GENERALIZED ω - \mathscr{L}-UNIPOTENT BISIMPLE SEMIGROUPS

R. J. Warne

Let S be a bisimple semigroup and let $E(S)$ be the set of idempotents of S. If $E(S)$ is an ω-chain of rectangular bands ($E_{n}: n \in N$, the nonnegative integers) and \mathscr{L}, Green's equivalence relation, is a left congruence on $E(S)$, we term S a generalized ω - \mathscr{C}-unipotent bisimple semigroup. We characterize S in terms of (I, o), an ω-chain of left zero semigroups ($I_{k}: k \in N$); ($J, *$) an ω-chain of right groups $\left(J_{k}: k \in N\right.$); a homomorphism $(n, r) \rightarrow \alpha_{(n, r)}$ of C, the bicyclic semigroup, into End (I, 0), the semigroup of endomorphisms of (I, o) (iteration); a homomorphism (n, r) $\rightarrow \beta_{(n, r)}$ of C into End ($J, *$); and an (upper) anti-homomorphism $j \rightarrow A_{j}$ of ($J, *$) into T_{I}, the full transformation semigroup on I (A_{j} is "almost" an endomorphism). In fact, $S \cong\left((i,(n, k), j): i \in I_{n}, j \in J_{k}, n, k \in N\right)$ under the multiplication $(i,(n, k), j)(u,(r, s), v)=\left(i \circ\left(u A_{j} \alpha_{(k, n)}\right)\right),(n+r-\min (k, r), k+s-\min$ $\left.(k, r)), j \beta_{(r, s)}{ }^{*} v\right)$ (Theorem 4.1). We then characterize ($J, *$) as a semi-direct product of an ω-chain of right zero semigroups by an ω-chain of groups. Finally, we specialize Theorem 4.1 to obtain our previous characterization of ω - \mathscr{L}-unipotent bisimple semigroups $S(E(S)$ is an ω-chain of right zero semigroups).

We will use the definitions of Clifford and Preston [1] unless otherwise specified. In particular, $\mathscr{R}, \mathscr{L}, \mathscr{C}$, and \mathscr{D} will denote Green's equivalence relations on a semigroup S, i.e., $((a, b) \in \mathscr{R}$ if $a \cup a S=b \cup b S$; $(a, b) \in \mathscr{L}$ if $a \cup S a=b \cup S b ; \mathscr{C}=\mathscr{R} \cap \mathscr{L} ; \mathscr{D}=\mathscr{R} \circ \mathscr{L}((a, b) \in \mathscr{D}$ if there exists $x \in S$ such that $(a, x) \in \mathscr{R}$ and $(x, b) \in \mathscr{L})$. R_{a} will denote the \mathscr{R}-class containing $a \in S$. A semigroup consisting of a single \mathscr{D}-class is termed a bisimple semigroup. This bicyclic semigroup is $C=N \times N$ under the multiplication $(n, m)(p, q)=(n+p-\min (m$, $p), m+q-\min (m, p))$. A semigroup S which is a union of a collection of pairwise disjoint subsemigroups ($S_{y}: y \in Y$) where Y is a semilattice and $S_{y} S_{t} \subseteq S_{y \wedge t}$ for all $y, t \in Y$ is termed a semilattice Y of the semigroups ($S_{y}: y \in Y$).

If $Y=N$ with $n \wedge m=\max (n, m), S$ is termed an ω-chain of the semigroups ($S_{n}: n \in N$). A semigroup is termed regular if $\alpha \in a S \alpha$ for every $a \in S$. A rectangular band is the algebraic direct product of a left zero semigroup $U(x, y \in U$ implies $x y=x)$ and a right zero semigroup. A right group is a semigroup X such that $a, b \in X$ implies there exists a unique $x \in S$ such that $a x=b$. If V is a subset of a semigroup $S, E(V)$ will always denote the set of idempotents of V.

In [4], we defined a generalized \mathscr{L}-unipotent semigroup to be a
regular semigroup S such that $E(S)$ satisfy the condition: e, $f \in E(S)$ and $e f=e$ imply that gegfe $=g e$ for all $g \in E(S)$. Combining [4, Lemma 1] and a result of Clifford and McLean [2, 1, p. 129, Exercise 1], a regular semigroup S is generalized \mathscr{L}-unipotent if and only if $E(S)$ is a semilattice Y of rectangular bands $\left(E_{y}: y \in Y\right)$ and \mathscr{L} is a left congruence on $E(S)$. Since any bisimple semigroup containing an idempotent is regular by a result of Clifford and Miller [1, Theorem 2.11], the reason for the terminology "generalized ω - \mathscr{C}-unipotent bisimple semigroup" is clear. We introduced the term \mathscr{L}-unipotent in [3] to denote a semigroup in which each \mathscr{L}-class contains precisely one idempotent. By [3, Proposition 5], a semigroup S is \mathscr{L}-unipotent if and only if S is regular and $E(S)$ is a semilattice Y of right zero semigroups ($E_{y}: y \in Y$). Hence, the terminology " ω - \mathscr{L}-unipotent bisimple semigroup" is also clear.

Let S be a generalized ω - \mathscr{L}-unipotent bisimple semigroup. In $\S 1$, we define a congruence t on S such that $S / t=C$, the bicyclic semigroup, and give an explicit multiplication for $(E(C)) t^{-1}$, the kernel of $t(\operatorname{ker} t)$. In §2, we describe S as an "extension" of ker t by S / t (the converse of Theorem 4.1). In §3, we prove the direct part of Theorem 4.1. In §4, we state Theorem 4.1 and characterize an ω chain of right groups as a semi-direct product of an ω-chain of right zero semigroups by an ω-chain of groups (Theorem 4.3). Combining Theorem 4.1, Theorem 4.3, and Clifford's characterization of semilattices of groups [1; theorem 4.11], we have characterized generalized ω - \mathscr{L} unipotent bisimple semigroups in terms of groups, ω-chains of left zero semigroups, ω-chains of right zero semigroups, and 'homomorphisms'. In $\S 5$, we obtain our characterization of ω - \mathscr{C}-unipotent bisimple semigroups [5, Theorem 7.11] as a corollary of Theorem 4.1.

1. The congruence t. In this section, S will denote a generalized ω - \mathscr{E}-unipotent bisimple semigroup, i.e., S is a bisimple semigroup such that $E(S)$ is an ω-chain of rectangular bands $\left(E_{n}: n \in N\right)$ and \mathscr{L} is a left congruence on $E(S)$. Recall S is a regular semigroup. Thus, for each $a \in S$, there exists $y \in S$ such that $a y a=a$ and yay $=y$ (for example, if $a=a x a$, let $y=x a x$ [1, Lemma 1.14]). The element y is termed an inverse of a. We will denote the set of all inverses of α by $\mathcal{F}(a)$.

Let $t=\left((x, y) \in S^{2}: x x^{\prime}, y y^{\prime} \in E_{n}\right.$ and $x^{\prime} x, y^{\prime} y \in E_{m}$ for some $m, n \in$ $N, x^{\prime} \in \mathscr{J}(x)$, and $\left.y^{\prime} \in \mathscr{F}(y)\right)$. We first show that t is a congruence on S and that $S / t \cong C$, the bicyclic semigroup. We also note that C may be taken as a set of representative elements for the t-classes of S and that $T=\operatorname{ker} t$ (the union of the collection of t-classes of S containing idempotents) is an ω-chain of rectangular groups.

Finally, we describe T in terms of (I, o), an ω-chain of left zero
semigroups ($\left.I_{n}: n \in N\right) ;\left(J,{ }^{*}\right)$, an ω-chain of right groups $\left(J_{n}: n \in N\right)$; and an anti-homomorphism $j \rightarrow A_{j}$ of J into T_{I}, the full transformation semigroups on I. In fact, $T \cong U\left(I_{n} \times J_{n}: n \in N\right)$ under the multiplication $(i, j)(p, q)=\left(i \circ p A_{j}, j^{*} q\right)$.

Lemma 1.1. If $e_{0} \in E_{0}, R_{e_{0}}$ is a semigroup.
Proof. Lemma 1.1 is a special case of [5, Lemma 3.1].
Remark. Immediately below, we write Theorem 1.2 [5, Theorem 3.3]). This means Theorem 1.2 is obtained by taking " Y " to be a one element set in [5, Theorem 3.3]. ($D_{\dot{\delta}}: \delta \in Y$) is the collection of \mathscr{D}-classes in the semigroup of [5, Theorem 3.3]. We do the same thing in Note 1.3, Propositions 1.4 and 1.5, and Lemmas 1.9-1.12.

Theorem 1.2 [5, Theorem 3.3]. t is a congruence on S and $S / t \cong C$.

Note 1.3 [5, Note 3.4]. If we let $t_{(n, k)}=(n, k) t^{-1}$, the t-classes of S are $\left(t_{(n, k)}: n, k \in N\right)$ with $t_{(n, k)} t_{(r, s)} \subseteq t_{(n+r-\min (k, r), k+s-\min (k, r))}$. We may write $E(S)=\bigcup\left(E_{(k, k)}: k \in N\right)$ where $E_{(k, k)}$ is a rectangular band and $E\left(t_{(k, k)}\right)=E_{(k, k)}$. Actually, $E_{(k, k)}=E_{k}$.

Proposition 1.4 [5, Proposition 3.5]. $t_{(n, k)}=\left(a \in S: a a^{\prime} \in E_{(n, n)}\right.$ and $a^{\prime} \alpha \in E_{(k, k)}$ for some $\left.\alpha^{\prime} \in \mathscr{J}(\alpha)\right)=\bigcup\left(R_{e} \cap L_{f}: e \in E_{(n, n)}\right.$ and $\left.f \in E_{(k, k)}\right)$.

