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GENERALIZED o--<-UNIPOTENT BISIMPLE
SEMIGROUPS

R. J. WARNE

Let S be a bisimple semigroup and let E(S) be the set
of idempotents of S. If E(S) is an w-chain of rectangular
bands (Z,: nc N, the nonnegative integers) and <, Green’s
equivalence relation, is a left congruence on E(S), we term
S a generalized w-2~unipotent bisimple semigroup. We char-
acterize S in terms of (I, 0), an w-chain of left zero semigroups
(I.: ke N); (J, *) an w-chain of right groups (J,: k € N); a homo-
morphism (%, r) = a,,, of C, the bicyclic semigroup, into End (7,
0), the semigroup of endomorphisms of (I, 0) (iteration); a
homomorphism (%, 7) = B, of C into End (J, *); and an (upper)
anti-homomorphism j — A; of (J, *) into T';, the full transforma-
tion semigroup on I (4; is “almost’’ an endomorphism). In fact,
S=((4, (n, k), 7):1€1,,j€J,, n, k€ N) under the multiplication
(iy (ny k)lj)(uf (’I", S), v)=(i°(u‘4~ja(k,n)») (n+’r_Inin (k’ ?’), k"l's—‘min
(k, 1), 3B o*v) (Theorem 4.1). We then characterize (J, *) as a
semi-direct product of an w-chain of right zero semigroups by
an o-chain of groups. Finally, we specialize Theorem 4.1 to
obtain our previous characterization of w-~-unipotent bisimple
semigroups S(E(S) is an w-chain of right zero semigroups).

We will use the definitions of Clifford and Preston [1] unless other-
wise specified. In particular, .2, &, 57 and o will denote Green’s equi-
valence relations on a semigroup S, i.e., ((a, b)e .<Z if a UaS =10 U bS;
(e, ) e FifaUSa=bUSl; 57 = B NL35T =B F((a, b)e s
if there exists x€ S such that (e, x)e # and (2, b)e &¥). R, will
denote the .#-class containing a€S. A semigroup consisting of a
single &7-class is termed a bisimple semigroup. This bicyclic semigroup
is C = N X N under the multiplication (%, m)(p, ¢) = (#n + » — min (m,
p), m + ¢ — min (m, p)). A semigroup S which is 2 union of a collection
of pairwise disjoint subsemigroups (S,: y€ Y) where Y is a semilattice
and S,S, & S, for all y,te Y is termed a semilattice Y of the semi-
groups (S,:ye Y).

If Y= N with n A m = max (n, m), S is termed an w-chain of the
semigroups (S,:we N). A semigroup is termed regular if a € aSa for
every a€S. A rectangular band is the algebraic direct product of
a left zero semigroup U(x, ye U implies xy = ¢) and a right zero
semigroup. A right group is a semigroup X such that a, b € X implies
there exists a unique € S such that ax =b. If V is a subset of a
semigroup S, E(V) will always denote the set of idempotents of V.

In [4], we defined a generalized &“-unipotent semigroup to be a
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regular semigroup S such that E(S) satisfy the condition: e, f e E(S)
and ef = e imply that gegfe = ge for all ge E(S). Combining [4,
Lemma 1] and a result of Clifford and McLean [2,1, p. 129, Exercise 1],
a regular semigroup S is generalized .%“-unipotent if and only if E(S)
is a semilattice Y of rectangular bands (E,:ye Y) and & is a left
congruence on FE(S). Since any bisimple semigroup containing an
idempotent is regular by a result of Clifford and Miller [1, Theorem
2.11], the reason for the terminology “generalized w-< -unipotent
bisimple semigroup” is clear. We introduced the term <“-unipotent
in [3] to denote a semigroup in which each .&“-class contains precisely
one idempotent. By [3, Proposition 5], a semigroup S is & -unipotent
if and only if S is regular and E(S) is a semilattice Y of right zero
semigroups (K,: y € Y). Hence, the terminology “w-< -unipotent
bisimple semigroup” is also clear.

Let S be a generalized - -unipotent bisimple semigroup. In
§1, we define a congruence ¢ on S such that S/t = C, the bicyclic
semigroup, and give an explicit multiplication for (E(C))t™", the kernel
of t(kert). In §2, we describe S as an “extension” of kert¢ by S/t
(the converse of Theorem 4.1). In §83, we prove the direct part of
Theorem 4.1. In §4, we state Theorem 4.1 and characterize an w-
chain of right groups as a semi-direct product of an w-chain of right
zero semigroups by an w-chain of groups (Theorem 4.3). Combining
Theorem 4.1, Theorem 4.3, and Clifford’s characterization of semilattices
of groups [1; theorem 4.11], we have characterized generalized w-."-
unipotent bisimple semigroups in terms of groups, w-chains of left zero
semigroups, w-chains of right zero semigroups, and ‘homomorphisms’.
In §5, we obtain our characterization of w-<“-unipotent bisimple
semigroups [5, Theorem 7.11] as a corollary of Theorem 4.1.

1. The congruence t. In this section, S will denote a generalized
w-.2 -unipotent bisimple semigroup, i.e., S is a bisimple semigroup such
that E(S) is an w-chain of rectangular bands (E,:ne N) and & is
a left congruence on F(S). Recall S is a regular semigroup. Thus,
for each ac S, there exists y€ S such that ayae = a and yay = y (for
example, if a = axa, let ¥y = wax [1, Lemma 1.14]). The element y is
termed an inverse of a. We will denote the set of all inverses of a
by 7 (a).

Let ¢ = ((z, y) e S*: x2’, yy' € E, and &'z, y'y € E, for some m, ne
N, '€ Z(x), and ' € .~ (y)). We first show that ¢ is a congruence
on S and that S/t = C, the bicyclic semigroup. We also note that C
may be taken as a set of representative elements for the ¢-classes
of S and that T = ker ¢ (the union of the collection of ¢-classes of S
containing idempotents) is an w-chain of rectangular groups.

