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HELLY AND RADON-TYPE THEOREMS IN
INTERVAL CONVEXITY SPACES

PHILLIP W. BEAN

The notion of interval convexity T o n a point set S is
defined. If T is an interval convexity defined on S, &(T)
will denote the collection of nonempty T-convex subsets of S.
Properties k, H(k) (a Helly property), and R(h, n) (a Radon
property) are defined on ^(T), and relationships between
these properties are investigated.

A partial order convexity ^ on a point set S is a special
type of interval convexity. Some sufficient conditions are
imposed on g and &(£) to insure the existence of certain
Radon-type properties.

1* Introduction* Suppose S is a point set, and &(β) is the
collection of nonempty subsets of S. The statement that T is an
interval convexity on S means that T is a transformation from S x
S into &(S). A subset M of S is said to be T-convex provided that
T(x, y) is a subset of M for every x and y in M. Let ^ ( T ) denote
the collection of all nonempty T-convex subsets of S. For each Me
&*(S), the convex hull of M relative to T, denoted by Co(M), is the
intersection of the elements of ^ ( T ) which contain ikf. We assume
that if each of x and y is in S, then T(x, y) is T-convex, T(x, y)
contains x and y, and T{x, y) = T(y, x).

Let m-set mean a set of m points of S. A subset M of S is
said to be n-divisible provided it may be partitioned into n mutually
exclusive subsets whose T-convex hulls have a common point of S.
In this paper we consider the relationship of the following Helly and
Radon-type properties on a set S with an interval convexity T. ^ ( T )
has property R(k) if each (k + l)-set of S is 2-divisible, and more
generally, ^ ( T ) has property R(k, n) with respect to some integer
valued function / if each [f(k, w)]-set is w-divisible. We say that
^ ( T ) has property r(k) if k is the smallest integer for which ^ ( T )
has property R(k). ^ ( T ) is said to have property H(k) provided
that if ^ is a finite subcollection of ^ ( T ) containing at least k
elements, then the following two statements are equivalent:

(a) Each k elements of & have a common point.
(b) The elements of 2^ have a common point.
In (2) we give sufficient conditions for property R(k) to be equi-

valent to property H(k). We also consider in (2) the existence of
sets with property R(k) in partially ordered spaces and more generally,
in (3) the existence of sets with property R(k, n).

363



364 PHILLIP W. BEAN

2* Theorems concerning properties k, R(k), and H(k). From
a theorem of Levi [7] we have that property R(k) implies property
H(Jc). In [1] Calder introduces the following property: ^(T) has
property k provided that if M is a finite point set containing at least
k + 1 points, then there exists a point p such that p e Co [M ~ {m}]
for each m in M. He proves that property k is equivalent to property
H(k) and then proves that property R(k) is equivalent to property
H(k) in a partially ordered space. It should be noted that the partial
order does not have to be antisymmetric. Calder also gives an example
of an interval convexity T such that property H(k) is not equivalent
to property R(k) in ^(T). In the first two theorems of this section
we give sufficient conditions on T for properties H(k) and R(k) to be
equivalent.

If each of A and B is in &*(S), then A*B denotes the set

THEOREM 2.1. Let T be an interval convexity on S such that for
each M in &*(S), Co (M) = M*M; and if a, 6, c, and d are four dis-
tinct points such that d is in T(a, b) and T(a, c), then b is in T(a, c),
or c is in T(a, δ). Then property H(k) *=> property R(k) in ( )

THEOREM 2.2. Let T be an interval convexity on S such that for
each M in &*{β\ Co (M) = \JmeM T(m, m). Then property H(k) <=>
property R(k) in

The proofs of Theorems 2.1 and 2.2 are easy modifications of the
proof of Theorem 3.2 of Calder [1].

EXAMPLE 2.1. Let M be a subset of a linear space S. A subset
K of M is said to be extremal provided that if k is an element of
K, and there exist elements x and y in M such that k = tx + (1 —
t)y for some t e (0, 1), then x and y are elements of K. Obviously,
the union and intersection of any collection of extremal subsets of
M are extremal.

We define an interval convexity T on M as follows: If each of
x and y is an element of M, T{x, y) is the intersection of the extremal
subsets of M which contain {x, y).

For each subset K of M, Ka\Jk&κT{k9k), Since \Jk,κ T(k, k)
is convex, Co (K) a\Jkeκ T(Jc, k). However, \JkBK T(k, k) cCo (K). Thus
Co(K) — \Jkeκ T(k, k), and hence property H(k) <=> property R(k) in

Let ^ be a partial order on the set S. If each of x and y is
a point of S, [x, y] = {p\p — s, or p = y, or x < p < y, ov y < p < x}.
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A subset M of S is said to be ^-convex if for all elements x and y
of M, [x, y] is a subset of M. The collection of all ^-convex subsets
of S is denoted by ^ ( ^ ) . In [5], Franklin shows that Co(M) =
M*M for any M in

THEOREM 2.3. Suppose <£ is a partial order on S, and S is the
union of n linearly ordered sets, Sly S2, •••,£?„. Then ^ ( ^ ) has
property R(2n).