A rectangular group is the algebraic direct product of a group and a rectangular band.

Proposition 1.5 [5, Proposition 3.6]. For each $k \in N, t_{(k, k)}$ is a rectangular group. In fact, $t_{(k, k)} \cong G \times E_{(k, k)}$ where G is a fixed maximal subgroup of S. Furthermore, $t_{(k, k)} t_{(s, s)} \subseteq t_{(\max (k, s), \max (k, s))}$.

REMARK 1.6. If $b \in R_{e} \cap L_{f}(e, f \in E(S))$, there exists $x \in S$ such that $b x=e$. It is shown in the proof of [1, Theorem 2.18] that $b^{-1}=$ $f x e$ is the unique inverse of b contained in $R_{f} \cap L_{e}$ and that $b b^{-1}=e$ and $b^{-1} b=f$.

Note 1.7. Let e_{0} be a fixed element of E_{0} and fix an element $e_{1} \in E_{(1,1)}$ such that $e_{1}<e_{0}$. For example, select any $f \in E_{(1,1)}$ and let $e_{1}=e_{0} f e_{0}$. Hence, $e_{1} \in E_{(1,1)}$ by Note 1.3 and $e_{1}<e_{0}$.

Note 1.8. Select and fix $a \in R_{e_{0}} \cap L_{e_{1}}$. By Remark 1.6, there exists a unique $a^{-1} \in \mathscr{F}(a) \cap R_{e_{1}} \cap L_{e_{0}}$ with $a a^{-1}=e_{0}$ and $a^{-1} a=e_{1}$. Define
$a^{-n}=\left(a^{-1}\right)^{n}$ for all positive integers n and define $a^{0}=e_{0}$. Utilizing Proposition 1.4 and Note 1.3, $a^{-n} a^{k} \in t_{(n, k)}$ for all $n, k \in N$.

Lemma 1.9 [5, Lemma 3.9]. $a^{k} a^{-k}=e_{0}$ for all $k \in N$.

Lemma 1.10 [5, Lemma 3.10].

$$
a^{k} a^{-r}= \begin{cases}a^{k-r} & \text { if } k>r \\ a^{-(r-k)} & \text { if } r>k \\ e_{0} & \text { if } r=k\end{cases}
$$

Lemma 1.11 [5, Lemmas 3.11, 3.12].
(1) $a^{-k} a^{p} a^{-r} a^{s}=a^{-(k+r-\min (r, p))} a^{p+s-\min (r, p)}$
(2) $a^{-r} a^{r} \in E_{(r, r)}$ for all $r \in N$.

For brevity, let $T_{k}=t_{(k, k)}$ and let $T=\bigcup\left(T_{k}: k \in N\right)$. Hence, T is an ω-chain of the rectangular groups ($T_{k}: k \in N$) by Proposition 1.5. Since $E(S)=E(T)$ by Note 1.3, T is generalized \mathscr{L}-unipotent. Utilizing Proposition 1.5, $T_{k}=G \times M_{k} \times N_{k}$ where G is a group, M_{k} is a left zero semigroup, and N_{k} is a right zero semigroup. By Lemma 1.11, $a^{-k} a^{k} \in E\left(T_{k}\right)$. Let I_{k} denote the set of idempotents of the \mathscr{L}-class of T_{k} containing $a^{-k} a^{k}$ and let J_{k} denote the \mathscr{R}-class of T_{k} containing $a^{-k} a^{k}$. We may suppose that $l_{k} \in M_{k} \cap N_{k}, a^{-k} a^{k}=$ $\left(e, l_{k}, l_{k}\right)$ where e is the identity of $G, I_{k}=(e) \times M_{k} \times\left(l_{k}\right)$, and $J_{k}=$ $G \times\left(l_{k}\right) \times N_{k}$. For brevity, let $e_{k}=\left(e, l_{k}, l_{k}\right)$. Hence, using Lemma 1.11, $e_{m} e_{n}=e_{\max (n, m)}$.

Let $I=\bigcup\left(I_{n}: n \in N\right)$ and let $J=\bigcup\left(J_{n}: n \in N\right)$.
Lemma 1.12. I is an ω-chain of left zero semigroups $\left(I_{n}: n \in N\right)$.

Proof. By a direct calculation, I_{n} is a left zero semigroup for each $n \in N$. Let $x \in I_{k}$ and let $y \in I_{n}$. Hence, $x \mathscr{L} e_{k}$ and $y_{0} \mathscr{L} e_{n}$. Since T is generalized \mathscr{L}-unipotent, $x y \mathscr{L} x e_{n}$. Thus, since

$$
x e_{n} \mathscr{L} e_{k} e_{n}, x y \mathscr{L} e_{\max (k, n)}
$$

Hence, $x y \in I_{\max (k, n)}$.
Lemma 1.13. For each $n \in N, J_{n}$ is a right group. If $x \in J_{n}, y \in J_{m}$, and $n \geqq m, x y \in J_{n}$.

Proof. By [1, Theorem 1.27], J_{n} is a right group for each $n \in N$. Let $x \in J_{n}, y \in J_{m}$, and $n \geqq m$. Hence, $y \mathscr{R} e_{m}$ implies $x y \mathscr{R} x e_{m}$. Since $e_{n}\left(x e_{m}\right)=\left(e_{n} x\right) e_{m}=x e_{m}$ and $x e_{m} \in T_{n}, x e_{m} \in J_{n}$ by a simple calculation.

Thus, $x y \in J_{n}$.
Lemma 1.14. Every element of T may be uniquely expressed in the form $x=i j$ with $i \in I_{n}$ and $j \in J_{n}$ for some $n \in N$.

Proof. If $x=(g, i, j) \in T_{n}, x=\left(e, i, l_{n}\right)\left(g, l_{n}, j\right)$.
If X is a set, T_{X} will denote the semigroup (iteration) of mappings of X into X.

Lemma 1.15. There exists a mapping $j \rightarrow A_{j}$ of J into T_{I} and a mapping $p \rightarrow B_{p}$ of I into T_{J} such that $I_{n} A_{j} \subseteq I_{\max (n, m)}$ for $j \in J_{m}$ and $J_{n} B_{p} \subseteq J_{\max (n, m)}$ for $p \in I_{m}$. If $j \in J$ and $p \in I, j p=p A_{j} j B_{p}$. Furthermore, $j p \mathscr{R} p A_{j}(\in T)$ and $j p \mathscr{L} j B_{p}(\in T)$.

Proof. Let $j \in J_{m}$ and $p \in I_{n}$. Thus, $j p \in T_{\max (n, n)}$. Hence, by Lemma 1.14, there exists a unique $u \in I_{\max (m, n)}$ and $v \in J_{\max (m, n)}$ such that $j p=u v$. Let $u=p A_{j}$ and $v=j B_{p}$. The last statement is valid by a simple calculation.

Lemma 1.16. If $j \in J, j B_{e_{v}}=e_{v} j e_{v}$. If $j \in J_{r}$ and $r \geqq v, j B_{e_{v}}=j e_{v}$.
Proof. Let $j \in J_{r}$ and suppose that $v>r$. Thus, $j e_{v} \in T_{v}$ and $\left(j e_{v}\right) e_{v}=j e_{v}$. Hence, $j e_{v}=\left(g, i, l_{v}\right)$ for some $g \in G$ and $i \in M_{v}$. By Lemma 1.15, $j e_{v}=e_{v} A_{j} j B_{e_{v}}$ with $j B_{e_{v}} \mathscr{S} j e_{v}(\in T)$. Hence, $j B_{e_{v}}=\left(g, l_{v}\right.$, $\left.l_{v}\right)$. Thus, $j B_{e_{v}}=\left(e, l_{v}, l_{v}\right)\left(g, i, l_{v}\right)=e_{v} j e_{v}$. Next, suppose that $r \geqq v$. Hence, $j e_{v} \in J_{r}$ by Lemma 1.13. Thus, utilizing Lemma 1.15, $e_{r}\left(j e_{v}\right)=$ $j e_{v}=e_{v} A_{j} j B_{e_{v}}$ where $e_{v} A_{j} \in I_{r}$ and $j B_{e_{v}} \in J_{r}$. Hence, $j B_{e_{v}}=j e_{v}$ by Lemma 1.14. This establishes the second sentance of the lemma. Since, for $r \geqq v, e_{v} j=e_{v} e_{r} j=e_{r} j=j, j B_{e_{v}}=e_{v} j e_{v}$ for $r \geqq v$.

Lemma 1.17. $(e, f) \in \mathscr{L} \cap(E(T))^{2}$ and $p \in T$ imply $(p e, p f) \in$ $\mathscr{L}(\in T)$.

Proof. Suppose $(e, f) \in \mathscr{C} \cap(E(T))^{2}$. Hence, for

$$
p \in T,\left(p^{-1} p e, p^{-1} p f\right) \in \mathscr{L}
$$

(p^{-1} is the group inverse of p in the group containing p). Thus, $p^{-1} p e p^{-1} p f=p^{-1} p e$ and $p^{-1} p f p^{-1} p e=p^{-1} p f$. Hence, $\left(p e p^{-1}\right) p f=p e$ and $\left(p f p^{-1}\right) p e=p f$. Thus, $(p e, p f) \in \mathscr{L}(\in T)$.