Finally, we describe T in terms of (I, 0), an w-chain of left zero
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semigroups (I,: n€ N); (J, *), an w-chain of right groups (J,:n¢€ N);
and an anti-homomorphism j — A; of J into T, the full transformation
semigroups on I. In fact, T = U(l, x J,: n€ N) under the multipli-
cation (7, j)(», @) = (¢°pA;, 7%9).

LemMA 1.1. If e,€ E,, R,  is a semigroup.

Proof. Lemma 1.1 is a special case of [5, Lemma 3.1].

REMARK. Immediately below, we write Theorem 1.2 [5, Theorem
3.3]). This means Theorem 1.2 is obtained by taking “Y” to be a
one element set in [5, Theorem 8.3]. (D;:d€ Y) is the collection of
Z-classes in the semigroup of [5, Theorem 3.3]. We do the same
thing in Note 1.3, Propositions 1.4 and 1.5, and Lemmas 1.9-1.12.

THEOREM 1.2 [5, Theorem 3.3]. ¢ is a congruence on S and S/t = C.

Note 1.3 [5, Note 3.4]. If we let ... = (n, k)t™, the t-classes of
S are (finw:n, k€ N) with €, unte S tiusrmingm stsming . We May
write E(S) = U (B k€ N) where E,. ., is a rectangular band and
Etuw) = Eun. Actually, E,, = E,.

ProOPOSITION 1.4 [5, Proposition 3.5]. t,.n=(a€S:ad’ € E, ., and
a'ac K. for some a’'e Z(a)) = U (R.N Lyie€ B, and f€ Eyp)-

A rectangular group is the algebraic direct product of a group
and a rectangular band.

ProrosIiTION 1.5 [5, Proposition 3.6]. For each ke N, t,. s a
rectangular group. In fact, tu., =G X Eu,,, where G is a fized
maximal subgroup of S. Furthermore, tu s S timaxih.s), maxik.e)e

REMARK 1.6. If be R, N L/e, f € E(S)), there exists € S such
that bz = e. It is shown in the proof of [1, Theorem 2.18] that ™ =
fwe is the unique inverse of b contained in R; N L, and that bb™' = ¢
and b7'b = f.

Note 1.7. Let ¢, be a fixed element of E, and fix an element
e. € E, ., such that ¢, < ¢,. For example, select any fe E,, and let
e, = ¢,fe,. Hence, ¢,€ E,,, by Note 1.8 and ¢, < e,.

Note 1.8. Select and fix ae R, N L,.. By Remark 1.6, there exists
a unique a7'e A (a) N B, N L, with aa™ =¢, and a™'a =e¢,. Define
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e~ = (a)" for all positive integers n and define o’ =¢,. Utilizing
Proposition 1.4 and Note 1.3, a "a*€ t,,, for all n,ke N.

LemmA 1.9 [5, Lemma 3.9]. a*a™ = ¢, for all ke N.

Lemma 1.10 {5, Lemma 3.10].
atr if kE>r
a7 = {a”"® if r>k
€ if r==k.

a

LeMmA 1.11 [5, Lemmas 3.11, 3.12].

1) atara "’ = g kHromintrgprsmminge) (2) g~ € K, ,, for all re N.

For brevity, let T}, = ¢4, and let T = U (T ke N). Hence, T
is an ®-chain of the rectangular groups (7):k<c N) by Proposition
1.5. Since E(S) = E(T) by Note 1.8, T is generalized .~ -unipotent.
Utilizing Proposition 1.5, T, = G x M, x N, where G is a group, M,
is a left zero semigroup, and N, is a right zero semigroup. By
Lemma 1.11, a*a*c E(T,). Let I, denote the set of idempotents of
the & -class of T, containing a*¢* and let J, denote the .Z-class
of T, containing a*a*. We may suppose that l,e M,N N, a *a* =
(e, 1., 1) where e is the identity of G, I, = (¢) x M, x (}), and J, =
G x (I;) X N,. For brevity, let e, = (¢, l;, l,). Hence, using Lemma
1.11, €mln = €max(n,m)e

Let I=U (,:neN) and let J = (J.: m€ N).

LEMMA 1.12. I is an w-chain of left zero semigroups (I,: ne€ N).

Proof. By a direct calculation, I, is a left zero semigroup for
eachne N. Letxel,andlet ye I,. Hence, z.¢, and y.~¢,. Since
T is generalized < -unipotent, vy~ wxe,. Thus, since

mengeken, xygemax(k,%) M

Hence, 2y € Lnoxipn-

LemwMma 1.18. For each ne N, J, is a right group. IfxcJ,, y€J,,
and n = m, 2y € J,.

Proof. By [1, Theorem 1.27], J, is a right group for each n e N.
Let e dJ,, yeJ,, and n» = m. Hence, yHe, implies vy Are,. Since
e.(xe,) = (e,x)e, = we, and we,c T,, ve,cJ, by a simple calculation.
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Thus, zy € J,.

LEMMA 1.14. Ewvery element of T may be uniquely expressed in
the form x = ij with 1€ I, and jeJ, for some ne N.

Proof. 1If x = (g, 1, 7)€ T., x = (e, 1, )9, L., 5)-

If X is a set, Ty will denote the semigroup (iteration) of mappings
of X into X.

LEMMA 1.15. There exists a mapping j— A; of J into T, and
a mapping p— B, of I into T; such that L[,A; S Lneximm SfOr 7€J,
and J,B, & Juaxnm Jor v L,. IfjeJand pel, jp = pA;7B,. Fur-
thermore, jp.#ZpA;(e T) and jpFjB,(e T).

Proof. Let jeJ, and peI,. Thus, jp€ Touixm. Hence, by
Lemma 1.14, there exists a unique %€ Inixima and V€ Jpaxm.. Such
that jp = wv. Let w = pA; and v = jB,. The last statement is valid
by a simple calculation.

