
PACIFIC JOURNAL OF MATHEMATICS
Vol. 51, No. 2, 1974

ON MATRIX MAPS OF ENTIRE SEQUENCES

H. B. SKERRY

In this note the linear space E of entire sequences and
various subspaces are considered. The fact that E represents
the space of entire functions is emphasized by determining
subspaces in terms of order and type. Matrix maps between
the subspaceβ are characterized, and a related result and an
example are also given.

1* Subspaces of E determined by order* First we recall that

if M(r) = max | f(z) | on the circle | z | = r, then the order of the
entire function / is p = lim sup [(log log M(r))/log r], and its type is
τ = lim sup [(log M(r))/rp], assuming p < oo. If f(z) = Σ Γ ^ ^ % is an
entire function, then it has finite order p if and only if μ =
lim sup% [n log nβog (1/| xn |)] is finite, and then p = μ([l], p. 9).

DEFINITION 1.1. We say the complex sequence x = {xn}~ is ana-
lytic if the corresponding power series Σ %nZn has radius of con-
vergence r(x) > 0. a? is an entire sequence if r(x) = oo, and its order
and type are those of the power series.

DEFINITION 1.2. For each pe [0, oo), let O(ρ) be the set of entire
sequences of order not exceeding p. For each pe(0, oo], let O\p) be
the set of entire sequences of order less than p.

DEFINITION 1.3. If 0 ^ p < °o, let ρ+ be the class of real se-
quences {ρn}T such that pn\p and ρn> p. If 0 < p ^ oo, let ρ~ be
similarly defined, but with pn / p and 0 < pn < p.

DEFINITION 1.4. Let a — {an}Γ be a complex sequence with no
zero-terms, and let s(a) = {complex x \anxn—>0}.

If we define ||αj||« = sup \anxn\9 then (s(a), || ||«) is a BK space
([8J, Satz 5.4).

We will now characterize those matrices A = (ank) which map
s(a) —> s(β). If / is a continuous linear functional on s(a), then / can
be represented in the form f(x) = Σc»αΛα?Λ, where Σl^»l < °° ([8]>
Satz 5.4). It is easily shown that the coefficients cn in this represen-
tation are unique, and that | | / | | = Σ k l Suppose A maps s(ά)~+
s(j3). Define fn(x) = βn Σ f c ankxk. It is known ([7], Corollary 5, p. 204,
or [8], Satz 4.4) that a matrix map between FK spaces is continuous,
and fn = βnPn o A (where Pn is the wth projection map), so fn is a
continuous linear functional on s(ά) with norm | |/ Λ | | = Σ* I &&»*/#* I •
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βnVn —* 0 because y = Ax e s(β). I t follows that for each x in s(α),
/»(#)-* 0 and supΛ |/n(a;) I < °o, so the uniform boundedness principle
gives

(1.5) sup Σ I βnajak \ = M ^ oo .
n k

Because ek (the sequence having 1 in the kth coordinate and O's
elsewhere) is in s(a), we also have

(1.6) Aek = {ank}n = the kth column of A is in s(β) for each k .

We show that the necessary conditions (1.5) and (1.6) are also suf-
ficient for A to map s(a) into s(β). If xes(a), then cckxk—• 0, so
Σ * I α»*&* I = ^(1) Σfc I a>nk/ak | < ^ by (1.5). Thus Ax is defined on
s(a). Now let ε > 0 be given and choose N so that k > N=> | #*$* | <
ε/lf. Then

IV I ̂  Σ I αnJfea?t I + (ε/M) Σ I ank/ah | ,

and (1.6) and (1.5) give

lim sup I βnyn | ^ 0 + (ejM)M = ε .

It follows that 7/ = Axes(β). We have proved

THEOREM 1.7. In order that A map s(a)-~+s(β) it is necessary
and sufficient that

(1.5) sup Σ I βnajak \ = M Φ OO
n k

and

(1.6) each column of A is in s(β)

be satisfied.