Lemma 1.18. If $p \in I_{r}, B_{p}=B_{e_{r}}$.
Proof. If $n, m \in N$, let $n m=\max (n, m)$ in this proof. Let $j \in J_{s}$
and $p \in I_{r}$. Hence $e_{r s} j=\left(g, l_{r s}, j^{\prime}\right)$ for some $g \in G$ and $j^{\prime} \in N_{r s}$ by Lemma 1.13. By Lemma 1.12, $p e_{r s}=\left(e, n, l_{r s}\right)$ for some $n \in M_{r s}$. Thus,

$$
e_{r s} j p e_{r s}=\left(g, l_{r s}, l_{r s}\right)=e_{r s} j e_{r} e_{r s}
$$

Hence, if $j p=(w, m, n)$ and $j e_{r}=(u, c, d)$, then $w=u$. Since (p, $\left.e_{r}\right) \in \mathscr{L},\left(j p, j e_{r}\right) \in \mathscr{L}(\in T)$ by Lemma 1.17. Hence, $n=d$. Thus, $j p=$ $(w, m, n)=\left(e, m, l_{r s}\right)\left(w, l_{r s}, n\right)$ while $j e_{r}=(w, c, n)=\left(e, c, l_{r s}\right)\left(w, l_{r s}, n\right)$. Hence, utilizing Lemmas 1.14 and 1.15, $j B_{p}=j B_{e_{r}}$.

Lemma 1.19. Let $r \in J_{u}, s \in J_{v}, v \leqq u$, and $z \in N$. Then, (a) ($\left.r s\right) B_{e_{z}}=$ $r B_{e_{\max (z, v)}} s B_{e_{z}}$ (b) if $x \in I_{z}, x A_{r s}=x A_{s} A_{r}$.

Proof. Let $r \in J_{u}, s \in J_{v}, u \geqq v$, and $x \in I_{z}$. Hence, utilizing Lemmas 1.13 and $1.15,(r s) x=x A_{r_{s}}(r s) B_{x}$ while

$$
r(s x)=r\left(x A_{s} s B_{x}\right)=\left(r\left(x A_{s}\right)\right)\left(s B_{x}\right)=x A_{s} A_{r}\left(r B_{x A_{s}} s B_{x}\right) .
$$

Thus, utilizing Lemma 1.14, $x A_{r s}=x A_{s} A_{r}$ and ($\left.r s\right) B_{x}=r B_{x A_{s}} s B_{x}$. Utilizing Lemmas 1.15 and 1.18, $(r s) B_{e_{z}}=r B_{e_{\max (z, v)}} s B_{e_{z}}$.

If $x \in J_{u}$ and $y \in J_{v}$, define $x^{*} y=x B_{e_{v}} y$.
Lemma 1.20. If $x \in J_{u}$ and $y \in J_{v}, x^{*} y=e_{v} x y$. If $u \geqq v, x^{*} y=x y$.
Proof. Let $x \in J_{u}$ and $y \in J_{v}$. Hence, utilizing Lemma 1.16,

$$
x^{*} y=x B_{e_{v}} y=\left(e_{v} x e_{v}\right) y=e_{v} x\left(e_{v} y\right)=e_{v} x y
$$

If $u \geqq v$, again utilizing Lemma 1.16, $x^{*} y=x B_{e_{v}} y=\left(x e_{v}\right) y=x\left(e_{v} y\right)=x y$.
Lemma 1.21. ($J,{ }^{*}$) is an ω-chain of right groups $\left(J_{n}: n \in N\right)$.
Proof. Utilizing Lemmas 1.13 and $1.20,\left(J_{n},{ }^{*}\right)$ is a right group for each $n \in N$ and $J_{n}{ }^{*} J_{m} \cong J_{\max (n, m)}$. We must just establish associativity. Let $i \in J_{s}, p \in J_{y}$, and $w \in J_{z}$. Hence, utilizing Lemmas 1.15 and 1.13, $i^{*}\left(p^{*} w\right)=i^{*}\left(p B_{e_{z}} w\right)=i B_{e_{\max (y, z)}} p B_{e_{z}} w$ while

$$
\left(i^{*} p\right)^{*} w=\left(i B_{e_{y}} p\right)^{*} w=\left(i B_{e_{y}} p\right) B_{e_{z}} w
$$

Utilizing Lemma 1.19 (a) ($\left.i B_{e_{y}} p\right) B_{e_{z}}=i B_{e_{y}} B_{e_{\max (y, z)}} p B_{e_{z}}$. However, utilizing Lemma 1.16,

$$
i B_{e_{y}} B_{e_{\max (y, z)}}=e_{\max (y, z)} e_{y} i e_{y} e_{\max (y, z)}=e_{\max (y, z)} i e_{\max (y, z)}=i B_{e_{\max (y, z)} .}
$$

Hence, $\left(i^{*} p\right)^{*} w=i B_{e_{\max (y, z)}} p B_{e_{z}} w=i^{*}\left(p^{*} w\right)$.
Definition 1.22. Let the semigroup X be an ω-chain of semi-
groups $\left(X_{n}: n \in N\right)$ and let ϕ be a mapping of X into a semi-group Y. If $r \in X_{n}, s \in X_{m}$, and $n \geqq m$ imply ($\left.r s\right) \phi=s \phi r \phi, \phi$ is termed an upper anti-homomorphism of X into Y.

Lemma 1.23. $r \rightarrow A_{r}$ is an upper anti-homomorphism of $\left(J,{ }^{*}\right)$ into T_{I}.

Proof. Combine Lemmas 1.20 and 1.19 (b).
Lemma 1.24. If $j \in J_{v}$ and $i \in I_{z}, j i=i A_{j} j e_{z}=i A_{j} j^{*} e_{z}$.
Proof. Let $j \in J_{v}$ and $i \in I_{z}$. Hence, $j i=i A_{j} j B_{i}$ by Lemma 1.15. However, utilizing Lemmas 1.18 and 1.16, $j B_{i}=j B_{e_{z}}=e_{z} j e_{z}$. Since $i A_{j} \in I_{\max (v, z)}, i A_{j}=i A_{j} e_{\max (v, z)}$. Hence, $j i=i A_{j} e_{\max (v, z)} e_{z} j e_{z}=i A_{j} j e_{z}$. However, $e_{z} j e_{z}=j^{*} e_{z}$ by Lemma 1.20. Hence, $j i=i A_{j} j^{*} e_{z}$.

Lemma 1.25. If $r, s \in I$ with $r \in I_{u},(r s) A_{x}=r A_{x} s A_{x * e_{u}}$ for all $x \in J$.
Proof. Let $r, s \in I$ with $r \in I_{u}$ and let $x \in J$. Hence, utilizing Lemmas 1.15 and 1.12, $x(r s)=(r s) A_{x} x B_{r s}$ while

$$
(x r) s=\left(r A_{x} x B_{r}\right) s=r A_{x}\left(x B_{r} s\right)=r A_{x}\left(s A_{x B_{r}} x B_{r} B_{s}\right)=r A_{x} s A_{x B_{r}} x B_{r} B_{s}
$$

Hence, utilizing Lemmas 1.15, 1.12, and 1.14, $(r s) A_{x}=r A_{x} s A_{x_{B_{r}}}$. Utilizing Lemmas 1.18, 1.16, and 1.20, $x B_{r}=x B_{e_{u}}=e_{u} x e_{u}=x^{*} e_{u}$.

Remark 1.26. Results of [6] could have been applied to characterize T.
2. Structure theorem for generalized ω - \mathscr{L}-unipotent bisimple semigroups. (Proof of converse.) In this section, we complete the proof of the converse of our structure theorem for generalized ω -\mathscr{L}-unipotent bisimple semigroups (Theorem 2.21).

We will use a sequence of twenty entries to establish Theorem 2.21. S will denote a generalized ω - \mathscr{L}-unipotent bisimple semigroup.

Lemma 2.1. Every element of S may be uniquely expressed in the form $x=i a^{-n} a^{k} j$ where $i \in I_{n}$ and $j \in J_{k}$.

Proof. Let $x \in t_{(n, k)}$. Hence, $(x, e) \in \mathscr{R}$ for some $e \in E_{n}$ by Proposition 1.4. Thus, $(x, i) \in \mathscr{R}$ for some $i \in I_{n}$. Thus, since $a^{-n} a^{n} \in I_{n}$, a left zero semigroup, $x=i x=\left(i a^{-n} a^{n}\right) x=i a^{-n} a^{n} x$. Since $a^{n} \in R_{e_{0}}$ by Note 1.8 and Lemma 1.1 and $a^{k} a^{-k}=e_{0}$ by Lemma 1.9 , $a^{k} a^{-k} a^{n}=$
a^{n}. Hence $x=i a^{-n}\left(a^{k} a^{-k} a^{n}\right) x=\left(i a^{-n} a^{k}\right)\left(a^{-k} a^{n} x\right)$. However, $a^{-k} a^{n} x \in$ $t_{(k, k)}$ by Notes 1.8 and 1.3. Thus, since $a^{-k} a^{k}\left(a^{-k} a^{n} x\right)=a^{-k} a^{n} x$ and $a^{-k} a^{k} \in J_{k}, a^{-k} a^{n} x \in J_{k}$ by Proposition 1.5. Hence, $x=i a^{-n} a^{k} j$ where $i \in I_{n}$ and $j \in J_{k}$. We next establish uniqueness. Suppose that $x=$ $i a^{-n} a^{k} j=u a^{-r} a^{s} v\left(i \in I_{n}, j \in J_{k}, u \in I_{r}\right.$, and $\left.v \in J_{s}\right)$. Thus, using Note 1.3, $x \in t_{(n, k)} \cap t_{(r, s)}$ and, hence, $n=r$ and $k=s$. Thus, $i a^{-n} a^{k} j=$ $u a^{-n} a^{k} v$. Hence, $a^{-n} a^{n} i a^{-n} a^{k} j=a^{-n} a^{n} u a^{-n} a^{k} v$. Thus, since $a^{-n} a^{n}, i, u \in$ I_{n}, a left zero semigroup, $a^{-n} a^{n} a^{-n} a^{k} j=a^{-n} a^{n} a^{-n} a^{k} v$. Hence, $a^{-n} a^{k} j=$ $a^{-n} a^{k} v$. Thus, $a^{-k} a^{n} a^{-n} a^{k} j=a^{-k} a^{n} a^{-n} a^{k} v$. Hence, $a^{-k} a^{k} j=a^{-k} a^{k} v$. Since $a^{-k} a^{k} \in E\left(J_{k}\right)$ and $j, v \in J_{k}$, a right group, $j=v$. Thus, $i a^{-n} a^{k} j=$ $u a^{-n} a^{k} j$. Since J_{k} is a right group, there exists $z \in J_{k}$ such that $j z=$ $a^{-k} a^{k}$. Hence $i a^{-n} a^{k} j z=u a^{-n} a^{k} j z$ implies $i a^{-n} a^{k} a^{-k} a^{k}=u a^{-n} a^{k} a^{-k} a^{k}$. Thus, $i a^{-n} a^{k}=u a^{-n} a^{k}$. Hence $i a^{-n} a^{k} a^{-k} a^{n}=u a^{-n} a^{k} a^{-k} a^{n}$. Thus,