LEMMA 1.16. Ifjed, jB. = eje,. Ifjed,andr = v, jB, = je..

Proof. Let jeJ, and suppose that » > ». Thus, je, e T, and
(je,)e, = je.. Hence, je, = (g9, %,1,) for some geG and i€ M, By
Lemma 1.15, je, = e,4;jB,, with jB, ““je (e T). Hence, jB., = (9, L,
l,). Thus, jB., = (e, 1, l.)9, %, l,) = e.je,. Next, suppose that r = v.
Hence, je, € J,. by Lemma 1.13. Thus, utilizing Lemma 1.15, ¢,(je,) =
je, = e,A;jB., where ¢,A;¢ I, and jB, € J,. Hence, jB., = je, by
Lemma 1.14. This establishes the second sentance of the lemma.
Since, for r = v, e,j = e.e.j = e, = j, jB,, = e.,je, for r = v.

LeMMA 1.17. (e, f)e Z N(E(T)) and pe T imply (pe, pf)e
F(e ).

Proof. Suppose (e, f)e <~ N (E(T))*. Hence, for
peT, (p7'pe, p'pf)e &
(p~* is the group inverse of p in the group containing p). Thus,
p~'pep'pf = p~'pe and p'pfp'pe = p~'pf. Hence, (pep~)pf = pe
and (pfp~)pe = pf. Thus, (pe, pf)e < (e T).
LemMA 1.18. If pel, B, = B,.

Proof. If m, me N, let nm = max (n, m) in this proof. Let je J,
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and pe I,. Hencee,j = (g, l,, j') for some ge G and j'€ N,, by Lemma
1.13. By Lemma 1.12, pe,, = (e, n, l,,) for some ne M,,. Thus,

eTije'fS = (g’ l'rsy l’l’s) = 6TsjeTeT8 .

Hence, if jp = (w, m, n) and je, = (u, ¢, d), then w = u. Since (p,
e.) € < (jp, je.) e (e T) by Lemma 1.17. Hence, n = d. Thus, jp =
(w, m, n) = (e, m, l,,)(w, l,,, ») while je, = (w, ¢, n) = (¢, ¢, l..)(w, L., n).
Hence, utilizing Lemmas 1.14 and 1.15, jB, = jB, .

LEMMA 1.19. LetreJ, scJ,v <u,andzc N. Then,(a)(rs)B,, =

rB .8B., (b) if ve I, zA,, = xA4,A,.

emax(z,

Proof. Let red,,sed,,u=v, and v I,. Hence, utilizing Lemmas
1.13 and 1.15, (rs)x = xA,,(rs)B, while

r(sz) = r(wA;sB,) = (r(xA,))(sB,) = ©A,A(rB,43B.) .

Thus, utilizing Lemma 1.14, z4,, = vA,A, and (rs)B, = 7B.., sB..
Utilizing Lemmas 1.15 and 1.18, (rs)B,, = rB 8B,..

emax(z,v

If xeJ, and yeJ,, define 2™y = B, y.
Lemma 1.20. Ifxed,and yed, o™y = exy. Ifu=v, ™y = ay.

Proof. Let wedJ, and yecJ,. Hence, utilizing Lemma 1.16,
v*y = xB, )y = (e.xe,)y = e,x(e.y) = ey .

If w = v, again utilizing Lemma 1.16, 2*y = xB, y = (ve.)y = x(e.y) = y.
Lemma 1.21. (J, *) is an w-chain of right groups (J,: ne N).

Proof. Utilizing Lemmas 1.13 and 1.20, (J,, *) is a right group
for each ne N and J,*J,, S Juaxmm. We must just establish associa-
tivity. Let teJ, pedJ, and weJ,. Hence, utilizing Lemmas 1.15
and 1.13, i*(p*w) = ¢*(pB.,w) = B, ., ., »B.,w while

(*p)*w = (¢B, p)*w = (B, ,p)B,,w .

Utilizing Lemma 1.19 (a) (¢B.,p)B., = iB.,B.p,y.. 0B, However,
utilizing Lemma 1.16,

%BeuBemax(y,z) = emax(y,z)ey’l'eyemax(y,z) = €max(y, 2)¥max(y,2) = %Bemaxw,z)'

Hence, (i*p)*w = iB DPB, w = 1*(p*w).

emax(y,z

DEFINITION 1.22. Let the semigroup X be an w-chain of semi-
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groups (X,: ne N) and let ¢ be a mapping of X into a semi-group Y.
If reX,, se X, and n = m imply (rs)¢ = s¢ré, ¢ is termed an upper
anti-homomorphism of X into Y.

LEMMA 1.23. »— A, is an upper anti-homomorphism of (J, *)
into T;.

Proof. Combine Lemmas 1.20 and 1.19 (b).
LEMMA 1.24. If jedJ, and i€ I, ji = 1A;je, = 1A;5%e,.

Proof. Let jedJ, and t€ I,. Hence, ji = 1A;7B; by Lemma 1.15.
However, utilizing Lemmas 1.18 and 1.16, jB; = jB,, = e.je,. Since
iAJ'e Imax(v,z); iAJ = ,iAJ'emax(v,zr Hence7 -7?/ = iAiemax(v,z)ezjez = iAjjez-
However, e.je, = j*e, by Lemma 1.20. Hence, ji = 14,5%e,.

LemmA 1.25. Ifr,se I with re I, (rs)A, = rA.sA.,., Sfor all x e J.

Proof. Let 7,sel with re I, and let xeJ. Hence, utilizing
Lemmas 1.15 and 1.12, x(rs) = (rs)A.xB,, while

(zr)s = (rA,xB,)s = rA(xB,s) = rA,(sA,zxB,B,) = rA,8A.,; *B.B, .

Hence, utilizing Lemmas 1.15, 1.12, and 1.14, (rs)A, = rA,sA,; . Utiliz-
ing Lemmas 1.18, 1.16, and 1.20, 2B, = ¢B, = e,xe, = x*e,.

