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CRAWLEY'S COMPLETION OF A CONDITIONALLY
UPPER CONTINUOUS LATTICE

WILLIAM H. CORNISH

Crawley's completion (the lattice of all complete ideals) of
a conditionally upper continuous lattice L is an upper regular
homomorphic image of the lattice of ideals of L. After ex-
amining the consequences of this result, Crawley's completion
is characterized both as a completion of L and as the minimal
upper continuous extension of L with respect to upper regular
homomorphisms.

1Φ Introduction* A lattice is conditionally upper continuous
if for any xeL and any (upward) directed subset {xa} such that y/xa

exists then \/x Λ xa exists and xΛ V^« — V^ A xa An upper con-
tinuous lattice is a complete conditionally upper continuous lattice.

The empty subset 0 will be regarded as an ideal of lattice L
if and only if L possesses no smallest element. Thus the lattice J(L)
of ideals of L is a complete lattice whose smallest element is either
0 or {0} according to whether L is unbounded below or L has a
smallest element 0. A complete ideal is an ideal which is closed under
the formation of existing joins of its elements. The set K(L) of all
complete ideals is a closure system on L and is thus a complete lattice
which possesses the same smallest and largest elements as J(L).

A function between two partially ordered sets is called upper
regular if it preserves existing joins. Lower regular functions are
defined dually while a function which is both upper and lower regular
is simply called regular. The natural function κ\ L—> K(L), defined
by fc(x) = {ye L:y ^ x}, is always regular.

In [2] Crawley proved that K{L) is upper continuous if and only
if L is conditionally upper continuous, together with the most interest-
ing fact that L and K{L) satisfy precisely the same identities when
L is conditionally upper continuous. We first show that Crawley's
results are direct consequences of the fact that if L is conditionally
upper continuous then K{L) is an upper regular lattice-homomorphic
image of J(L). This last fact leads to a characterization of upper
continuous lattices as a type of retract of algebraic lattices (complete
compactly generated lattices), a natural proof of J. Schmidt's theorem
[13] that a conditionally upper continuous distributive lattice is
infinitely distributive, and a simple way of obtaining an upper regular
embedding of an infinitely distributive lattice into a complete Boolean
algebra. Here a lattice L is called infinitely distributive if for any
x in L and any subset {xa} such that \Jxa exists then \/x A xa exists
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and x Λ V^« — V# Λ xal there is no uniform terminology for this
concept and so we use the reasonably descriptive term due to Dilworth
and McLaughlin [3].

Subsequent to [2], K(L) does not seem to have been studied by
any author other than Janowitz [8], [9]. Hence we characterize K(L)
and in the last section of this paper examine the case when K{L) is
a Boolean algebra.

2 K(L) as a homomorphic image. Let (A) denote the com-
plete ideal generated by an ideal A in lattice L; <A> = Γ\{BeK(L):
A £ B). The meet of an arbitrary set {/α} of complete ideals is
their set-theoretic intersection while their join is easily seen to be
given by yκJa — (VjJa}, where V/ denotes the join in J(L). For
xe Lf the smallest complete ideal containing x is (x] = {ye L:y ^ x).

LEMMA 2.1. For an ideal A in a conditionally upper continuous
lattice L, {A} = {xe L: x = \f Ax for some ideal ^ £ 4),

Proof. Let X = {xe L:x = y/At for some ideal Λ £ 4}. Suppose
ye L and y ^ x for some xe X. For a suitable ideal AtS A, x =
VA. As Ax is directed and L is conditionally upper continuous y =
y Λ x = \fy Λ Ai = V((2/] Π AO. Thus i / e l Now suppose that S g
X and that 2 = \/S exists. For each se S there is an ideal 4 s g 4
such that 8 — \/As. Hence z = VίUses As) = V ( V J A.) and so^ e l .

ses

Thus X is a complete ideal containing A and it follows that X =

We now come to the fundamental characterizations of a condi-
tionally upper continuous lattice. The equivalence of conditions (a),
(d), and (e) of the following theorem is known from [2] and [9,
Lemma 3.2] yet it is added for the sake of completeness.