THEOREM 1.8. Let {as}~=1 and {β{}T=i be sequences of sequences
a3' = {ai}~=o and βι = {/3l}"=0 with the property that k > j => s(ak) S
s(aj) and s(βk) S s(^) ^ ^ s = Π s(«0 α?tώ Γ = Γl s(/5') Finally,
we ask that for every j there exists k > j such that Σ I aU°ίl I < °° >
and that for every i there exists / > i such that βi/βί —• 0. Then
the matrix A maps S—»Tif and only if

(1.9) for each i there exist j and M such that \ βiank/a3

k | :S M for all n, k.

Proof. First, we remark that s(a) £ s(β) if and only if
lim sup I βjan | < °o. Clearly, the set {ek, k = 0, 1, . •} is a Schauder
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basis for s(a), so it follows ([9], Satz) that A maps S—> T if and only
if for every ί there is a j such that A maps s(aj) —> s(/34')> i.e., if and
only if both of

(1.10) for each £ there is a i such that s u p Σ \βϊcιnklai\ < °° ,
n k

(1.11) K J . G Γ for each fc,

hold. It is obvious that (1.10) implies (1.9). Conversely, let i be
given and let j and M correspond to i as in (1.9). Choose r > j so
that Σfe I ai/al | < °°. Then

Σ I βlajal I - Σ I iSiα */αί I I al/al I ̂  ^ Σ I aί/ar

k \ <

so (1.9) implies (1.10). To complete the proof we need only show
that (1.9) implies (1.11). Let i be given and choose s > i so that
βί/βl —• 0. Let j and M correspond to / as in (1.9). Then | βι

nank \ ^
M\a{\ for every n, so | /5lα^ | ^ | /Sl//3U^I ^11 —" ° ^s ^—> oo, and

Now let {ft} e ρ+ and let αi = nnlpκ It is readily verified that
O(p) - Π sic?').

THEOREM 1.12. The matrix A maps O(p) —> O(μ) if and only if

(1.13) for each t > μ there exist r > p and M such that
nnη ank \(l/kkir) ^ M for all n, k .

Proof. Let {μτ) e μ+ and set β\ = nn}μi, so that O(μ) = Γl sίiδO
The hypotheses of Theorem 1.8 are met, so A maps O(p) —> O(μ) if
and only if (1.9) holds. But this is equivalent to (1.13).

We now consider O'(p). If we choose {ft} e p~, then O\ρ) =

U O(ft).

THEOREM 1.14. Γ/̂ β matrix A maps Oτ{p)~* O'(μ) if and only if

(1.15) for each re (0, p) there exist te (0, μ) and M such that
nnlt\ ank \(l/kklr) ^ M for all n, k .

Proof. We observe first that ([9], Satz, part (4)) remains true
if the component spaces are merely FK spaces, nested or not, as
long as their unions are linear spaces. (We will have occasion in the
sequel to utilize this observation.) It follows that A maps O'(ρ) —•
Or{μ) if and only if

for each j there is an i such that A maps O(ft) —> O(μj) .
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By Theorem 1.12, this happens if and only if

for each j there is an i such that for every t>μ{ there exist r > p3-
and M such that nnίt\ ank \(l/kklr) ^ M for all n, k .

But this is equivalent to (1.15).
Similar applications of ([9], Satz) give the next two theorems.

THEOREM 1.16. The matrix A maps O'{ρ)~+O{μ) if and only if

(1.17) for each t> μ and r e (0, p) there is an M such that nnlt\ank\
(l/kklr) ^ M for all n, k .

THEOREM 1.18. The matrix A maps O(ρ) —• O'{μ) if and only if

(1.19) there exist t e (0, μ), r > p, and M such that n%μ\ ank \(l/kklr) ^
M for all n, k .

2* Subspaces of E determined by order and type* After the
polynomials, the easiest class of entire functions to handle is the
class {p, τ), and the properties of its members have been investigated
(see [1]). In our terminology, this subspace of E is defined below.

DEFINITION 2.1. Given pe (0, oo) and r e [0, °o), let (p, τ) be the
set of entire sequences having order < p or order p and type ^ τ.