REMARK 1.26. Results of [6] could have been applied to charac-
terize T.

2. Structure theorem for generalized W-.%-unipotent bisimple
semigroups. (Proof of converse.) In this section, we complete the
proof of the converse of our structure theorem for generalized -
-unipotent bisimple semigroups (Theorem 2.21).

We will use a sequence of twenty entries to establish Theorem
2.21. S will denote a generalized w-<~-unipotent bisimple semigroup.

LEMMA 2.1. Ewvery element of S may be uniquely expressed in
the form x = ia~"a*j where 1€ I, and je J,.

Proof. Let zet.,,. Hence, (x, ¢)c & for some ec E, by Pro-
position 1.4. Thus, (x, 7)€ & for some 7€ I,. Thus, since a™"a"€ I,
a left zero semigroup, » = ix = (ta "a™)x = ia""a"x. Since a"€ R,
by Note 1.8 and Lemma 1.1 and a*a* = ¢, by Lemma 1.9, a*a*a" =
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a”. Hence z = ia "(a*a*a™)x = (ta "a*)(a *a"x). However, o *a"xe
twm by Notes 1.8 and 1.8. Thus, since a *a*(a *a"z) = a *a"z and
a *a*e J,, a*fa"xv e J, by Proposition 1.5. Hence, © = ia "a*j where
1€ 1, and jeJ,. We next establish uniqueness. Suppose that z =
ia""a*j = uwa""a*v(1e I,, jeJ,, we I, and veJ,). Thus, using Note
1.3, €€ty Nty and, hence, n = r and k = s. Thus, ia "a"j =
ua "a*v. Hence, a "a"ia""a*j = a "a"ua""a*v. Thus, since a "a", 7, u €
I, a left zero semigroup, ¢ "¢"a " "a*j = a "a"a "a*v. Hence, a "a*j =
a "a*v. Thus, a*a"a ™ "a’] = a *a"a""a*v. Hence, a*a*j = a *a*v.
Since a~*a*e E(J,) and j, veJ,, a right group, 7 = v. Thus, 7a ™"a"j =
ua~"afj. Since J, is a right group, there exists ze J, such that jz =
o *a*. Hence ta "a*jz = ua "a"jz implies ia "a‘a *a* = ua "a*a *a®.
Thus, ia "a* = ua""a*. Hence ia "a*a *a" = ua "a*a*a". Thus,

a7"a" = ua""a” .
Since 7, u, a "a" € I,, a left zero semigroup, 7 = u.
DerINITION 2.2. If we€ T and n, ke N, define uy, ,, = a "a*ua*a™.
LeMMA 2.3. Twom S Tosrming,n-

Proof. Let ge T,. Hence, utilizing Note 1.3, gv ..., = a "a*ga"*a" €

t(n,k)('r,’r)(k,n) = Tn+r—-min(k,r)'

LemMA 2.4. Let g.€ T, and h,eT.. If E=r,s or r=s =k,
@h)Y i = 9VumlVin. In particular, Y., s a homomorphism of
Tr ?'nto Tfn+r—-min(k,r)'

Proof. Let g, T, and h,e T, with k£ = r, s. Hence,
(@)Y = a"a"g,ha " a™ = a "a*(a " "a" g, )ua " a" £ (ha e e Fa”

where (u,, a *a*g,) € &~ with u, e E(J,)and (f, h.a *a*) e &# with f, e I,.
Hence, (¢,h,)V0,. = e~ "a*g,a *a*h.a"a™ = (¢ "a*g.a *a")(a "a*h.a *a") =
IYumbVisn. Next suppose that » = s = k. Then,

(9.h,)V0n = a" a9, v,0 " f .0 o

where (v, 9,) € & with v, € E(J,) and (f,, h,) € & with f.c I,. Hence,
@)Y 0m = (@ "a*g.a "a™) (@ "a"h,a " a™) = 0,% n ¥ tm)

DEFINITION 2.5. Let vl = qum and Yo,uld = Buw-

LEMMA 2‘6' (a) Ira,(k,n) S In+r~—min(k,r) (b) Jr,BLk,'n) —g Jﬂ%r—min(k,r)-

Proof. (a) By Lemma 2.3, I,y ., S T, if b = rand Ly, & Turrs
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if r=zk. If k=7, v, is a homomorphism of T, into T, by Lemma
2.4. Hence, Iy, & E(T,). Let g,eI. Hence, 9,.Fa"a"(cT,).
Thus, 9.Y4,n-Fa "a*a "a"a *a"(e T,). However,

a "a*a""a"a Fa” = a""a"

by Lemma 1.11. Hence, 9.V, € I, if kK = r. The case r = k is treated
similarly. To prove (b), just replace “I” by “J” and “.#” by “=z”
in the proof of (a).

DeEFINITION 2.7. If X is a semigroup End X will denote the
semigroup of endomorphisms of X (iteration).

LEMMA 2.8. «,. € End I for each n, ke N.

Proof. Let i,eI, and 4,¢I,. If r =k, 1,0 *a*4, = 1,7,. Hence,
(02U, my = @~ "a*i,0.0 %" = a " "a*1,.a Fat .0 "

= a "a*1.a7Fa"a"a .07 a" = 1.0y m b Qi -
Next, suppose that k& > r. Since S is generalized & -unipotent,
1,20~ "a” implies a *a*i, < a*a*a""a”. Thus, a *a*i,a*a* by Lemma

1.11. Hence, a*a*i.€ I,. Thus,
(i) m = a”"a",1,07 %" = a "a*(a *a*i,)a *a*i.0a 0"
= (@ "a*i,a a0 "a"1,07Fa") = 1@, n T Qi -

LEMMA 2.9. (n, k) — &1y s a homomorphism of C into End I.

