,

AN ABEL-MAXIMAL ERGODIC THEOREM FOR SEMI-GROUPS

RYOTARO SATO

The purpose of this paper is to prove a maximal ergodic theorem for Abel means of a strongly measurable semi-group $\Gamma = \{T_t; t \ge 0\}$ of linear contractions on a complex L_1 -space satisfying $|T_t f| \le c$ a.e. for any $t \ge 0$ and any integrable fwith $|f| \le c$ a.e. Applying the obtained maximal ergodic theorem, individual and dominated ergodic theorems for Abel means are also proved. These results extend results obtained by D. A. Edwards for sub-Markovian semi-groups.

2. The maximal ergodic theorem. Let (X, \mathcal{B}, μ) be a σ -finite measure space and $L_p(X) = L_p(X, \mathscr{B}, \mu), 1 \leq p \leq \infty$, the usual (complex) Banach spaces. Let $\Gamma = \{T_t; t \ge 0\}$ be a strongly measurable semi-group of linear contractions on $L_1(X)$ with $||T_t f||_{\infty} \leq ||f||_{\infty}$ for any $f \in L_i(X) \cap L_{\infty}(X)$ and any $t \ge 0$. By the Riesz convexity theorem Γ may be considered as a strongly measurable semi-group of linear contractions on $L_p(X)$ for each p with $1 \leq p < \infty$. It is then known (cf. [4], p. 686) that for each $f \in L_p(X)$ with $1 \leq p < \infty$, there exists a scalar function $T_t f(x)$, measurable with respect to the product of Lebesgue measure and μ , such that for almost all t, $T_t f(x)$, as a function of x, belongs to the equivalence class of T_{tf} and such a measurable representation is uniquely determined except for a set of the product-measure zero. Moreover, since the integral $\int_{0}^{\infty} e^{-\lambda t} T_{t} f dt$ exists for any $\lambda > 0$, it follows from Theorem III.11.17 of [4] that there exists a μ -null set E(f), dependent on f but independent of λ , such that if $x \notin E(f)$ then $e^{-\lambda t}T_t f(x)$ is integrable on $[0, \infty)$ for each $\lambda > 0$ and the integral $\int_0^\infty e^{-\lambda t} T_t f(x) \, dt$, as a function of x, belongs to the equivalence class of $\int_{0}^{\infty} e^{-\lambda t} T_{t} f dt$. Thus if we denote the integral $\int_{0}^{\infty} e^{-\lambda t} T_{t} f dt \text{ by } R_{\lambda} f \text{ then } \int_{0}^{\infty} e^{-\lambda t} T_{t} f(x) dt \text{ gives a representation of }$ $R_{\lambda}f$, and hence, from now on, we shall write $R_{\lambda}f(x)$ for $\int_{a}^{\infty}e^{-\lambda t}T_{t}f(x) dt$. Let $f \in L_{p}(X)$ and a > 0. Following Chacon [1], we define

$$f^{a-}(x) = [\operatorname{sgn} f(x)] \min (a, |f(x)|),$$

 $f^{a+}(x) = [\operatorname{sgn} f(x)](|f(x)| - \min (a, |f(x)|))$
 $f^{*}(x) = \sup_{0 \le l \le \infty} |\lambda R_{\lambda} f(x)|$

and

$$E^*(a) = \{x; f^*(x) > a\},\$$

where $\operatorname{sgn} f(x) = f(x)/|f(x)|$ if $f(x) \neq 0$ and $\operatorname{sgn} f(x) = 0$ if f(x) = 0. We are now in a position to state the main theorem of this paper.

THEOREM 1. If $f \in L_p(X)$, $1 \leq p < \infty$, then for any a > 0 we have

$$\int_{E^{*(a)}} (a - |f^{a-}|) d\mu \leq \int |f^{a+}| d\mu .$$

For the proof of Theorem 1 we shall need the following lemma, whose proof is given in [7].

LEMMA. Let τ be a positive linear contraction on $L_1(X)$ satisfying $||\tau f||_{\infty} \leq ||f||_{\infty}$ for any $f \in L_1(X) \cap L_{\infty}(X)$, let $f \in L_p(X)$ with $1 \leq p < \infty$ and let a > 0. Define

$$e^*(a) = \left\{x; \sup_{0 < r < 1} \left| (1-r) \sum_{k=0}^{\infty} r^k \tau^k f(x) \right| > a
ight\}.$$

Then we have

$$\int_{e^{*}(a)} (a - |f^{a-}|) d\mu \leq \int |f^{a+}| d\mu .$$

Proof of Theorem 1. For each $\lambda > 0$ and each positive integer n, define

$$R^{\scriptscriptstyle(n)}_{\scriptscriptstyle\lambda}f = rac{1}{n}\sum\limits_{k=0}^{\infty} e^{-\lambda k/n}\, T_{k/n}f \; .$$