$$
i a^{-n} a^{n}=u a^{-n} a^{n}
$$

Since $i, u, a^{-n} a^{n} \in I_{n}$, a left zero semigroup, $i=u$.
Definition 2.2. If $u \in T$ and $n, k \in N$, define $u \nu_{(k, n)}=a^{-n} a^{k} u a^{-k} a^{n}$.
Lemma 2.3. $\quad T_{r} \boldsymbol{\nu}_{(k, n)} \cong T_{n+r-\min (k, r)}$.
Proof. Let $g \in T_{r}$. Hence, utilizing Note 1.3, $g \boldsymbol{\nu}_{(k, n)}=a^{-n} a^{k} g a^{-k} a^{n} \in$ $t_{(n, k)(r, r)(k, n)}=T_{n+r-\min (k, r)}$.

Lemma 2.4. Let $g_{r} \in T_{r}$ and $h_{s} \in T_{s}$. If $k \geqq r, s$ or $r=s \geqq k$, $\left(g_{r} h_{s}\right) \boldsymbol{\nu}_{(k, n)}=g_{r} \nu_{(k, n)} h_{s} \boldsymbol{\nu}_{(k, n)}$. In particular, $\boldsymbol{\nu}_{(k, n)}$ is a homomorphism of T_{r} into $T_{n+r-\min (k, r)}$.

Proof. Let $g_{r} \in T_{r}$ and $h_{s} \in T_{s}$ with $k \geqq r$, s. Hence,

$$
\left(g_{r} h_{s}\right) \nu_{(k, n)}=a^{-n} a^{k} g_{r} h_{s} a^{-k} a^{n}=a^{-n} a^{k}\left(a^{-k} a^{k} g_{r}\right) u_{k} a^{-k} a^{k} f_{k}\left(h_{s} a^{-k} a^{k}\right) a^{-k} a^{n}
$$

where $\left(u_{k}, a^{-k} a^{k} g_{r}\right) \in \mathscr{L}$ with $u_{k} \in E\left(J_{k}\right)$ and $\left(f_{k}, h_{s} a^{-k} a^{k}\right) \in \mathscr{R}$ with $f_{k} \in I_{k}$. Hence, $\left(g_{r} h_{s}\right) \nu_{(k, n)}=a^{-n} a^{k} g_{r} a^{-k} a^{k} h_{s} a^{-k} a^{n}=\left(a^{-n} a^{k} g_{r} a^{-k} a^{n}\right)\left(a^{-n} a^{k} h_{s} a^{-k} a^{n}\right)=$ $g_{r} \nu_{(k, n)} h_{s} \boldsymbol{\nu}_{(k, n)}$. Next suppose that $r=s \geqq k$. Then,

$$
\left(g_{r} h_{r}\right) \nu_{(k, n)}=a^{-n} a^{k} g_{r} v_{r} a^{-k} a^{k} f_{r} h_{r} a^{-k} a^{n}
$$

where $\left(v_{r}, g_{r}\right) \in \mathscr{L}$ with $v_{r} \in E\left(J_{r}\right)$ and $\left(f_{r}, h_{r}\right) \in \mathscr{R}$ with $f_{r} \in I_{r}$. Hence, $\left(g_{r} h_{r}\right) \boldsymbol{\nu}_{(k, n)}=\left(a^{-n} a^{k} g_{r} a^{-k} a^{n}\right)\left(a^{-n} a^{k} h_{r} a^{-k} a^{n}\right)=g_{r} \nu_{(k, n ;} h_{r} \nu_{(k, n)}$.

Definition 2.5. Let $\nu_{(k, n)} \mid I=\alpha_{(k, n)}$ and $\nu_{(k, n)} \mid J=\beta_{(k, n)}$.
LEMMA 2.6. (a) $I_{r} \alpha_{(k, n)} \subseteq I_{n+r-\min (k, r)} \quad$ (b) $J_{r} \beta_{(k, n)} \subseteq J_{n+r-\min (k, r)}$.
Proof. (a) By Lemma 2.3, $I_{r} \boldsymbol{\nu}_{(k, n)} \subseteq T_{n}$ if $k \geqq r$ and $I_{r} \nu_{(k, n)} \subseteq T_{n+r-k}$
if $r \geqq k$. If $k \geqq r, \nu_{(k, n)}$ is a homomorphism of T_{r} into T_{n} by Lemma 2.4. Hence, $I_{r} \nu_{(k, n)} \cong E\left(T_{n}\right)$. Let $g_{r} \in I_{r}$. Hence, $g_{r} \mathscr{L} a^{-r} a^{r}\left(\in T_{r}\right)$. Thus, $g_{\tau} \nu_{(k, n)} \mathscr{L} a^{-n} a^{k} a^{-r} a^{r} a^{-k} a^{n}\left(\in T_{n}\right)$. However,

$$
a^{-n} a^{k} a^{-r} a^{r} a^{-k} a^{n}=a^{-n} a^{n}
$$

by Lemma 1.11. Hence, $g_{r} \nu_{(k, n)} \in I_{n}$ if $k \geqq r$. The case $r \geqq k$ is treated similarly. To prove (b), just replace " I " by " J " and " \mathscr{L} " by " \mathscr{R} " in the proof of (a).

Definition 2.7. If X is a semigroup End X will denote the semigroup of endomorphisms of X (iteration).

Lemma 2.8. $\alpha_{(k, n)} \in \operatorname{End} I$ for each $n, k \in N$.
Proof. Let $i_{r} \in I_{r}$ and $i_{s} \in I_{s}$. If $r \geqq k, i_{r} a^{-k} a^{k} i_{s}=i_{r} i_{s}$. Hence,

$$
\begin{aligned}
\left(i_{r} i_{s}\right) \alpha_{(k, n)} & =a^{-n} a^{k} i_{r} i_{s} a^{-k} a^{n}=a^{-n} a^{k} i_{i} a^{-k} a^{k} i_{s} a^{-k} a^{n} \\
& =a^{-n} a^{k} i_{r} a^{-k} a^{n} a^{-n} a^{k} i_{s} a^{-k} a^{n}=i_{r} \alpha_{(k, n)} i_{s} \alpha_{(k, n)} .
\end{aligned}
$$

Next, suppose that $k>r$. Since S is generalized \mathscr{L}-unipotent, $i_{r} \mathscr{L} a^{-r} a^{r}$ implies $a^{-k} a^{k} i_{r} \mathscr{L} a^{-k} a^{k} a^{-r} a^{r}$. Thus, $a^{-k} a^{k} i_{r} \mathscr{L} a^{-k} a^{k}$ by Lemma 1.11. Hence, $a^{-k} a^{k} i_{r} \in I_{k}$. Thus,

$$
\begin{aligned}
\left(i_{r} i_{s}\right) \alpha_{(k, n)} & =a^{-n} a^{k} i_{r} i_{s} a^{-k} a^{n}=a^{-n} a^{k}\left(a^{-k} a^{k} i_{r}\right) a^{-k} a^{k} i_{s} a^{-k} a^{n} \\
& =\left(a^{-n} a^{k} i_{r} a^{-k} a^{n}\right)\left(a^{-n} a^{k} i_{s} a^{-k} a^{n}\right)=i_{r} \alpha_{(k, n)} i_{s} \alpha_{(k, n)} .
\end{aligned}
$$

Lemma 2.9. $(n, k) \rightarrow \alpha_{(n, k)}$ is a homomorphism of C into End I.
Proof. Let $g \in I$. We will employ Lemma 1.11. Thus,

$$
\begin{aligned}
g \alpha_{(r, s)} \alpha_{(n, p)} & =a^{-p} a^{n} a^{-s} a^{r} g a^{-r} a^{s} a^{-n} a^{p} \\
& =a^{-(p+s-\min (n, s))} a^{n+r-\min (n, s)} g a^{-(r+n-\min (n, s))} a^{s+p-\min (n, s)} \\
& =g \alpha_{(r, s)(n, p)}
\end{aligned}
$$

We next establish that $\beta_{(n, k)} \in \operatorname{End}\left(J,{ }^{*}\right)$. This will be accomplished by Lemmas 2.10-2.15.