Proof. Let geI. We will employ Lemma 1.11. Thus,

9 r 0 py = Q- Fa"a"*a"ga""a’a""a®
— a-—(p+s—min('n,x))an-(-'r—mln(n,a)ga-(r+n—mln(n,a))as+p~mlu(n,a)

= 9&r,s)(n.p) ¢
We next establish that 8,1, € End (J, *). This will be accomplished
by Lemmas 2.10-2.15.
LeEmMMA 2.10. B, € End(J, ).

Proof. Letwed,andu,edJ,. If p=s, By,e€ End(J,*) by Lemmas
2.4, 1.20, and 2.6(b), and Definition 2.5. Let us first suppose s = 0.
Utilizing Lemmas 1.13, 1.11, Note 1.8, and Definition 2.5,

(ww)a™ = a~?a’a " ‘a(wi)a™ = a~?a"a " (W) B0
= af—pafpa_lao(wuo)ﬁu,o) = epa—pa'p_l(wu'o)ﬁu,o) .
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We note that (wu,)Bu.€J,—, by Lemma 2.6(b). Utilizing Note 1.8,
Lemmas 1.15, 1.16, and Definition 2.5, ua™ = wea " = ¢, 4, %00 " =
e A, 0 aun ™ = e, A, 0 (UB,n). Hence, utilizing Lemmas 1.15, 1.23,
1.18, 1.16, and 1.11, and Definition 2.5,

W@ = w(e1Au0)a'~l(uo;8<1,o)) = elAwuoelwela’_l(uOIQ(l,O))

= ewauoa'_l(awa_l(%oﬁ(l,o))) = elAwuoa_l(wB(1,0))“05(1,0)

= elAwuoa,_pa,pa,_lao(wﬁu,o))uolfj’“,o)

= elAwuﬂa_pa%1(’“’6(1,0))“03(1,0) .
Utilizing Lemmas 1.15, 2.6(b), and 1.13, e¢,A,. € I, and wB,n%Bun€
J,—.. Hence, (Wi)Bu.o = WRuo%Buo by Lemma 2.1. Thus, utilizing

Lemma 1.20 and 2.6(b), (w*ue)Bu.0 = WL UBu,n. Next, we assume
that p = s = 1. Hence, utilizing Lemmas 1.11, 2.6(b), and 1.20,

1 1

(W*u)Bu.g = (WUs)Bio = GWUG™" = aWa A U0~

= awa 'aa" 0’ U0t = (awa ) (au.a")

= WRuoUsLuon = wB(l,O)*uSB(l,O) .

Finally, we assume s > p. Utilizing Lemmas 1.20, 1.13, 1.10 and the
case (p = s) just established,

(W u)Bun = (€W)%)Broy = (6W)Biuo%sBuoy = €sB10WBu0UsBir0

= aa”’a’a" ' WBL.o%sBuy = €s1WBu,0UsSu0 »

Since w8 € Js—, by Lemma 2.6(b), €, WBu,0%sBu,n = WREoWsB o by
Lemma 1.20. Hence, (w*u,)Bu.0 = WBH.oWsBiro-

LEMMA 2.11. By € End (J, ).

Proof. Let u,e.J, and v,eJ,. Utilizing Lemmas 1.20 and 2.6(b),

(ufvs)ﬁ(o,o) = (esurvS)B(o,O) = 608U,V = €56,U,€0E:V€) = €:6,U 6,6,V
= €:(%rB10.0)V:B0,00 = UrBr0.0 VsBr0.0y «

LEMMA 2.12. (n, k) — By 8 a homomorphism of C into T;.

Proof. Replace “I” by “J” and “a” by “g” in the proof of Lemma
2.9.

LEMMA 2.18. By € End (J, *) for all ke N.

Proof. We have shown that B, in End (J, *)(Lemma 2.11) and
that 8., € End(J, *) (Lemma 2.10). Suppose that B.,¢€ End (J, *).
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We show that B, € End (J, *). Letg, heJ. Hence, utilizing Lemma
2.12,

(0" 1)Bns1,00 = (9" R)BnoBuo = (98m.0 hBm0)Buo
= 0Bw.0Bu0 PBumnBus = IBmire hButio -

LEMMA 2.14. By End (J, *) for all ke N.

Proof. Let uw,eJ, and v»,eJ,. First, assume s = . Utilizing
Lemma 1.20, (%,%v,)Bw.0 = (€:%,V:)Bow. Since u,.Fe,, €U, Zee. = e,.
Hence, utilizing Lemma 2.4, ((¢,%,)0:)B.xy = (€s%,)Bi0.1yVsBo.iy+ Utilizing
Definition 2.5, Note 1.8, Lemma 1.1, and Lemma 1.9, (e,4,)Bw.n =
a *e(esu,)ent = afe,u,af = a*e,afaFu,af = (e *a"*a’a*)(a Fa'u,a%a*) =
€ t(UrBum). Since V.81 € oy by Lemma 2.6(b), €.11%rBu0,0VeBon =
UrBioi) VsBow by Lemma 1.20. Thus, (%,*v.)Bom = %rBii Ve
We utilize Lemmas 1.20 and 1.9, and Definition 2.5 for the case > s.

LEMMA 2.15. Biu.m€ End (J, *) for all n, ke N.

Proof. Let g, heJ. Hence, utilizing Lemmas 2.12, 2.13, and 2.14,

@ W) Bniy = (@*R)Binoviowy = @A) BinoBiwow = (98wm.0 hBu0)Bow
= 9BnoBww hBunBuw = 9Bum.w B

LEMMA 2.16. (, k) — Bia.i) 18 @ homomorphism of C into End (J, *).
Proof. Combine Lemmas 2.12 and 2.15.
If a,be I, define aob = ab.