THEOREM 2.2. For a lattice L the following are equivalent.
(a) L is conditionally upper continuous.
(b) For any ideals A and B, ( 4 n δ ) = (A) Π <£>.
(c) The function A >-» <A> is an upper regular lattice-homo-

morphism of J(L) onto K(L).
(d) K(L) is upper continuous.
(e) There exists an upper regular lattice-embedding of L into

an upper continuous lattice.

Proof. (a)=»(b) Suppose (a) holds and xe(A)f]<B). By 2.1
there are ideals 4 t S 4 , #1 g B such that x = \/A1 = V#i Clearly
α? is an upper bound of ^ n ΰ 1 ( Let y be another upper bound.
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For any ae Ax and be Bly y ;> a A b. Hence y ^ y{a Λ b: be J?J =
α Λ V-Bi ̂ ( ϊ Λ x and it follows that y^x = x/\x~ y Aλ Λ x. Thus
a; = VΛ Π B,e (Af) B). It is now clear that (b) holds.

(b) => (c) Clearly < V J 4 « > 3 Vχ<Ar> for any collection {AJ g J(L).
On the other hand, \f jAa g VΛAr> so that <VJAα> g <VΛAr» =
y κ(Aa}. In other words the function A >-> <A) is always upper regu-
lar and so (c) follows immediately from (b).

(c) => (d) is an immediate consequence of the fact that J(L) is
upper continuous.

(d) => (e) is trivial, while (e) ==> (a) has already been shown in [9,
Lemma 3.2],

COROLLARY 2.2.1. (Crawley). Let L be a conditionally upper
continuous lattice. Then,

(a) for any variety Ύ of lattices, LeΎ* if and only if K(L) e ^
and

(b) if p( , , , ) is an n-ary lattice polynomial whose evalua-
tions on J(L) and K(L) are denoted by p( , , , )j and p( , , , ) κ

respectively then p(Au A2, , An)κ = {xe L: x = VB for some ideal
B g p{Au A2, , An)j) for any n complete ideals Au A2, , An.

Proof. Both assertions are immediate consequences of 2.2 (c)
and Lemma 8 of [6, p. 34].

COROLLARY 2.2.2. A lattice L is upper continuous if and only
if there exists an algebraic lattice M, a lattice-homomorphism ψ: L —>
M and an upper regular lattice-homomorphism φ:M—>L such that
φoψ is the identity function on L.

Proof. Suppose L is upper continuous. Take M = J(L) and ψ
as given by ψ(x) = (x] for each xe L. As L is upper continuous the
canonical embedding tz of L into K(L) (recall that κ(x) = (x] for each
xeL) is an isomorphism whose inverse AT1 is given by fc~\A) - \f A
for each Ae K(L). If φ is the composition of the function A>-> <A>
of 2.2 followed by AT1 then the triple (φ, M, ψ) has the required
properties.

The converse holds since a retract of a complete lattice is com-
plete, an algebraic lattice is upper continuous [1, Lemma 2, p. 187]
and the properties of the maps φ and ψ then force (conditional)
upper continuity.

Along with Smith [14] we shall call a lattice L implicative if
for any a, be L there exists a necessarily unique element, denoted
by a —> δ, with the property that c Λ a ^ b if and only if c ^ a —> b
for any ceL.
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COROLLARY 2.2.2. For a lattice L the following are equivalent.
(a) L is distributive and conditionally upper continuous.
(b) K(L) is infinitely distributive.
(c) L is infinitely distributive.
(d) L possesses an upper regular lattice-embedding into a com-

plete Boolean algebra.
(e) L possesses an upper regular lattice-embedding into an im-

plicative lattice.

Proof, (a) => (b) follows from 2.2 since J(L) is infinitely distri-
butive for any distributive lattice L. The implications (b) => (c) and
(c) => (a) are trivial.