We shall first prove that for any fixed $\lambda > 0$,

(1)
$$\lim_{n} ||R_{\lambda}f - R_{\lambda}^{(n)}f||_{p} = 0.$$

In fact, if $\varepsilon > 0$ then choose a positive real number a such that

(2)
$$\int_a^\infty ||e^{-\lambda t}T_tf||_p dt < \varepsilon \text{ and } \frac{e^{-\lambda a}}{\lambda} < \varepsilon.$$

Let k(n) be the positive integer such that

$$(3) \qquad \frac{k(n)}{n} \leq a < \frac{k(n)+1}{n}.$$

Then

$$egin{aligned} &\|R_{\lambda}f-R_{\lambda}^{(n)}f\|_{p} \leq \left\|\int_{0}^{s}e^{-\lambda t}T_{t}f\,dt-rac{1}{n}\sum\limits_{k=0}^{k(n)}e^{-\lambda k/n}T_{k/n}f
ight\|_{p}\ &+arepsilon+rac{1}{n}\sum\limits_{k=k(n)+1}^{\infty}e^{-\lambda k/n}\;. \end{aligned}$$

Since $1/n \sum_{k=k(n)+1}^{\infty} e^{-\lambda k/n} \leq 1/n e^{-\lambda a}/(1 - e^{-\lambda/n})$ by (3) and $\lim_n n(1 - e^{-\lambda/n}) = \lambda$, it follows from (2) that for N_0 sufficiently large enough and $n \geq N_0$ we have

(4)
$$\frac{1}{n}\sum_{k=k(n)+1}^{\infty}e^{-\lambda k/n}<\varepsilon.$$

Let

$$g_n(t) = e^{-\lambda k/n} \quad ext{for} \quad rac{k}{n} \leq t < rac{k+1}{n}$$

and

$$T_t^{(n)}f=T_{k/n}f \quad ext{for} \quad rac{k}{n}\leq t<rac{k+1}{n}$$

Since $\Gamma = \{T_i; t \ge 0\}$ is strongly continuous on $(0, \infty)$ (cf. [4], Lemma VIII.1.3), $\lim_n ||g_n(t)T_t^{(n)}f - e^{-\lambda t}T_tf||_p = 0$, from which it follows that $\lim_n \int_0^a ||e^{-\lambda t}T_tf - g_n(t)T_t^{(n)}f||_p dt = 0$, and hence (1) follows. Since $\lim_n n(1 - e^{-\lambda n}) = \lambda$, (1) implies at once that $\lim_n ||\lambda R_\lambda f - \lambda R_\lambda f| = 0$.

Since $\lim_n n(1 - e^{-\lambda/n}) = \lambda$, (1) implies at once that $\lim_n ||\lambda R_\lambda f - (1 - e^{-\lambda/n}) \sum_{k=0}^{\infty} e^{-\lambda k/n} T_{k/n} f ||_p = 0$. Let Q be the set of all positive rational numbers. By the Cantor diagonal argument there exists a subsequence $\{n_i\}$ such that for any $\lambda \in Q$,

$$\lambda R_{\lambda}f(x) = \lim_{i} (1 - e^{-\lambda/n_i}) \sum_{k=0}^{\infty} e^{-\lambda k/n_i} T_{k/n_i}f(x)$$
 a.e.

Hence if we let

$$f_i^*(x) = \sup_{0<\lambda<\infty} (1-e^{-\lambda/n_i})\sum_{k=0}^\infty e^{-\lambda k/n_i} au_i^k |f|(x)$$
 ,

where τ_i denotes the linear modulus [2] of T_{1/n_i} , then $|\lambda R_{\lambda}f(x)| \leq \lim \inf_i f_i^*(x)$ a.e. for any $\lambda \in Q$. Since the mapping $\lambda \to \lambda \int_0^\infty e^{-\lambda t} T_t f(x) dt$ is continuous for almost all $x \in X$, it follows that $\sup_{0 < \lambda < \infty} |\lambda R_{\lambda}f(x)| = \sup_{\lambda \in Q} |\lambda \int_0^\infty e^{-\lambda t} T_t f(x) dt |$ a.e., and thus

$$f^*(x) \leq \liminf_i f^*_i(x)$$
 a.e.

Let $e_i^*(a) = \{x; f_i^*(x) > a\}$. It is clear that $E^*(a) \subset \liminf_i e_i^*(a)$, and hence Fatou's lemma and the above lemma imply that

$$\int_{E^{*(a)}} (a - |f^{a-}|) d\mu \leq \liminf_{i} \int_{e^{*}_{i}(a)} (a - |f^{a-}|) d\mu \leq \int |f^{a+}| d\mu,$$

and the theorem is proved.