LemMMA 2.17. S = (@4, (n, k), j):ie L, jeJ, n, ke N) under the
multiplication (3, (n, k), 5)(u, (r, 8), v) = (4 o (WA ;& ), (0 + r — min(k, 7),
k + s — min (k’ r))’ jB('r,s)*v)‘

Proof. Letiel, jed,, ue I, and veJ,. Hence, utilizing Lemmas
1.24,1.15,1.11, 1.9, 2.6(b), 1.20, and Definition 2.5,

(e "a*j)(ua""a’v) = e "a*(Ju)a "a*v = o "a*uA;ja""a""at
= ia "a*ud;a Fata""a"ja " Tav
= (e "a*(uwA)a *a") (@ "a e "a")a " a"ja " "at
= ((whjag,m)a~ " Frominkmghremmintengg v
= 1o(UA) o m)a™ "I TRIEE g RN (FRE p) |

Utilizing Lemma 2.6, 70 (wA;)®.n) € Lntr—mine,» and

N *
IBirs V€ Jitsemintem »
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Hence, ((i,(n, k), ): i€ I,,j € J,» m, ke N) under the multiplication given
in the statement of the lemma is a groupoid. The required isomorphism
is given by the mapping (ia *a*j)® = (1, (n, k), j) by virtue of the above
and Lemma 2.1.

LEMMA 2.18. @& Ai® s, = Ajssnm for all j€J and r, s N.

Proof. Let jedJ, and we I,. Utilizing Definitions 2.2 and 2.5,
and Lemmas 1.9, 1.12,1.15, and 2.6,

(G(wa,,)We.n = a"a’j(a" a"wa"a")a " "a"
= a "a’ja"*a"(a e w)a e = a”a’ja " aTa e w
= a,—ra,sja—sa,"‘w = jlg(s,r)w = w‘Afﬁ(s,T)jB(s,r)Bw .

Utilizing Lemmas 1.15 and 2.6, wA ;s € Lmaxig rip—mines,pn a0d

J/e(s,r)Bw € Jmax(q,r-i—p—min(s,p)) .

Utilizing Definitions 2.2 and 2.5, and Lemmas 1.15 and 2.6,

(G(wa, o )Vin = a7’ j(wa, »)a " a"
= a’_ra’s(wa(T,S)Ai)(ija(T,s))a’—sar
= a’—ra/s(wa(T,S)Aj)a'_sas(ija(

r

Ja"a
= a7"a (W nA5)a "0 (@77’  Bya,, ,07'a")
= (wa(r,8)Ai)a(s,r)(ija(T,s))le(s,r) .

Utilizing Lemmas 1.15 and 2.6, wa, A% € Inax(p stq-minir.an+r—s aNd

(ija’(,,.,s))B(s.r) € Jmax(p.8+q—min(7‘,q))+r-—s- Hencey wa(r,s)Aja(s,r) = WAjﬁ(s,r) by
Lemma 1.14.

758)

LEMMA 2.19. (3) 9@ = e,09 for all gel. (b) 9B = 9%e,
for all ge .

Proof. (a) Let ge I. Utilizing Lemma 1.12 ga, ., = (¢;9)e. = €,9 =
e,c9. (b) Let geJ. TUtilizing Lemma 1.20, g8, = e.9¢, = g*e..

In the following definition, we will describe the objects we will
use to represent generallized w-<-unipotent bisimple semigroups.

DerFINITION 2.20. Let (I, 0) be an w-chain of left zero semigroups
(I,: ke N); let (n, r) — (., be a homomorphism of C into End (Z, 0);
let (J, *) be an w-chain of right groups (J,: ke N); let (n, 1) — B
be a homomorphism of C into End (J, *); let s — A; be an upper anti-
homomorphism of (J, *) into 7T}; and let I, N J, = (e;), a single idem-
potent, for each ke N such that
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(1) 98w« = g*e, for all geJ.

(2) Lawn S Lisrninmn 204 J.Bu1 S Jivrominmn-

(3) LA; & Lyuxr if jeJ,.

(4) (ros)A, =rA,°8A,4., for r,seI with re I, and weJ.
(5) g oAa.,, = Ajssn for all jeJ and r, se N.

We denote ((%, (n, k), 7): i€ I,, 7€ J,) under the multiplication

(6) (3, (n, k), 9)(w, (v, s), v)
= (io(u’Aﬂ'a(lc,n)); (’I’I/ + 7 — min (k7 r): k + s — min (k, ’l”)), jﬁ(’r,s)*v)

by (I, J, a, B, A).

THEOREM 2.21. Let S be a generalized w-F-unipotent bisimple
semigroup. Then, S is isomorphic to some (I, J, «, B, A).

Proof. The theorem is a consequence of the definition of “07”,
Lemmas 1.12, 2.9, 1.21, 2.16, 1.23, the choice of “e¢,”, Lemmas 2.19, 2.6,
1.15, 1.25, 2.18, and 2.17.

We thank the referee for the following remark.

REMARK 2.22. In Definition 2.20, the middle component (m, n)
of (3, (m, m), j) serves only as a marker. Hence, S is actually repre-
sented by the cartesian product I x J under the multiplication

(iy J)(u’ ’U) = (7’ ° (uAJ'a(k,n))y jlg('f,s)*v)

where 1€ I,,jed,, ue I, and veJ,.

3. Structure theorem for generalized w-% -unipotent bisimple
semigroups (proof of direct half). In this section, we show that
(1, J, a, B, A) is a generalized w-<-unipotent bisimple semigroup.

Lemma 3.1. (I, d, a, B, A) is a semigroup.