(b) => (d) Let B(K(L)) denote the Boolean algebra generated by
K(L). Because of (b) the natural map of K(L) into B(K(L)) is upper
regular; this is proved in exactly the same way as Lemma 13 is
established in [6, p. 108]. The embedding of B(K(L)) into A(B(K(L))),
its complete Boolean algebra of annihilator ideals, is upper regular,
c.f. [6, Lemma 12, p. 107], and (d) follows.

(d) => (c) holds since any Boolean algebra is implicative and
(e) => (c) is easy to prove and its proof will be omitted.

REMARKS, (a) The equivalence of (a) and (c) of 2.2.2 was first
established for complete lattices by Schmidt [13, Korollar 7]. His
proof is obtained by examining variations of an axiom of Baer. It
might be of interest to note that Schmidt's conditions can be made
"conditional" and so obtain other characterizations of conditional upper
continuity and an alternative proof of (a) <=> (c).

(b) The easy proof of (c) => (d) of 2.2.2 should be compared
with complicated proof of the theorem that a lattice which is both
infinitely distributive and dual infinitely distributive possesses a re-
gular embedding into a complete Boolean algebra as given by Funayama
[4]. Our proof is based on Gratzer's easy proof of Funayama's theo-
rem for the case of a complete lattice. Incidentally we shall see
later that the Boolean algebra of annihilator ideals of a Boolean
algebra is the Crawley completion; thus we have a very nice descrip-
tion for the Boolean algebra required in (d).

3* Characterizations of K(L). Recall that a subset S of a par-
tially ordered set P is join-dense (meet-dense) in P if and only if
each element of P is the join (meet) of its predecessors (successors)
in S.

THEOREM 3.1. Let L be a conditionally upper continuous lattice,
C be an upper continuous lattice, and φ: L-+C be an upper regular
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lattice-homomorphism. Then there is a unique upper regular lattice-
homomorphism ψ\ K(L) —> C such that φQtc — φ. Moreover, φ is an
injection if and only if ψ is an injection, and φ is a surjection if
and only if φ(L) is join-dense in C.

Proof. Define φ:K(L)-*C by φ(A) = y {φ(x): x e A} for each
AeK(L).

By 2.1, ae \f κAa for {Aa} g K(L), implies that a = V ^ for some
ideal A g \f jAa. For any xe A, x ^ a, V α2 V V an for some
»i, a,*, , ane \JAa. Hence φ(x) ^ φ(αθ V V <P(an) ^ V ^(Ar) and
so φ{a) = \/φ(A) ^ \fφ(Aa). Thus ^(V^A*) S W A r ) and it follows
that φ is upper regular.

Since C is upper continuous φ(A) A φ(B) = V M ^ ) : ^ e ^ l Λ
V{φ(b):beB} = \/{φ{a)/\ φ(b): ae A, beB} = V{φ(aΛb): ae A, beB} =
Φ(AΓ)B) for any A, Be K(L).

Clearly φofc = φ. Now suppose ψ: K(L) —> C is another map pos-
sessing the same properties as we have already established for φ.
Let A 6 K{L). Of course A = UftαJ ^ 4 } and s o i = V^{(^1: ^ 4 } =
yκ{φ):xeA}. Hence f (A) = Vίf (ιc(x)):xe A} = \/{φ(x):xeA} =

and so φ is unique.
Suppose φ is an injection. Let A, Be K(L) be such that Φ(A) =

For α e A, φ(a?) - φ(ιc(x)) = Φ((x]) = Φ((x]) ΓΊ Φ(A) = φ((α?] n #)•
If « G L is an upper bound of (x] f] B then φ(z) = φ((z]) ̂  φ((x] flS) =
9(a). Hence 2 ^ a? and it follows that x = \/(x] Π Be B. Thus A g
J5. Due to symmetry A = 5 and so ψ is an injection. The converse
is trivial.

Suppose φ(L) is join-dense in C. Let ceC. As ^ is upper regu-
lar <P*~((c]) = {a; e L: φ(x) ^ c} is a complete ideal. Since φ(L) is join-
dense in Cφ(φ*~((c])) = Y{φ(x): φ{x) ^ c) — c. Hence φ is a surjection.
The converse is readily established.