Lemma 2.10. $\beta_{(1,0)} \in \operatorname{End}\left(J,{ }^{*}\right)$.
Proof. Let $w \in J_{p}$ and $u_{s} \in J_{s}$. If $p=s, \beta_{(1,0)} \in \operatorname{End}(J, *)$ by Lemmas 2.4, 1.20, and 2.6(b), and Definition 2.5. Let us first suppose $s=0$. Utilizing Lemmas 1.13, 1.11, Note 1.8, and Definition 2.5,

$$
\begin{aligned}
\left(w u_{0}\right) a^{-1} & =a^{-p} a^{p} a^{-1} a\left(w u_{0}\right) a^{-1}=a^{-p} a^{p} a^{-1}\left(w u_{0}\right) \beta_{(1,0)} \\
& =a^{-p} a^{p} a^{-1} a^{0}\left(w u_{0}\right) \beta_{(1,0)}=e_{p} a^{-p} a^{p-1}\left(w u_{0}\right) \beta_{(1,0)} .
\end{aligned}
$$

We note that $\left(w u_{0}\right) \beta_{(1,0)} \in J_{p-1}$ by Lemma 2.6(b). Utilizing Note 1.8, Lemmas 1.15, 1.16, and Definition 2.5, $u_{0} a^{-1}=u_{0} e_{1} a^{-1}=e_{1} A_{u_{0}} e_{1} u_{0} e_{1} a^{-1}=$ $e_{1} A_{u_{0}} a^{-1} a u_{0} a^{-1}=e_{1} A_{u_{0}} a^{-1}\left(u_{0} \beta_{(1,0)}\right)$. Hence, utilizing Lemmas 1.15, 1.23, 1.18, 1.16, and 1.11, and Definition 2.5,

$$
\begin{aligned}
w u_{0} a^{-1} & =w\left(e_{1} A_{u_{0}}\right) a^{-1}\left(u_{0} \beta_{(1,0)}\right)=e_{1} A_{w u_{0}} e_{1} w e_{1} a^{-1}\left(u_{0} \beta_{(1,0)}\right) \\
& =e_{1} A_{w u_{0}} a^{-1}\left(a w a^{-1}\left(u_{0} \beta_{(1,0)}\right)\right)=e_{1} A_{w u_{0}} a^{-1}\left(w \beta_{(1,0)}\right) u_{0} \beta_{(1,0)} \\
& =e_{1} A_{w u_{0}} a^{-p} a^{p} a^{-1} a^{0}\left(w \beta_{(1,0)}\right) u_{0} \beta_{(1,0)} \\
& =e_{1} A_{w u_{0}} a^{-p} a^{p-1}\left(w \beta_{(1,0)}\right) u_{0} \beta_{(1,0)} .
\end{aligned}
$$

Utilizing Lemmas 1.15, 2.6(b), and 1.13, $e_{1} A_{w u_{0}} \in I_{p}$ and $w \beta_{(1,0)} u_{0} \beta_{(1,0)} \in$ J_{p-1}. Hence, $\left(w u_{0}\right) \beta_{(1,0)}=w \beta_{(1,0)} u_{0} \beta_{(1,0)}$ by Lemma 2.1. Thus, utilizing Lemma 1.20 and 2.6(b), $\left(w^{*} u_{0}\right) \beta_{(1,0)}=w \beta_{(1,0)} * u_{0} \beta_{(1,0)}$. Next, we assume that $p \geqq s \geqq 1$. Hence, utilizing Lemmas 1.11, 2.6(b), and 1.20,

$$
\begin{aligned}
\left(w^{*} u_{s}\right) \beta_{(1,0)} & =\left(w u_{s}\right) \beta_{(1,0)}=a w u_{s} a^{-1}=a w a^{-s} a^{s} u_{s} a^{-1} \\
& =a w a^{-1} a a^{-s} a^{s} u_{s} a^{-1}=\left(a w a^{-1}\right)\left(a u_{s} a^{-1}\right) \\
& =w \beta_{(1,0)} u_{s} \beta_{(1,0)}=w \beta_{(1,0)} * u_{s} \beta_{(1,0)}
\end{aligned}
$$

Finally, we assume $s>p$. Utilizing Lemmas 1.20, 1.13, 1.10 and the case ($p \geqq s$) just established,

$$
\begin{aligned}
\left(w^{*} u_{s}\right) \beta_{(1,0)} & =\left(\left(e_{s} w\right) u_{s}\right) \beta_{(1,0)}=\left(e_{s} w\right) \beta_{(1,0)} u_{s} \beta_{(1,0)}=e_{s} \beta_{(1,0)} w \beta_{(1,0)} u_{s} \beta_{(1,0)} \\
& =a a^{-s} a^{s} a^{-1} w \beta_{(1,0)} u_{s} \beta_{(1,0)}=e_{s-1} w \beta_{(1,0)} u_{s} \beta_{(1,0)}
\end{aligned}
$$

Since $u_{s} \beta_{(1,0)} \in J_{s-1}$ by Lemma 2.6(b), $e_{s-1} w \beta_{(1,0)} u_{s} \beta_{(1,0)}=w \beta_{(1,0)}^{*} u_{s} \beta_{(1,0)}$ by Lemma 1.20. Hence, $\left(w^{*} u_{s}\right) \beta_{(1,0)}=w \beta_{(1,0)}^{*} u_{s} \beta_{(1,0)}$.

Lemma 2.11. $\beta_{(0,0)} \in \operatorname{End}\left(J,{ }^{*}\right)$.
Proof. Let $u_{r} \in J_{r}$ and $v_{s} \in J_{s}$. Utilizing Lemmas 1.20 and 2.6(b),

$$
\begin{aligned}
\left(u_{r}^{*} v_{s}\right) \beta_{(0,0)} & =\left(e_{s} u_{r} v_{s}\right) \beta_{(0,0)}=e_{0} e_{s} u_{r} v_{s} e_{0}=e_{s} e_{0} u_{r} e_{0} e_{s} v_{s} e_{0}=e_{s} e_{0} u_{r} e_{0} e_{0} v_{s} e_{0} \\
& =e_{s}\left(u_{r} \beta_{(0,0)}\right) v_{s} \beta_{(0,0)}=u_{r} \beta_{(0,0)} * v_{s} \beta_{(0,0)} .
\end{aligned}
$$

Lemma 2.12. ($n, k) \rightarrow \beta_{(n, k)}$ is a homomorphism of C into T_{J}.
Proof. Replace " I " by " J " and " α " by " β " in the proof of Lemma 2.9.

Lemma 2.13. $\beta_{(k, 0)} \in \operatorname{End}\left(J,{ }^{*}\right)$ for all $k \in N$.
Proof. We have shown that $\beta_{(0,0)}$ in End $\left(J,{ }^{*}\right)($ Lemma 2.11) and that $\beta_{(1,0)} \in \operatorname{End}\left(J,{ }^{*}\right)$ (Lemma 2.10). Suppose that $\beta_{(n, 0)} \in \operatorname{End}\left(J,{ }^{*}\right)$.

We show that $\beta_{(n+1,0)} \in \operatorname{End}\left(J,{ }^{*}\right)$. Let $g, h \in J$. Hence, utilizing Lemma 2.12,

$$
\begin{aligned}
\left(g^{*} h\right) \beta_{(n+1,0)} & =\left(g^{*} h\right) \beta_{(n, 0)} \beta_{(1,0)}=\left(g \beta_{(n, 0)}{ }^{*} h \beta_{(n, 0)}\right) \beta_{(1,0)} \\
& =g \beta_{(n, 0)} \beta_{(1,0)} * h \beta_{(n, 0)} \beta_{(1,0)}=g \beta_{(n+1,0)} * h \beta_{(n+1,0)} .
\end{aligned}
$$

Lemma 2.14. $\beta_{(0, k)} \in \operatorname{End}\left(J,{ }^{*}\right)$ for all $k \in N$.
Proof. Let $u_{r} \in J_{r}$ and $v_{s} \in J_{s}$. First, assume $s \geqq r$. Utilizing Lemma 1.20, $\left(u_{r}{ }^{*} v_{s}\right) \beta_{(0, k)}=\left(e_{s} u_{r} v_{s}\right) \beta_{(0, k)}$. Since $u_{r} \mathscr{R} e_{r}, e_{s} u_{r} \mathscr{R} e_{s} e_{r}=e_{s}$. Hence, utilizing Lemma 2.4, $\left(\left(e_{s} u_{r}\right) v_{s}\right) \beta_{(0, k)}=\left(e_{s} u_{r}\right) \beta_{(0, k)} v_{s} \beta_{(0, k)}$. Utilizing Definition 2.5, Note 1.8, Lemma 1.1, and Lemma 1.9, $\left(e_{s} u_{r}\right) \beta_{(0, k)}=$ $a^{-k} e_{0}\left(e_{s} u_{r}\right) e_{0} a^{k}=a^{-k} e_{s} u_{r} a^{k}=a^{-k} e_{s} a^{k} a^{-k} u_{r} a^{k}=\left(a^{-k} a^{-s} a^{s} a^{k}\right)\left(a^{-k} a^{0} u_{r} a^{-0} a^{k}\right)=$ $e_{s+k}\left(u_{r} \beta_{(0, k)}\right)$. Since $v_{s} \beta_{(0, k)} \in J_{s+k}$ by Lemma 2.6(b), $e_{s+k} u_{r} \beta_{(0, k)} v_{s} \beta_{(0, k)}=$ $u_{r} \beta_{(0, k)}{ }^{*} v_{s} \beta_{(0, k)}$ by Lemma 1.20. Thus, $\left(u_{r}{ }^{*} v_{s}\right) \beta_{(0, k)}=u_{r} \beta_{(0, k)}{ }^{*} v_{s} \beta_{(0, k)}$. We utilize Lemmas 1.20 and 1.9, and Definition 2.5 for the case $r>s$.

