.

For the remainder of the paper we will use the same notation as in the theorem. Recall that $m_{k}(\chi)$ is the index of $A(\chi, k(\chi))$. Hence it suffices to prove $A(\chi, k(\chi)) \boldsymbol{\otimes}_{k(x)} k(\chi)_{p} \sim k(\chi)_{p}$ for every prime \mathfrak{p} of $k(\chi)$, where $k(\chi)_{p}$ is the completion of $k(\chi)$ with respect to \mathfrak{p}. For simplicity, set $K=k(\chi)_{\mathrm{p}}$. Because $A(\chi, k(\chi)) \boldsymbol{\otimes}_{k(x)} K$ is K-isomorphic to $A(\chi, K)$, we need to show $A(\chi, K) \sim K$, i.e., $m_{K}(\chi)=1$. Note that $k(\chi)$ is a cyclotomic extension of the rational field Q. If M is a cyclotomic extension of Q containing $k(\chi)$, then M^{y} represents the isomorphy type of the completion $M_{\mathfrak{F}}, \mathfrak{P}$ being any prime of M dividing \mathfrak{p}.
(i) Suppose that \mathfrak{p} is an infinite prime. Denote by R (resp. C) the field of real numbers (resp. complex numbers). If $k(\chi)$ is not real, then \mathfrak{p} is a complex prime, and so $m_{K}(\chi)=1$. Suppose that $k(\chi)$ is real. Then $K=k(\chi)_{p}=R, l \neq 2$, and $n=1$ or 2 , i.e., $k=Q\left(\zeta_{n}\right)=$ Q and χ is real valued. Therefore, 4 does not divide s, the exponent of G. If $s=1$ or 2 , then G is abelian, and so $m_{k}(\chi)=1$. Hence we assume that $s>2$, so that the field $Q\left(\zeta_{s}\right)$ is imaginary and $R=K \subset$ $Q\left(\zeta_{s}\right)^{p}=C$. Note that $m_{K}(\chi)=1$ or 2. By the Brauer-Witt theorem there are subgroups F and N of G and a linear character ψ of N such that $F \triangleright N$ and $R\left(\psi^{F}\right)=R(\chi)=R$ and that $m_{R}(\chi)$ is equal to the index of a cyclotomic algebra of the form $(\beta, R(\psi) / R)$. Recall that $\mathscr{G}(R(\psi) / R) \cong F / N$. If $R(\psi)=R$, then $(\beta, R(\psi) / R) \sim R$. If $R(\psi)=$ C, then $[F: N]=2$. Set $F=N \cup N f$. We have

$$
(\beta, R(\psi) / R)=\left(\psi\left(f^{2}\right), C / R, \rho\right), \quad(\rho(\sqrt{-1})=-\sqrt{-1})
$$

where the right side denotes a cyclic algebra over R and $\psi\left(f^{2}\right)$ is a root of unity contained in R so that $\psi\left(f^{2}\right)= \pm 1$. If $\psi\left(f^{2}\right)=-1$, then the order of f would be divisible by 4 , which is a contradiction. Consequently, $\psi\left(f^{2}\right)=1$ and so $\left(\psi\left(f^{2}\right), C / R, \rho\right) \sim R$, yielding that $m_{K}(\chi)=1$.
(ii) Suppose that \mathfrak{p} does not divide $s=l^{a} n$. Then the corollary implies that $m_{K}(\chi)=1$.
(iii) Suppose that $\mathfrak{p} \mid l$ and $l=2$. Then $\zeta_{4} \in k$, and so $\zeta_{4} \in K$. It follows from [3, Satz 12] that $m_{K}(\chi)=1$.
(iv) Suppose that $\mathfrak{p} \mid l$ and $l \neq 2$. Let q be a prime number. Let L be the subfield of $M=Q\left(\zeta_{l a}, \zeta_{n}\right)^{p}$ over $K=k(\chi)_{p}=Q\left(\zeta_{n}, \chi\right)_{p}$ such that $q \nmid[L: K]$ and $[M: L]$ is a power of q. By the Brauer-Witt theorem there exist subgroups F and N of G and a linear character ψ of N such that $G \supset F \triangleright N, \mathscr{G}(L(\psi) / L) \cong F / N,[F: N]$ is a power of q, and the q-part of $m_{K}(\chi)$ is equal to the index of a cyclotomic algebra of the form $(\beta, L(\psi) / L)$. Since $l \neq 2$ and $\mathscr{G}(M / K)$ is canonically isomorphic to a subgroup of $\mathscr{G}\left(Q\left(\zeta_{l a}\right) / Q\right)$, it follows that M / K is cyclic, and so $L(\psi) / L$ is cyclic. Let $q^{c}=[F: N]=[L(\psi): L],\langle\sigma\rangle=\mathscr{G}(L(\psi) / L)$ and $F=\bigcup_{i=0}^{g_{0}^{c-1}} N f^{i}$. Then we have

$$
(\beta, L(\psi) / L)=\left(\psi\left(f^{q^{c}}\right), L(\psi) / L, \sigma\right), \quad \psi\left(f^{q^{c}}\right) \in L .
$$

As ψ is a linear character, $\psi\left(f^{q^{c}}\right)$ is a primitive t th root of unity for some integer t. Let $t=q^{d} h,(q, h)=1$. Then we can write $\psi\left(f^{q^{c}}\right)=$ $\zeta_{q^{d}} \zeta_{h}$, which implies that the order of f is divisible by q^{c+d}. Consequently, q^{c+d} divides n, and so a primitive q^{c+d} th root of unity $\zeta_{q}{ }^{c+d}$ belongs to L. We may assume that $\zeta_{q^{c+d}}^{c}=\zeta_{q} d$. Let r be an integer satisfying $r q^{c} \equiv 1(\bmod h)$. Since both $\zeta_{q^{c+d}}$ and ζ_{h} belong to L, it follows that

$$
N_{L(\psi) / L}\left(\zeta_{q} c+d \zeta_{h}^{r}\right)=\zeta_{q}^{q^{c} c+d} \zeta_{h}^{r q^{c}}=\zeta_{q} \zeta_{h},
$$

which yields that $\left(\psi\left(f^{q^{c}}\right), L(\psi) / L, \sigma\right) \sim L$. Therefore, the q-part of $m_{K}(\chi)$ is equal to 1 . As q is an arbitrary prime, it follows that $m_{K}(\chi)=1$.
(v) Suppose that $\mathfrak{p} \mid n$ and $\mathfrak{p} \nmid 2$. Then k contains a primitive p th root of unity ζ_{p}, p being the rational prime divided by \mathfrak{p}. It follows from [3, Satz 12] that $m_{K}(\chi)=1$.
(vi) Suppose that $\mathfrak{p} \mid n$ and $\mathfrak{p} \mid 2$. Then $k=Q\left(\zeta_{n}\right)$. If $4 \mid n$ then $\zeta_{4} \in K$ and so $m_{K}(\chi)=1$. If $4 \nmid n$, then $4 \nmid s$. It follows from the corollary that $m_{K}(\chi)=1$.

The theorem is completely proved.

References

1. W. Feit, Characters of Finite Groups, Benjamin, New York, 1967.
2. P. Fong, A note on splitting fields of representations of finite groups, Illinois J. Math., 7 (1963), 515-520.
3. E. Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math., 190 (1952), 231-245.
4. T. Yamada, Characterization of the simple components of the group algebras over the p-adic number field, J. Math. Soc. Japan, 23 (1971), 295-310.

Received February 21, 1973. This research was done while the author was a Visiting Associate Professor of Queen's University for 1971/72.

Tokyo Metropolitan University