3. Applications. It is known (cf. [3]) that (i) if 1 $and <math>f \in L_p(X)$, then the function *f defined by

$${}^*f(x) = \sup_{0 < b < \infty} \left| rac{1}{b} \int_0^b T_t f(x) \, dt \right|$$

is in $L_p(X)$ and $||*f||_p \leq p/(p-1)||f||_p$; (ii) for every $f \in L_p(X)$ with $1 \leq p < \infty$, the limit

$$\lim_{b \uparrow \infty} \frac{1}{b} \int_0^b T_t f(x) \, dt$$

exists and is finite a.e. In this section we shall prove the exact analogues for Abel means.

THEOREM 2. If $1 \leq p < \infty$ and $f \in L_p(X)$, then $f^* < \infty$ a.e. In particular if $1 , then <math>f^*$ is in $L_p(X)$ and

$$||f^*||_p \leq \frac{p}{p-1} ||f||_p.$$

Proof. It follows easily from Theorem 1 that for any a > 0,

$$\mu(E^*(a)) \leq rac{1}{a} \int_{E^*(a)} |f| d\mu < \infty$$

from which we observe that $f^* < \infty$ a.e. The second half of the theorem follows from Theorem 2.2.3 of [6]. The proof is complete.

THEOREM 3. For any $f \in L_p(X)$ with $1 \leq p < \infty$, the limit (5) $\lim_{\lambda \neq 0} \lambda R_{\lambda} f(x)$

exists and is finite a.e.

Before the proof we note that if the semi-group $\Gamma = \{T_t; t \ge 0\}$ is sub-Markovian (for definition, see [5]) and of type C_1 , then the above theorem has been proved by Edwards [5].

Proof. For $1 , <math>L_p(X)$ is reflexive and thus it follows from Corollary VIII.7.2 of [4] that the functions f of the form

$$f = h + \sum_{i=1}^n {(I - T_{t_i})g_i}$$
 ,

where $T_t h = h$ for all $t \ge 0$, is dense in $L_p(X)$ in the norm topology. Since

$$egin{aligned} &\lambda \int_0^\infty e^{-\lambda t} T_t (I-\ T_{t_i}) g_i(x) dt &= \lambda e^{\lambda t_i} \int_0^{t_i} e^{-\lambda t} T_t g_i(x) dt \ &+ \lambda (1-e^{\lambda t_i}) \int_0^\infty e^{-\lambda t} T_t g_i(x) dt ext{ a.e.} \end{aligned}$$

546

for each i, and

$$\lim_{\lambda \downarrow 0} \lambda e^{\lambda t_i} \int_0^{t_i} e^{-\lambda t} T_t f(x) dt = 0 \text{ a.e.}$$

for each i, it follows from Theorem 2 that

$$\lim_{\lambda \downarrow 0} \lambda \int_0^\infty e^{-\lambda t} T_t (I - T_{t_i}) g_i(x) dt = 0 \text{ a.e.}$$

for each *i*. Thus we observe that the limit (5) exists and is finite a.e. for any function f in a dense subset of $L_p(X)$ in the norm topology. Hence the Banach convergence theorem [3] and Theorem 2 imply that the limit (5) exists and is finite a.e. for any $f \in L_p(X)$. Since $L_p(X) \cap L_1(X)$ is dense in $L_1(X)$ in the norm topology, the Banach theorem and Theorem 2 are also sufficient to prove that the limit (5) exists and is finite a.e. for any $f \in L_1(X)$. This completes the proof of Theorem 3.

References

1. R. V. Chacon, An ergodic theorem for operators satisfying norm conditions, J. Math. Mech., **11** (1962), 165-172.

2. R. V. Chacon and U. Krengel, *Linear modulus of a linear operator*, Proc. Amer. Math. Soc., **15** (1964), 553-559.

3. N. Dunford and J. T. Schwartz, Convergence almost everywhere of operator averages, J. Rat. Mech. Anal., 5 (1956), 129-178.

4. ____, Linear Operators I, Interscience Publishers, New York, 1958.

5. D. A. Edwards, A maximal ergodic theorem for Abel means of continuous-parameter operator semigroups, J. Functional Analysis, 7 (1971), 61-70.

6. A. M. Garsia, Topics in Almost Everywhere Convergence, Markham Publishing Co., Chicago, 1970.

7. R. Sato, Abel-ergodic theorems for subsequences, Pacific J. Math., 47 (1973), 233-242.

Received January 4, 1973.

JOSAI UNIVERSITY