Lemma 2.15. $\quad \beta_{(n, k)} \in \operatorname{End}\left(J,{ }^{*}\right)$ for all $n, k \in N$.
Proof. Let $g, h \in J$. Hence, utilizing Lemmas 2.12, 2.13, and 2.14,

$$
\begin{aligned}
\left(g^{*} h\right) \beta_{(n, k)} & =\left(g^{*} h\right) \beta_{(n, 0)(0, k)}=\left(g^{*} h\right) \beta_{(n, 0)} \beta_{(0, k)}=\left(g \beta_{(n, 0)} * h \beta_{(n, 0)}\right) \beta_{(0, k)} \\
& =g \beta_{(n, 0)} \beta_{(0, k)}{ }^{*} h \beta_{(n, 0)} \beta_{(0, k)}=g \beta_{(n, k)} * h \beta_{(n, k)} .
\end{aligned}
$$

Lemma 2.16. $(n, k) \rightarrow \beta_{(n, k)}$ is a homomorphism of C into $\operatorname{End}\left(J,{ }^{*}\right)$.
Proof. Combine Lemmas 2.12 and 2.15.
If $a, b \in I$, define $a \circ b=a b$.
Lemma 2.17. $S \cong\left((i,(n, k), j): i \in I_{n}, j \in J_{k}, n, k \in N\right)$ under the multiplication $(i,(n, k), j)(u,(r, s), v)=\left(i \circ\left(u A_{j} \alpha_{(k, n)}\right),(n+r-\min (k, r)\right.$, $\left.k+s-\min (k, r)), j \beta_{(r, s)}{ }^{*} v\right)$.

Proof. Let $i \in I_{n}, j \in J_{k}, u \in I_{r}$, and $v \in J_{s}$. Hence, utilizing Lemmas 1.24, 1.15, 1.11, 1.9, 2.6(b), 1.20, and Definition 2.5,

$$
\begin{aligned}
& \left(i a^{-n} a^{k} j\right)\left(u a^{-r} a^{s} v\right)=i a^{-n} a^{k}(j u) a^{-r} a^{s} v=i a^{-n} a^{k} u A_{j} j a^{-r} a^{-r} a^{s} v \\
& \quad=i a^{-n} a^{k} u A_{j} a^{-k} a^{k} a^{-r} a^{r} j a^{-r} a^{s} v \\
& \quad=i\left(a^{-n} a^{k}\left(u A_{j}\right) a^{-k} a^{n}\right)\left(a^{-n} a^{k} a^{-r} a^{s}\right) a^{-s} a^{r} j a^{-r} a^{s} v \\
& \quad=i\left(\left(u A_{j}\right) \alpha_{(k, n)}\right) a^{-(n+r-\min (k, r))} a^{k+s-\min (k, r)} j \beta_{(r, s)} v \\
& \quad=i \circ\left(\left(u A_{j}\right) \alpha_{(k, n)}\right) a^{-(n+r-\min (k, r)} a^{k+s-\min (k, r)}\left(j \beta_{(r, s)}^{*} v\right)
\end{aligned}
$$

Utilizing Lemma 2.6, $i \circ\left(\left(u A_{j}\right) \alpha_{(k, n)}\right) \in I_{n+r-\min (k, r)}$ and

$$
j \beta_{(r, s)} * v \in J_{k+s-\min (k, r)} .
$$

Hence, ($\left.(i,(n, k), j): i \in I_{n}, j \in J_{k}, n, k \in N\right)$ under the multiplication given in the statement of the lemma is a groupoid. The required isomorphism is given by the mapping $\left(i a^{-n} a^{k} j\right) \varphi=(i,(n, k), j)$ by virtue of the above and Lemma 2.1.

Lemma 2.18. $\quad \alpha_{(r, s)} A_{j} \alpha_{(s, r)}=A_{j \beta(s, r)}$ for all $j \in J$ and $r, s \in N$.
Proof. Let $j \in J_{p}$ and $w \in I_{q}$. Utilizing Definitions 2.2 and 2.5, and Lemmas 1.9, 1.12, 1.15, and 2.6,

$$
\begin{aligned}
& \left(j\left(w \alpha_{(r, s)}\right)\right) \nu_{(s, r)}=a^{-r} a^{s} j\left(a^{-s} a^{r} w a^{-r} a^{s}\right) a^{-s} a^{r} \\
& \quad=a^{-r} a^{s} j a^{-s} a^{r}\left(a^{-r} a^{r} w\right) a^{-r} a^{r}=a^{-r} a^{s} j a^{-s} a^{r} a^{-r} a^{r} w \\
& \quad=a^{-r} a^{s} j a^{-s} a^{r} w=j \beta_{(s, r)} w=w A_{j \beta_{(s, r)}} j \beta_{(s, r)} B_{w}
\end{aligned}
$$

Utilizing Lemmas 1.15 and 2.6, $w A_{j \beta(s, r)} \in I_{\max (q, r+p-\min (s, p))}$ and

$$
j \beta_{(s, r)} B_{w} \in J_{\max (q, r+p-\min (s, p))} .
$$

Utilizing Definitions 2.2 and 2.5, and Lemmas 1.15 and 2.6,

$$
\begin{aligned}
& \left(j\left(w \alpha_{(r, s)}\right)\right) \nu_{(s, r)}=a^{-r} a^{s} j\left(w \alpha_{(r, s)}\right) a^{-s} a^{r} \\
& \quad=a^{-r} a^{s}\left(w \alpha_{(r, s)} A_{j}\right)\left(j B_{w \alpha_{(r, s)}}\right) a^{-s} a^{r} \\
& \quad=a^{-r} a^{s}\left(w \alpha_{(r, s)} A_{j}\right) a^{-s} a^{s}\left(j B_{w \alpha_{(r, s)}}\right) a^{-s} a^{r} \\
& \quad=a^{-r} a^{s}\left(w \alpha_{(r, s)} A_{j}\right) a^{-s} a^{r}\left(a^{-r} a^{s} j B_{w \alpha_{(r, s)}} a^{-s} a^{r}\right) \\
& \quad=\left(w \alpha_{(r, s)} A_{j}\right) \alpha_{(s, r)}\left(j B_{\left.w \alpha_{(r, s)}\right)} \beta_{(s, r)}\right.
\end{aligned}
$$

Utilizing Lemmas 1.15 and 2.6, $w \alpha_{(r, s)} A_{j} \alpha_{(s, r)} \in I_{\max (p, s+q-\min (r, q)+r-s}$ and $\left(j B_{\left.w \alpha_{(r, s)}\right)}\right) \beta_{(s, r)} \in J_{\max (p, s+q-\min (r, q))+r-s}$. Hence, $w \alpha_{(r, s)} A_{j} \alpha_{(s, r)}=w A_{j \beta(s, r)}$ by Lemma 1.14.

Lemma 2.19. (a) $g \alpha_{(s, s)}=e_{s} \circ g$ for all $g \in I$. (b) $g \beta_{(s, s)}=g^{*} e_{s}$ for all $g \in J$.

Proof. (a) Let $g \in I$. Utilizing Lemma $1.12 g \alpha_{(s, s)}=\left(e_{s} g\right) e_{s}=e_{s} g=$ $e_{s} \circ g$. (b) Let $g \in J$. Utilizing Lemma 1.20, $g \beta_{(s, s)}=e_{s} g e_{s}=g^{*} e_{s}$.

In the following definition, we will describe the objects we will use to represent generallized ω - \mathscr{L}-unipotent bisimple semigroups.

Definition 2.20. Let (I, o) be an ω-chain of left zero semigroups $\left(I_{k}: k \in N\right)$; let $(n, r) \rightarrow \alpha_{(n, r)}$ be a homomorphism of C into $\operatorname{End}(I, o)$; let $\left(J,{ }^{*}\right)$ be an ω-chain of right groups $\left(J_{k}: k \in N\right)$; let $(n, r) \rightarrow \beta_{(n, r)}$ be a homomorphism of C into End $\left(J,{ }^{*}\right)$; let $j \rightarrow A_{j}$ be an upper antihomomorphism of $\left(J,{ }^{*}\right)$ into T_{I}; and let $I_{k} \cap J_{k}=\left(e_{k}\right)$, a single idempotent, for each $k \in N$ such that
(1) $g \beta_{(s, s)}=g^{*} e_{s}$ for all $g \in J$.
(2) $I_{r} \alpha_{(n, k)} \subseteq I_{k+r-\min (n, r)}$ and $J_{r} \beta_{(n, k)} \subseteq J_{k+r-\min (n, r)}$.
(3) $I_{r} A_{j} \cong I_{\max (r, k)}$ if $j \in J_{k}$.
(4) $(r \circ s) A_{x}=r A_{x} \circ s A_{x * e_{u}}$ for $r, s \in I$ with $r \in I_{u}$ and $x \in J$.
(5) $\alpha_{(r, s)} A_{j} \alpha_{(s, r)}=A_{j \beta(s, r)}$ for all $j \in J$ and $r, s \in N$.

We denote $\left((i,(n, k), j): i \in I_{n}, j \in J_{k}\right)$ under the multiplication
(6) $(i,(n, k), j)(u,(r, s), v)$
$=\left(i \circ\left(u A_{j} \alpha_{(k, n)}\right),(n+r-\min (k, r), k+s-\min (k, r)), j \beta_{(r, s)}{ }^{*} v\right)$
by (I, J, α, β, A).
THEOREM 2.21. Let S be a generalized ω - \mathscr{L}-unipotent bisimple semigroup. Then, S is isomorphic to some (I, J, α, β, A).

Proof. The theorem is a consequence of the definition of " o ", Lemmas 1.12, 2.9, 1.21, 2.16, 1.23, the choice of " e_{k} ", Lemmas 2.19, 2.6, 1.15, 1.25, 2.18, and 2.17.