Proof. We use (2) and (8) of Definition 2.20 to establish closure.
We next establish associativity. Let (7, (%, k), 7). = ¢ and (¢, (n, k),
Das = ((m, k), 7). Let a = (2, (n, k), 5), b = (u, (r, 8), v), and ¢ = (3, (p,
q), wye (I, J, a, B, A). Utilizing the fact that (n, r) — 8., is a homo-
morphism,

((ab)c)% = ((?; °(/"4'14-5(’¥(k,’Ib))) (n’ k)(’l’, S), jB(r,s)*/v)(z’ (py Q)y w))ZS

= ((nr k)(’l", 8)(p, q)’ (jB(r,w*’v):B(p,q)*w)
= ((n, k)(r, 8)(®, @), IBir.510.0 VB0 W)
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while

(a(be))s = ((3, (n, k), 9)(wo (AQ,m), (7, S)D, @), VB0 W))es
= ((n, k)(r, 8)(®, Q), IB% 10,0  VBp,0) W)

Hence, ((ab)c),; = (a(be))y. Utilizing the fact (k, n) — ., is a homo-
morphism of C into End (Z, o), the fact 7 — A; is an upper anti-homo-
morphism of (J, *) into T4, (5), (1), and (4),

((ad)e), = 1o uA,&pm © ZAjﬁms)*va(s,r)(k,n)
= 10((wd;e zA.’fﬁ(,.,s)*va(s,r))a(k,‘n))
=10((ud;e zAvAjﬁ(,.,S)a(s,r))a(k,n))
= 10 (WA; 0 A A 0 ) Ols, )X, m)
= 1o ((wd; 0 24,00, n e, nA iy 1)k m)
= 10o((ud;e zAva(s,'r)AJ'ﬁ(,-,T))a(k,'n))
= 1o ((wd;o 24,0 nAjxe,)Xitm)
=1o(wezA,q, n) A m)

= (a(bo)), .
Hence, (ab)c = a(bc).

LeEmMMA 38.2. Let (¢, (n, k), 7), (w, (p, q), 2) e (I, J, a, 5, A).

@) (@, (n, k), DA (w, (p, q), 2) if and only if i =w and n = p.

() @, (n, k), DL (w, (p, 9), 2) if and only if k=q and (J, 2)€
(e d).

Proof. (a) Let us show that (¢, (n, k), J).2(, (n, q), 2). Let ue
I.. Hence, uA;a..,c I, by (2) and (3). Thus, since (I, 0) is a left
Zero semigroup, 7o A& ;.. = 1. By (2), 18u.. € J,. Hence, since (J,, *)
is a right group, there exists veJ, such that jB.,*v = 2. Hence,
utilizing (6), (¢, (n, k), 5)(», (k, ), v) = (¢, (n, q), #). Similarly, there
exists a€ I, and beJ, such that (7, (n, q), 2)(a, (¢, k), b) = (¢, (n, k), 7).
Utilizing (6), the converse follows from the fact that <Z is the
dentity on (I,0) and (n, k).Z(p, q) in C implies # =p. Let us
show that (7, (n, k), )L (w, (p, k), 2) if (4, 2)e 5~ (e J,). Since (J,
?)e &7 (e J,), there exists u e J, such that »*j = 2. By (2), uBun€
J,. Utilizing (1) and the fact (n, k) — B.» is a homomorphism of C
into End (J, *), #BumBun = 4Buw = ue,. Hence, (uBum)Bumn’l =
w¥efj = w*j = z. Thus, utilizing (2), (8), and (6), (w, (p, 7), UBu ) (%,
(n, k), ) = (w, (p, k), 2). Similarly, there exists ve J, such that (7, (n,
D), VBu.n)w, (p, k), 2) = (4, (n, k), 7). Utilizing (6), the converse follows
from the fact that 52 = & in (J, *) and (n, k)<< (p, ) in C implies
k=q.



GENERALIZED «-<-UNIPOTENT BISIMPLE SEMIGROUPS 645
LemMA 3.3. (I, J, a, B, A) is a bisimple semigroup.

Proof. Let (4, (n, k), 7), (u, (v, 8), v)e (I, J,a, B, A). Hence, utilizing
Lemma 3.2, (¢, (n, k), ) 2@, (n, 8), v) L (u, (r,s),v). (I,J,a B, 4)is
a semigroup by Lemma 3.1.

Lemma 3.4. E(, J, a, B, 4) = ((z, (n, n), J): j€ E(J,), n € N).

Proof. Let (4, (n, k), 5) € E(L, J, a, B, A). Hence, (3, (n, k), )¢, (n,
k), ) = (@, (», k), 7). Using (6), n = k since (n, k)’ = (n, k) in C. Hence,
using (6) and (1), J = jBun*J = j*eij = j*. Utilizing (6), (2), (3), and
(1), € E(J,) implies (3, (n, n), 7)€ E(1, J, o, B, A) for ne N and i€ I,.

LEMMA 3.5. ([, J, a, B, A) is a regular bisimple semigroup.

Proof. It follows from a result of Clifford and Miller [1, Theorem
2.11] that any bisimple semigroup containing an idempotent is regular.
Hence, we just apply Lemmas 3.3 and 3.4.

LEMMA 3.6. E(I, J, @, B, A) is a semigroup.

Proof. We will utilize Lemma 3.4. Let a = (4, (n, n), J), b = (%,
(s, s), v)e E(I, J, a, B, A). Hence, jc E(J,) and ve E(J,). Thus, using
), 7Bu»*v = j*efv = 5*v. However, E(T) is a semigroup for any
chain of right groups T. Thus, it follows that j*v € E(Jmax.»). Hence,
abe E(I, J, a, B, A) by Lemma 3.4.

LEMMA 3.7. ¥ is a congruence on the semigroup E(I, J, a, B, A).

Proof. Let X be any semigroup such that E(X) is a semigroup.
Then, it is easily seen that if ¢, f e E(X), (¢, f) € £ (€ X) if and only
if (¢, f) e &£ (e E(X)). Let je E(J,) and ve E(J,). Hence, utilizing
Lemmas 3.4 and 3.2(b), (2, (n, n), ))Z(«u, (s, s), v)(e E(, J, a, B, 4)) if
and only if n = s and 7 = v. Thus, using (6), & is a left congruence
on E(I, J, a, B, A) by a routine calculation.

LEMMA 3.8. E(I, J, e, B, A) s an w-chain of rectangular bands
(E,:ne N) where E, = ((1, (n, n), j): 1€ I, je E(J,)).