THEOREM 3.2. Let L be a conditionally upper continuous lattice,
P be a partially ordered set and ψ:L—+P be an embedding (i.e.,
x <; y <=> f(x) <̂  ψ(y) for any x, ye L) which is upper regular and
such that ψ(L) is join-dense in P. Then there exists a unique
embedding ψ': P—> K(L) such that ψfoψ = K,. In addition ψ'(S) is
join-dense in K(L) and ψ' is a surjection if and only if P is an
upper continuous lattice.

Proof. Define ψ': P->K{L) by ψ'(p) = {xeL: ψ(x) S p) for each
p e P. Since ψ is upper regular ψ'(p) is always a complete ideal.
For p, q e P it is clear that f'(p) <; ψ\q) if p ^ q and the converse
holds since ψ(L) is join-dense in P.

For xeL ψ'(ψ(x)) = {ye L: ψ(y) <, ψ(x)} = {yeL'.y ^ x) = /c(x).
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Now suppose that λ: P—> K(L) is another embedding such that Xoψ =
K. Let peP and suppose xe L and xe ir\p). Then f(x) g p and so
xefc(x) = X(f(x)) £ λ(j>). That is i/r'(p) £ X(p). Now let p e P and
xe L be such that #e X(p). Hence (&] £ λ(p) i.e., X(ψ(x)) £ X(p) As
λ is an embedding, ψ(a?) ^ p. Hence λ(p) £ ψ'(p) and it follows that
λ = α/r\

Clearly ^'(S) is join-dense in K{L) and hence the last assertion
of the theorem follows from 3.1 if we note that a join-dense em-
bedding is always lower regular.

COROLLARY 3.2.1. For a lattice L the following are equivalent.
(a) The Dedekind-MacNeille completion of L is upper continuous.
(b) L is conditionally upper continuous and K(L) is isomorphic

to the Dedekind-MacNeille completion of L.
(c) L is upper continuous and tc(L) is meet-dense in K(L).

Proof. Up to isomorphism the Dedekind-MacNeille completion of
L is the unique join-dense and meet-dense complete extension of L
[12].

Dilworth and McLaughlin [3, Theorem 3.2 and Corollary to
Theorem 3.4] have already given necessary and sufficient conditions
for the Dedekind-MacNeille completion of a lattice to be infinitely
distributive. Corollaries 2.2.2 and 3.2.1 yield new conditions.

COROLLARY 3.2.2. For a lattice L the following are equivalent.
(a) L is distributive and its Dedekind-MacNeille completion is

upper continuous.
(b) The Dedekind-MacNeille completion of L is infinitely dis-

tributive.
(c) L is infinitely distributive and K(L) is isomorphic to the

Dedekind-MacNeille completion of L.
(d) L is infinitely distributive and κ{L) is meet-dense in K{L).

COROLLARY 3.2.3. The Crawley completion of an implicative lat-
tice is isomorphic to the Dedekind-MacNeille completion.

Proof. Smith [14, Theorem 4.1] has shown that the Dedekind-
MacNeille completion of an implicative lattice is itself an implicative
lattice. The result is now an immediate consequence of Corollaries
2.2.2 and 3.2.2.

4* Disjunctive lattices* Let L be a distributive lattice with 0.
For a nonempty subset A of L put A* = {xe L: x A a = 0 for all
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ae A} and A** = (A*)*. Then A* is an ideal and an ideal B is called
an annihίlator ideal if and only if B = i?** or equivalently if β = A*
for some nonempty subset A. When the set A(L) of all annihilator
ideals of L is ordered by set-inclusion it becomes a complete Boolean
algebra and the function a: L —•> A(L), a(x) = #** for each xeL, is
a lattice homomorphism of L into A{L). For details see [6, Lemma
12, p. 107] or [11, §3].