We thank the referee for the following remark.
Remark 2.22. In Definition 2.20, the middle component (m, n) of $(i,(m, n), j)$ serves only as a marker. Hence, S is actually represented by the cartesian product $I \times J$ under the multiplication

$$
(i, j)(u, v)=\left(i \circ\left(u A_{j} \alpha_{(k, n)}\right), j \beta_{(r, s)} * v\right)
$$

where $i \in I_{n}, j \in J_{k}, u \in I_{r}$, and $v \in J_{s}$.
3. Structure theorem for generalized ω - \mathscr{L}-unipotent bisimple semigroups (proof of direct half). In this section, we show that (I, J, α, β, A) is a generalized ω - \mathscr{L}-unipotent bisimple semigroup.

Lemma 3.1. (I, J, α, β, A) is a semigroup.
Proof. We use (2) and (3) of Definition 2.20 to establish closure. We next establish associativity. Let $(i,(n, k), j)_{1}=i$ and $(i,(n, k)$, $j)_{23}=((n, k), j)$. Let $a=(i,(n, k), j), b=(u,(r, s), v)$, and $c=(z,(p$, $q), w) \in(I, J, \alpha, \beta, A)$. Utilizing the fact that $(n, r) \rightarrow \beta_{(n, r)}$ is a homomorphism,

$$
\begin{aligned}
((a b) c)_{23} & =\left(\left(i \circ\left(u A_{j} \alpha_{(k, n)}\right),(n, k)(r, s), j \beta_{(r, s)} * v\right)(z,(p, q), w)\right)_{23} \\
& =\left((n, k)(r, s)(p, q),\left(j \beta_{(r, s)}{ }^{*} v\right) \beta_{(p, q)} * w\right) \\
& =\left((n, k)(r, s)(p, q), j \beta_{(r, s)(p, q)}{ }^{*} v \beta_{(p, q)} * w\right)
\end{aligned}
$$

while

$$
\begin{aligned}
(a(b c))_{23} & =\left((i,(n, k), j)\left(u \circ\left(z A_{v} \alpha_{(s, r)}\right),(r, s)(p, q), v \beta_{(p, q)}{ }^{*} w\right)\right)_{23} \\
& =\left((n, k)(r, s)(p, q), j \beta_{(r, s)(p, q)}^{*} v \beta_{(p, q)}{ }^{*} w\right)
\end{aligned}
$$

Hence, $((a b) c)_{23}=(a(b c))_{23}$. Utilizing the fact $(k, n) \rightarrow \alpha_{(k, n)}$ is a homomorphism of C into End (I, o), the fact $j \rightarrow A_{j}$ is an upper anti-homomorphism of ($J,{ }^{*}$) into T_{I}, (5), (1), and (4),

$$
\begin{aligned}
((a b) c)_{1} & =i \circ u A_{j} \alpha_{(k, n)} \circ z A_{j \beta_{(r, s)} * v} \alpha_{(s, r)(k, n)} \\
& =i \circ\left(\left(u A_{j} \circ z A_{j \beta_{(r, s)} * v} \alpha_{(s, r)}\right) \alpha_{(k, n)}\right) \\
& =i \circ\left(\left(u A_{j} \circ z A_{v} A_{j \beta_{(r, s)}} \alpha_{(s, r)}\right) \alpha_{(k, n)}\right) \\
& =i \circ\left(\left(u A_{j} \circ z A_{v} \alpha_{(s, r)} A_{j} \alpha_{(r, s)} \alpha_{(s, r)}\right) \alpha_{(k, n)}\right) \\
& =i \circ\left(\left(u A_{j} \circ z A_{v} \alpha_{(s, r)} \alpha_{(r, r)} A_{j} \alpha_{(r, r)}\right) \alpha_{(k, n)}\right) \\
& =i \circ\left(\left(u A_{j} \circ z A_{v} \alpha_{(s, r)} A_{\left.j \beta_{(r, r)}\right)} \alpha_{(k, r)}\right)\right. \\
& =i \circ\left(\left(u A_{j} \circ z A_{v} \alpha_{(s, r)} A_{j * e r}\right) \alpha_{(k, n)}\right) \\
& =i \circ\left(\left(u \circ z A_{v} \alpha_{(s, r)}\right) A_{j} \alpha_{(k, n)}\right) \\
& =(\alpha(b c))_{1} .
\end{aligned}
$$

Hence, $(a b) c=a(b c)$.
Lemma 3.2. $\operatorname{Let}(i,(n, k), j),(w,(p, q), z) \in(I, J, \alpha, \beta, A)$.
(a) $(i,(n, k), j) \mathscr{R}(w,(p, q), z)$ if and only if $i=w$ and $n=p$.
(b) $(i,(n, k), j) \mathscr{C}(w,(p, q), z)$ if and only if $k=q$ and $(j, z) \in$ $\mathscr{L}\left(\in J_{q}\right)$.

Proof. (a) Let us show that $(i,(n, k), j) \mathscr{R}(i,(n, q), z)$. Let $u \in$ I_{k}. Hence, $u A_{j} \alpha_{(k, n)} \in I_{n}$ by (2) and (3). Thus, since (I_{n}, o) is a left zero semigroup, $i \circ u A_{j} \alpha_{(k, n)}=i$. By (2), $j \beta_{(k, q)} \in J_{q}$. Hence, since ($J_{q},{ }^{*}$) is a right group, there exists $v \in J_{q}$ such that $j \beta_{(k, q)}{ }^{*} v=z$. Hence, utilizing (6), ($i,(n, k), j)(u,(k, q), v)=(i,(n, q), z)$. Similarly, there exists $a \in I_{q}$ and $b \in J_{k}$ such that $(i,(n, q), z)(a,(q, k), b)=(i,(n, k), j)$. Utilizing (6), the converse follows from the fact that \mathscr{R} is the dentity on $(I, 0)$ and $(n, k) \mathscr{R}(p, q)$ in C implies $n=p$. Let us show that $(i,(n, k), j) \mathscr{L}(w,(p, k), z)$ if $(j, z) \in \mathscr{L}\left(\in J_{k}\right)$. Since $(j$, $z) \in \mathscr{H}\left(\in J_{k}\right)$, there exists $u \in J_{k}$ such that $u^{*} j=z$. By (2), $u \beta_{(k, n)} \in$ J_{n}. Utilizing (1) and the fact $(n, k) \rightarrow \beta_{(n, k)}$ is a homomorphism of C into End ($J,{ }^{*}$), $u \beta_{(k, n)} \beta_{(n, k)}=u \beta_{(k, k)}=u^{*} e_{k}$. Hence, $\left(u \beta_{(k, n)}\right) \beta_{(n, k)}{ }^{*} j=$ $u^{*} e_{k}^{*} j=u^{*} j=z$. Thus, utilizing (2), (3), and (6), ($\left.w,(p, n), u \beta_{(l, n)}\right)(i$, $(n, k), j)=(w,(p, k), z)$. Similarly, there exists $v \in J_{k}$ such that $(i,(n$, $\left.p), v \beta_{(k, p)}\right)(w,(p, k), z)=(i,(n, k), j)$. Utilizing (6), the converse follows from the fact that $\mathscr{H}=\mathscr{L}$ in $\left(J,{ }^{*}\right)$ and $(n, k) \mathscr{L}(p, q)$ in C implies $k=q$.

Lemma 3.3. (I, J, α, β, A) is a bisimple semigroup.
Proof. Let $(i,(n, k), j),(u,(r, s), v) \in(I, J, \alpha, \beta, A)$. Hence, utilizing Lemma 3.2, $(i,(n, k), j) \mathscr{R}(i,(n, s), v) \mathscr{L}(u,(r, s), v) . \quad(I, J, \alpha, \beta, A)$ is a semigroup by Lemma 3.1.

Lemma 3.4. $\quad E(I, J, \alpha, \beta, A)=\left((i,(n, n), j): j \in E\left(J_{n}\right), n \in N\right)$.
Proof. Let $(i,(n, k), j) \in E(I, J, \alpha, \beta, A)$. Hence, $(i,(n, k), j)(i,(n$, $k), j)=(i,(n, k), j)$. Using (6), $n=k$ since $(n, k)^{2}=(n, k)$ in C. Hence, using (6) and (1), $j=j \beta_{(n, n)}^{*} j=j^{*} e_{n}^{*} j=j^{2}$. Utilizing (6), (2), (3), and (1), $j \in E\left(J_{n}\right)$ implies $(i,(n, n), j) \in E(I, J, \alpha, \beta, A)$ for $n \in N$ and $i \in I_{n}$.

Lemma 3.5. (I, J, α, β, A) is a regular bisimple semigroup.
Proof. It follows from a result of Clifford and Miller [1, Theorem 2.11] that any bisimple semigroup containing an idempotent is regular. Hence, we just apply Lemmas 3.3 and 3.4.

Lemma 3.6. $E(I, J, \alpha, \beta, A)$ is a semigroup.
Proof. We will utilize Lemma 3.4. Let $a=(i,(n, n), j), b=(u$, $(s, s), v) \in E(I, J, \alpha, \beta, A)$. Hence, $j \in E\left(J_{n}\right)$ and $v \in E\left(J_{s}\right)$. Thus, using (1), $j \beta_{(s, s)}{ }^{*} v=j^{*} e_{s}^{*} v=j^{*} v$. However, $E(T)$ is a semigroup for any chain of right groups T. Thus, it follows that $j^{*} v \in E\left(J_{\max (n, s)}\right)$. Hence, $a b \in E(I, J, \alpha, \beta, A)$ by Lemma 3.4.

Lemma 3.7. \mathscr{L} is a congruence on the semigroup $E(I, J, \alpha, \beta, A)$.