Proof. Let (1, (n, n), 5), (4, (n, n), v)e E,. Utilizing (6), (2), (3),
and a routine calculation, (¢, (%, n), 5)(%, (», %), v) = (¢, (n, n), v). Hence,
E, is a rectangular band. Again, utilizing (6), (2), (3), and a routine
calculation, E.E, & Eouxui)-
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THEOREM 3.9. (I, J, a, B, A) is a generalized w-Z-unipotent
bisimple semigroup.

Proof. Combine Lemmas 3.5-3.8.

4. Structure of generalized ®-<-unipotent bisimple semi-
groups. Combining Theorems 4.1 and 4.3 (below) will give a description
of generalized - -unipotent bisimple semigroups in terms of groups,
w-chains of left zero semigroups, and w-chains of right zero semigroups.

THEOREM 4.1. (I, J, «a, B, A) is a generalized w-F-unipotent
bistmple semigroup, and conversely every such semigroup s 1so-
morphic to some (I, J, a, B, A).

Proof. Combine Theorems 3.9 and 2.21.

REMARK. In contrast to the structure theorem for generalized
Z-unipotent semigroups given in [4], no factor systems are required
in Theorem 4.1.

We will next characterize an w-chain J of right groups (J,:n¢e
N) as a semi-direct product of an w-chain X of right zero semigroups
(X,:mne N) by an w-chain G of groups (G,: ne N).

We first need a definition.

DEFINITION 4.2. Let the semigroup U be an @w-chain of semigroups
(U,e N) and let 6 be a mapping of U into a semigroup V such that
re U, se U, and m =n imply (rs)d = rfs6. We term 0 a lower
homomorphism of U into V.

Let (G, 0) be an w-chain of groups (G,:ne€ N) and let (X, *) be
an w-chain of right zero semigroups (X,: 7€ N) such that G, N X, =
(e.), a single idempotent element, for each ne N. Let g— B, be a
lower homomorphism of G into Ty subject to the conditions (1) X, B, &
Xooxonm if g€G, (2)if re X, se X, and m = n, (r*s)B, = rB, ,,*B,.
Let (G, X, B) denote U (G, x X,: ne N) under the multiplication (2,
Np, @) = (Lo, 1B3Q).

THEOREM 4.3. J is an w-chain of right groups if and only tf
J = (G, X, B) for some collection G, X, B.

Proof. We just specialize [6, Theorem 7.2].

Note 4.4. The structure of G is known mod groups and homo-
morphisms by a well known result of Clifford [1, Theorem 4.11].
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5. w-Z-unipotent bisimple semigroups. In this section, we
specialize Theorem 4.1 to obtain [5, Theorem 7.11] (our previous
structure theorem for w-.%-unipotent bisimple semigroups).

A Dbisimple semigroup S is termed w-.<"-unipotent if E(S) is an
w-chain of right zero semigroups.

THEOREM 5.1. Let S be an w-L-unipotent bisimple semigroup.
Then, there exists an w-chain (J, *) of right groups (J,:ne N) and
a homomorphism (n, r) — By of C into End (J, *) such that for each
ke N there exists e, € E(J,) and

(1) 9Buw = g*e, for all ge J.

(2) J:Biww E Jitr—mintm,n. Furthermore, S=(((n, k), 7): j€ Iy, n,
ke N) under the multiplication.

(3) ((m, k), H)((r, s), v) = ((n, k)(r, 8), 1Br.o V) where juxtaposition
denotes multiplication in C.

Conversely, let (J, *) be an w-chain of right groups and let (n,
1) — Burn be @ homomorphism of C into End (J, *) such that (1) and
(2) are valid. Then, S = (((n, k), 5):5€ J;, n, ke N) under (3) is an
- F-unipotent bisimple semigroup.

Proof. We first establish the converse. We employ Theorem
4.1 and its notation. Let I, = (¢,) for each ve N and define ¢, ce, =
Cmaxun. Let I = (L:ve N). Then, (, 0) is an w-chain of left zero
semigroups (I,: n€ N). Define e, .,y = €,2n_minn,» a0d €, 4, = Cmexnm
if vedJ,. By a routine calculation, (#, ) — &, is a homomorphism
of C into End (7, 0) and p — A, is an upper anti-homomorphism of (J, *)
into T, such that (2)-(5) of Theorem 4.1 is valid. The multiplication
(6) of Theorem 4.1 becomes (6') (¢,, (n, k), 7)(e., (, 8), ¥) = (Entr—mintk,m»
(n, k)(r, 8), 3B *v) where juxtaposition is multiplication in C. Hence,
U=(,J, a B, A) (notation of §3) is a generalized w-~-unipotent
bisimple semigroup by Theorem 4.1. TUtilizing Lemma 3.4, E(U) =
(e, (m, m), j): j€ E(J,), n€ N). Utilizing Lemma 3.2, (e,, (n, n), 7)< (e
(k, k), w)(j € E(J,) and u € E(J,)) implies n = k and j = w. Hence, E(U)
is an w-chain of right zero semigroups and, thus, U is an w-%-uni-
potent bisimple semigroup. Since (e,, (n, k), )P = ((n, k), 7) define an
isomorphism of (U, (6’)) onto (S, (3)). S is an w-~-unipotent bisimple
semigroup.

Next, let T be an w-< -unipotent bisimple semigroup. Hence,
T is a generalized w-.<-unipotent bisimple semigroup and the struc-
ture of T is given by Theorem 4.1. Thus, utilizing Lemmas 3.8 and
3.2, I, = (e,) for each ne N. Hence, utilizing (2) and (3) of Theorem
4.1, e,0m = €rirmininn and €,4; = €pexriy if j€J,. Thus, (6) of
Theorem 4.1 becomes (6’) and (U, (6')) = (S, (3)). The conditions of
Theorem 5.1 are given by Theorem 4.1 ((1) and (2)).
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