DEFINITION 2.2. For pe (0, oo) and r e [0, oo), define G(ρ, τ) to be
the set of complex sequences x such that lim sup n\ xn \

pln ^ τep
G(ρ, τ) £ O(ρ), and moreover ([1], Theorem 2.2.10) it is true that

(2.3) ( A τ) = G{p, τ) U O'{p) .

DEFINITION 2.4. Suppose pe(09 oo) and re[0, oo). Let {εJΓeO+

and let a\ = [n/(τeρ + ε,)]*^. Now set G(ρ, τ, v) = s(av). (We set
a\ - 1.)

It follows from this definition that

(2.5) G(p,τ) = nG(p,τ,v),

and that v > μ => G(ρ, τ, v) S G(p, τ, μ).
We will now prove some general results which will allow us to

characterize those matrices which map (ft τ) into (μ, σ).
Let Bj = n»s(av(j)) and let C4 = Π^s(βv(i)). Set B = \J Bό and

C = U C{. We shall assume the following:

(2.6) B and C are linear spaces ,

(2.7) for every j and i, v > μ implies s(av(j)) S s(aμ(j)) and
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s(βu(i)) S s(βμ(ΐj) ,

(2.8) for every j and μ, there is a v > μ such that Σ | aί(j)/av

n(j) \<°° f
n

(2.9) for every ΐ and μ there is a i; > μ such that βl(i)lβv

n{i) —» 0 as

LEMMA 2.10. 27&e matrix A maps B3 —> C* ί/ cmd cmJ?/ i/

(2.11) /or β̂  er?/ sufficiently large v there exist μ and M such that
I ankβ:(i)/aΐ(j) \SMfor all n, k .

Proof. (1.9), together with the observation that Theorem 1.8
remains true if in (1.9) " i " is replaced by "sufficiently large ΐ".

LEMMA 2.12. Suppose that for every i and sufficiently large v
it is true that βu

n{%) = ^(βu

n(i)) as n —> oo. Then A maps B->C if
and only if A maps B —• Cio.

Proof. Suppose A maps B—>C. Then ([9], Satz, (4)) for each;/
there is an i such that (2.11) holds. Our hypothesis then implies
that (2.11) holds with iQ in place of i, whence Lemma 2.10 asserts
that A maps each Bό into C7Q.

LEMMA 2.13. Suppose that for every j and μ there is a y such
that afί(j0) = <^(ai(j)) as k —> oo. Then A maps B —> C if and only
if A maps BjQ —> C.

Proof. Suppose A maps BjQ —> C. Then ([9], Satz, (4)) there is
an i such that A maps Bjo—>C%. But then (2.11) is true with jQ in
place of j . Our hypothesis implies that if j is given there exists 7
such that (2.11) holds with Ί and i in place of μ and j 0 . Hence,
each Bj is mapped into C%.

THEOREM 2.14. Suppose for each i and sufficiently large v,
βn(io) — 0*{βn{i)) as n —* oo, and moreover that for every j and μ
there is a 7 such that afί

k(j0) = ^(ar

k(j)) as k —> oo. Then A maps
B —> C if and only if A maps Bjo —> C v

Proof. Lemmas 2.12 and 2.13.

COROLLARY 2.15. Under the hypotheses of Theorem 2.14, A maps
B —> C if and only if

(2.16) for every sufficiently large v there exist μ and M such that
I ankβϊ(i0)/aμ

k(j0) \^M for all n, k .
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Proof. Lemma 2.10.

Let us specialize the situation. Suppose {pj}eρ~, {%,0')K e ft!",
{εj G 0+, α:(0) = [n/(τeρ + ε,,)]*", and altf) = nnlΐ»U) for j > 0. Set
Bo = G(p, τ) - Π β(α*(0)) and β y = O(ft ) = f| *(α"(?)) for 3 > 0. Then
(ft Γ) = J? = Uo~ Si. Similarly, let {ft} e /r, {£„(<)} e μt, £i(0) =
[Λ/(σejM + ε v)]^, and £;(i) - Λ"^ ( < ) for i > 0. Then if Co = G(ft <J) =
Π s(βv(0)) and C* = O(ft) = Γl βGSt*)) for i > 0, it follows that (μ, σ) =
C = UΓ C<. Inasmuch as (2.6)-(2.9) and the hypotheses of Theorem
2.14, with io = O = j0, are met, we have

THEOREM 2.17. The matrix A maps (ft r) —* (μ, σ) if and only
if A maps G(p, r) —• G(μ, σ).