Proof. Let X be any semigroup such that $E(X)$ is a semigroup. Then, it is easily seen that if $e, f \in E(X),(e, f) \in \mathscr{L}(\in X)$ if and only if $(e, f) \in \mathscr{L}(\in E(X))$. Let $j \in E\left(J_{n}\right)$ and $v \in E\left(J_{s}\right)$. Hence, utilizing Lemmas 3.4 and $3.2(b)$, $(i,(n, n), j) \mathscr{L}(u,(s, s), v)(\in E(I, J, \alpha, \beta, A))$ if and only if $n=s$ and $j=v$. Thus, using (6), \mathscr{L} is a left congruence on $E(I, J, \alpha, \beta, A)$ by a routine calculation.

Lemma 3.8. $E(I, J, \alpha, \beta, A)$ is an ω-chain of rectangular bands $\left(E_{n}: n \in N\right)$ where $E_{n}=\left((i,(n, n), j): i \in I_{n}, j \in E\left(J_{n}\right)\right)$.

Proof. Let ($i,(n, n), j),(u,(n, n), v) \in E_{n}$. Utilizing (6), (2), (3), and a routine calculation, $(i,(n, n), j)(u,(n, n), v)=(i,(n, n), v)$. Hence, E_{n} is a rectangular band. Again, utilizing (6), (2), (3), and a routine calculation, $E_{n} E_{k} \subseteq E_{\max (n, k)}$.

Theorem 3.9. (I, J, α, β, A) is a generalized ω - \mathscr{L}-unipotent bisimple semigroup.

Proof. Combine Lemmas 3.5-3.8.
4. Structure of generalized ω - \mathscr{L}-unipotent bisimple semigroups. Combining Theorems 4.1 and 4.3 (below) will give a description of generalized ω - \mathscr{L}-unipotent bisimple semigroups in terms of groups, ω-chains of left zero semigroups, and ω-chains of right zero semigroups.

Theorem 4.1. (I, J, α, β, A) is a generalized ω - \mathscr{L}-unipotent bisimple semigroup, and conversely every such semigroup is isomorphic to some (I, J, α, β, A).

Proof. Combine Theorems 3.9 and 2.21.
Remark. In contrast to the structure theorem for generalized \mathscr{L}-unipotent semigroups given in [4], no factor systems are required in Theorem 4.1.

We will next characterize an ω-chain J of right groups ($J_{n}: n \in$ N) as a semi-direct product of an ω-chain X of right zero semigroups $\left(X_{n}: n \in N\right)$ by an ω-chain G of groups ($G_{n}: n \in N$).

We first need a definition.

Definition 4.2. Let the semigroup U be an ω-chain of semigroups ($U_{n} \in N$) and let θ be a mapping of U into a semigroup V such that $r \in U_{n}, s \in U_{m}$, and $m \geqq n$ imply $(r s) \theta=r \theta s \theta$. We term θ a lower homomorphism of U into V.

Let (G, o) be an ω-chain of groups $\left(G_{n}: n \in N\right)$ and let $\left(X,{ }^{*}\right)$ be an ω-chain of right zero semigroups $\left(X_{n}: n \in N\right)$ such that $G_{n} \cap X_{n}=$ $\left(e_{n}\right)$, a single idempotent element, for each $n \in N$. Let $g \rightarrow B_{g}$ be a lower homomorphism of G into T_{X} subject to the conditions (1) $X_{n} B_{g} \subseteq$ $X_{\max (n, m)}$ if $g \in G_{m}(2)$ if $r \in X_{m}, s \in X_{n}$ and $m \geqq n,\left(r^{*} s\right) B_{g}=r B_{e_{n} \circ g} * B_{q}$. Let (G, X, B) denote $\cup\left(G_{n} \times X_{n}: n \in N\right)$ under the multiplication (i, $j)(p, q)=\left(i \circ p, j B_{p}^{*} q\right)$.

Theorem 4.3. J is an ω-chain of right groups if and only if $J \cong(G, X, B)$ for some collection G, X, B.

Proof. We just specialize [6, Theorem 7.2].
Note 4.4. The structure of G is known mod groups and homomorphisms by a well known result of Clifford [1, Theorem 4.11].
5. ω - \mathscr{L}-unipotent bisimple semigroups. In this section, we specialize Theorem 4.1 to obtain [5, Theorem 7.11] (our previous structure theorem for ω - \mathscr{L}-unipotent bisimple semigroups).

A bisimple semigroup S is termed ω - \mathscr{L}-unipotent if $E(S)$ is an ω-chain of right zero semigroups.

THEOREM 5.1. Let S be an ω - \mathscr{L}-unipotent bisimple semigroup. Then, there exists an ω-chain ($J,{ }^{*}$) of right groups $\left(J_{n}: n \in N\right.$) and a homomorphism $(n, r) \rightarrow \beta_{(n, r)}$ of C into End ($J,{ }^{*}$) such that for each $k \in N$ there exists $e_{k} \in E\left(J_{k}\right)$ and
(1) $g \beta_{(k, k)}=g^{*} e_{k}$ for all $g \in J$.
(2) $J_{r} \beta_{(n, k)} \subseteq J_{k+r-\min (n, r)}$. Furthermore, $S \cong\left(((n, k), j): j \in J_{k}, n\right.$, $k \in N$) under the multiplication.
(3) $((n, k), j)((r, s), v)=\left((n, k)(r, s), j \beta_{(r, s)}{ }^{*} v\right)$ where juxtaposition denotes multiplication in C.

Conversely, let $\left(J,^{*}\right)$ be an ω-chain of right groups and let (n, $r) \rightarrow \beta_{(n, r)}$ be a homomorphism of C into End ($J,{ }^{*}$) such that (1) and (2) are valid. Then, $S=\left(((n, k), j): j \in J_{k}, n, k \in N\right)$ under (3) is an ω - \mathscr{L}-unipotent bisimple semigroup.

Proof. We first establish the converse. We employ Theorem 4.1 and its notation. Let $I_{v}=\left(e_{v}\right)$ for each $v \in N$ and define $e_{u} \circ e_{v}=$ $e_{\max (u, v)}$. Let $I=\bigcup\left(I_{v}: v \in N\right)$. Then, (I, o) is an ω-chain of left zero semigroups $\left(I_{n}: n \in N\right)$. Define $e_{n} \alpha_{(r, s)}=e_{s+n-\min (n, r)}$ and $e_{n} A_{v}=e_{\max (n, m)}$ if $v \in J_{m}$. By a routine calculation, $(n, r) \rightarrow \alpha_{(n, r)}$ is a homomorphism of C into End (I, o) and $p \rightarrow A_{p}$ is an upper anti-homomorphism of ($J,{ }^{*}$) into T_{I} such that (2)-(5) of Theorem 4.1 is valid. The multiplication (6) of Theorem 4.1 becomes (6') $\left(e_{n},(n, k), j\right)\left(e_{r},(r, s), v\right)=\left(e_{n+r-\min (k, r)}\right.$, $\left.(n, k)(r, s), j \beta_{(r, s)}{ }^{*} v\right)$ where juxtaposition is multiplication in C. Hence, $U=(I, J, \alpha, \beta, A)$ (notation of $\S 3$) is a generalized ω - \mathscr{C}-unipotent bisimple semigroup by Theorem 4.1. Utilizing Lemma 3.4, $E(U)=$ $\left(\left(e_{n},(n, n), j\right): j \in E\left(J_{n}\right), n \in N\right)$. Utilizing Lemma 3.2, $\left(e_{n},(n, n), j\right) \mathscr{L}\left(e_{k}\right.$, $(k, k), u)\left(j \in E\left(J_{n}\right)\right.$ and $\left.u \in E\left(J_{k}\right)\right)$ implies $n=k$ and $j=u$. Hence, $E(U)$ is an ω-chain of right zero semigroups and, thus, U is an ω - \mathscr{L}-unipotent bisimple semigroup. Since $\left(e_{n},(n, k), j\right) \varphi=((n, k), j)$ define an isomorphism of $\left(U,\left(6^{\prime}\right)\right)$ onto $(S,(3)) . \quad S$ is an ω - \mathscr{L}-unipotent bisimple semigroup.

Next, let T be an ω - \mathscr{L}-unipotent bisimple semigroup. Hence, T is a generalized ω - \mathscr{L}-unipotent bisimple semigroup and the structure of T is given by Theorem 4.1. Thus, utilizing Lemmas 3.8 and 3.2, $I_{n}=\left(e_{n}\right)$ for each $n \in N$. Hence, utilizing (2) and (3) of Theorem 4.1, $e_{r} \alpha_{(n, k)}=e_{k+r-\min (n, r)}$ and $e_{r} A_{j}=e_{\max (r, k)}$ if $j \in J_{k}$. Thus, (6) of Theorem 4.1 becomes (6^{\prime}) and $\left(U,\left(6^{\prime}\right)\right) \cong(S,(3))$. The conditions of Theorem 5.1 are given by Theorem 4.1 ((1) and (2)).

References

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys of the Amer. Math. Soc., 7, Vol. 1, Providence, R. I., 1961; Vol. 2, Providence, R. I., 1967.
2. David McLean, Idempotent semigroups, Amer. Math. Monthly, 61 (1954), 110-113. 3. R. J. Warne, \mathscr{L}-unipotent semigroups, Nigerian J. Science, 5 (1972), 245-248.
3. \quad, Generalized \mathscr{L}-unipotent semigroups, Bulletino della Unione Mathematica Italiana, 5 (1972), 43-47.
4. ω - ω - \mathscr{L}-unipotent semigroups, to appear in JÑÃNABHA.
5. - On the structure of semigroups which are unions of groups, Trans. Amea. Math. Soc., 186 (1973), 385-401.

Received February 1, 1973.
University of Alabama in Birmingham