Recall that a distributive lattice L with 0 is disjunctive if for
any a < b, a, be L, there exists 0 < ce L such that a Λ c = 0 and
c < 6; "section semi-complemented" is an equivalent term used in [9].
It is well-known that a distributive lattice with 0 is disjunctive if
and only if (x] = (a;]** for each xe L, or equivalently the map a: L —>
A(L) is an injection. A subset S is join-dense in a disjunctive lattice
L Φ {0} if and only if it is dense in the sense of [11, § 3], that is,
for any 0 Φ se S such that s ^ x. It is also easy to see that a dis-
junctive lattice L is infinitely distributive if and only if the embed-
ding a: L —> A(L) is upper regular. Finally we remark that a(L) is
join-dense in A(L) for any distributive lattice L with 0 and that L
is disjunctive if and only if it is a dense (join-dense) sublattice of a
Boolean algebra. Up to isomorphism A(L) is the unique complete
Boolean algebra containing disjunctive lattice L as a dense sublattice
[11, §3].

The preceding remarks together with Corollary 2.2.2 and Theorem
3.2 yield

THEOREM 4.1. For a lattice L with 0, K{L) is a complete Boolean
algebra if and only if L is disjunctive and infinitely distributive.
Under these equivalent conditions K(L) is isomorphic to A(L), the
complete Boolean algebra of annihilator ideals.

A dual disjunctive lattice L is a distributive lattice with 1 whose
dual is disjunctive. From the preceding remarks it follows that a
lattice with 1 is dual disjunctive if and only if it is a meet-dense
sublattice of a complete Boolean algebra. Because of [9, Lemma 3.7]
a dual disjunctive lattice is infinitely distributive; actually Lemma
3.7 of [9] states that a dual disjunctive lattice is conditionally upper
continuous and it may be worth noting that the proof of that lemma
implies infinite distributivity. The preceding remarks of this section
together with Corollary 3.2.2 yield

THEOREM 4.2. Let L be a lattice with 0 and 1. The Dedekind-
MacNeille completion of L is a complete Boolean algebra if and only
if L is a disjunctive, dual disjunctive distributive lattice. Under
these equivalent conditions the Dedekind-MacNeille completion, Crawley
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completion and Boolean algebra of annίhilator ideals of L are all
isomorphic.

Most of Theorem 4.2 has already been established by Janowitz
[9, Lemma 3.9, Theorem 3.11]. Our approach is different and also
identifies the Dedekind-MacNeille completion.

Because of Theorem 4.2 it would seem worthwhile exhibiting a
class of nonBoolean disjunctive, dual disjunctive lattices. Using some
results of Pierce [10], together with an assumed knowledge of the
topological notions of [5], we obtain a satisfying class of examples.

THEOREM 4.3. Let X be a completely regular topological space.
Let ^r(X) = {Y: YS X, Y = int(clP) for some co-zero set in X) be
ordered by set-inclusion. 2$(X) is a disjunctive, dual disjunctive
lattice where the meet in &{X) is set-theoretic intersection and the
join is given by A V B — int cl (A U B) for any A,Be&(X); the
Boolean algebra of regular open set of X is the Dedekind-MacNeille
completion of £$(X).

£&(X) is a Boolean algebra if and only if for any co-zero set P
there exists a co-zero set Q such that P f] Q = 0 and cl (P U Q) — X.
Hence if X is an F-space then &(X) is Boolean if and only if X is
basically disconnected.

Proof. The assertion of the first paragraph of the theorem is a
version of [10, Lemmas 2.3, 2.4].

The criterion for &(X) to be Boolean is an immediate conse-
quence of the description of the join in 3?{X). In an F-space disjoint
co-zero sets have disjoint closures and so it follows that 2H(X) is
Boolean for an F-space X if and only if the closure of each co-zero
set is open and closed. The last condition is the defining condition
for basically disconnected spaces.

The criterion for &(X) to be Boolean arises in another context.
It is the necessary and sufficient condition for the space of minimal
prime ideals of the ring of continuous real-valued functions on X to
be compact with respect to the hull-kernel topology. For details see
[7, Corollary 5.5, Theorem 5.6]. There are F-spaees which are not
basically disconnected e.g. βN\N and βR\R [5].

In closing we would like to mention that we have been unable
to find an example of an infinitely distributive disjunctive lattice with
0 and 1 which is not dual disjunctive.
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