THEOREM 2.18. The matrix A maps (ft r) ~> (ft cr) if and only if

(2.19) /or βwfί/ sufficiently large v there exist ω and M such that
1 anh \[n/(σeμ + eWftτep + εω)/k]kι^ ̂  Λf /or all n, k ,

{εj e 0+.

Proof. Corollary 2.15.

THEOREM 2.20. The matrix A maps (ft τ) —• (ft σ) i/ατwZ oπiτ/ if

(2.21) /or eαc/z, βeiO.iμσ)'1) there exist a e (0,
tΛαί I ank \(n\y^(kl)-1^βn^a-k!p ^ Λf for all n, k .

Proof. Suppose (2.19) holds and let β = (μσ + δ)"1 be given.
Choose v so large that εv < de and let ω and M correspond to v as
in (2.19). Choose η so that 0 < η < ε^β"1 and let α = (pτ + 17)"1.
Then routine calculation, using Stirling's formula, shows that (2.21)
is true. Conversely, suppose (2.21) is true, and let v be given. Let
β = (σμ + ε.e"1)-1 and let a and M correspond to β as in (2.21).
Choose ω so that if a = (pτ + δ)~\ then 2εω < δe. Then (2.19) holds.

3* An example* We give an example of a matrix A which
satisfies (2.21) with p = μ = 1. Let σ, r e (0, 00). Suppose / is an-
alytic at the origin, and moreover on the closed disc of radius R >
σ~ι. Suppose further that /(0) = 0 and that | f(z) \ ̂  M ^ ROT'1 on
the disc. Let C = (cwA;) be the Sonnenschein matrix generated by /
(if f*(z) = Σ* o%ύf for w ^ 0, with f\z) = 1, then C - ( O ) Cauchy's
estimate gives | cnk \ ̂  MnR~k, so, inasmuch as our restrictions insure
that for each β e (0, r) there is an a e (0, σ) such that aR ^ 1 and

, it follows that | c .J/9 w ^
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1 (because /(0) = 0 makes C upper triangular, whence we may assume
k ^ n). Now set ank = (kl/nl)cnk. Then A = (ank) maps (1, σ~ι) into
(1, t-1).

4* The spaces E and Ĵ Γ Suppose j ^ is the space of analytic
sequences. In [2] and [3], those matrices which map E—+E are
characterized, while in [5] and [6] those which map s%f —> S/ are
determined. We state these results.

THEOREM 4.1. The matrix A maps E-+E if and only if

(4.2) for every /9e(0, oo) there exist ae(0, °o) and M such that
I ank \βna7k ^ M for all n, k .

THEOREM 4.3. The matrix A maps s^f —> S^f if and only if

(4.4) for every αe(0, oo) there exist /5e(0, oo) and M such that
I ank \βna7k ^ M for all n, k .

The symmetry between (4.2) and (4.4) is unmistakable, and allows
an especially easy direct proof of

THEOREM 4.5. The matrix A maps Jϊf—* Jϊf if and only if the
transposed matrix Aτ maps E —• E.

Proof By (4.4), A maps J ^ —+ J ^ if and only if for each a > 0
there exist β > 0 and M such that | akn \βka~n ^ M for all k, n. Let
a — 7"1, β ~ d~\ Then this condition is equivalent to: for each Ί >
0 there exist δ > 0 and M such that | ak7ί \δ~kyn ̂  M for all w, A;.
But this is (4.2) for Aτ.

We note that if Theorem 4.5 is known, then each of Theorems
4.1 and 4.3 follows from the other in the manner of proof of Theorem
4.5. We note further that this theorem allows us to extract from
Theorems 7, 8, and 9 of [4] information about A, rather than just
about Aτ.
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