Proof. Suppose M = {xL, x2f , a w J is a (2w + l)-set. Then for
some i,l <^i ^n, Si contains at least three points, zu z2, zZ9 of M such
that zx < z2 < 23. Thus Co {22} and Co {zlf z3} have a common point,
and therefore ^ ( ^ ) has property R(2n).

It is easy to show that ^ ( ^ ) has property r(2) if and only if
rg linearly orders S. Suppose ^ is a partial order on S which does
not linearly order S. Under these conditions on ^ , does ^ ( ^ ) have
property r(3) if and only if S is union of two mutually exclusive,
linearly ordered subsets Sλ and S2? The following example shows
the answer to this question is no.

EXAMPLE 2.2. Let S = {(x, y) e R2\y = 0 or y = 1}. Define ^ on
S as follows: (xl9 yλ) ^ (x2, yz) if yt = τ/2 and ^L ^ a;2. Thus ^ is a
partial order on S which does not linearly order S. However, <;
does linearly order St - {(x, 1) e R2} and S2 = {(a?, 0) G i22}, and S =

S1 U S2. To show that ^ ( ^ ) does not have property r(3) we choose
M = {(0, 0), (1, 0), (0, 1), (1, 1)}. Obviously M is not 2-divisible.

3. Property R(k, n). Tverberg shows in [11] that the collection
on convex sets in Rk~ι has property R(k, n) with respect to f(k, n) =
(n — V)k + 1 for n, k ^ 2. By putting suitable restrictions on Γ, we
have the following:

THEOREM 3.1. Suppose T is an interval convexity on S such that
if Me^(S), then Co{M) = \Jm&M T(m, m). If ^(T) has property
R(k), then ct^{T) has property R(k, n) with respect to f(k, n) = (n —
1)& + 1 for n^2.

Proof. (We use induction on n.) Suppose ^ ( Γ ) has property
R(k), i.e., ^ ( Γ ) has property R(k, 2). Suppose further that ^ ( T )
has property R(k, m) for some m >̂ 2, and let ikf = {xlf x2, , α;m&+1}
be an [mk + l]-set. Let M1 — {xl9 x2j , a;(m_1)fc+1} be the subset of
M containing the first (m — ϊ)k + 1 points of M. Then there exist
m points, yn, y12, , ylm, of ilίΊ and a point ^ such that
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Now choose M2 = {xlf x2, , a;{m_m+1, aw m + 2 } ~ {1/1J. Thus ΛΓa

is an [(m — 1)& + l]-set, and hence there exist m points, yΆ, y22, , ?/2TO,
of Λf2 and a point p2e Γ)Γ=i Co {y2i}.

Continuing this process we get Mό = [ M ^ U {x{m-»k+j}] ~ {Vj-n} for
3 ^ i ^ fc + 1, and each of the sets is an [(m — ί)k + l]-set. Thus
there exist ra points, yΛ, ?/i2, , yjm, of Af, and a point ̂  e f |£i Co {yH}.

Let if = {plt p2, , pfc+1}. If Pi = p, for some i ^ i, the theorem
is proved. Suppose pt Φ pό if i Φ j . Since ^ ( T ) has property
there exist points, pt and pjf i < i, in K and a point

Since for each xe S, T(x, x) is convex, we have p0 e Co {ytl} n Co {y31} n
• Π Co {i/im}. Thus M is (m + l)-divisible and ^ ( T ) has property R(k,
m + 1). Therefore, ^ ( Γ ) has property R(k, n) with respect to f(k,
n) = (n - l)k + 1 for all n ^ 2.

EXAMPLE 3.1. In ϋJ2 let l/P and ί/P denote, respectively, the
open and the closed half planes determined by the line I and con-
taining the point P. PQ denotes the line determined by the points
P and Q, and P[m] denotes the line through P with slope m. Let
Po - (0, 0), Px = (1, 0), P2 - (-1/2, τ/8/2), P.=(-l/2 f -τ/8/2), P4 = (1, 1),
p5 = (-1, o), P6 - (1, -1). Choose S - ^ U S2 U S3 where & = PoP./P* n
P0P2/P4, S2 = P0P2/P5

ln P0P3/P5, and S3 = P0Pi/P6 Π P0P3/Pβ We define an
interval convexity T on S as follows:

(a) T(P,P) =

, n P[-l/3]/P0 if P e S i ;

S2nP[τ/3]/P0 if

Szf]P[0]/P0 if

(b) Γ(P, Q) = T(P, P) U T(Q, Q) .

Thus if Me &{β\ Co (Jlf) = \Jm&MT{m, m). It is easily seen that
9f (Γ) has property r(3). Thus if A? ̂  3, <if (T) has property i?(fc, n)
with respect to /(fc, n) = (n — l)k + 1 for n ^ 2.

THEOREM 3.2. Suppose ^ is a partial order on S such that
property R(k). Then ^{ίk) has property R(k, n) with respect

to f(k, n) = (2n - 3)& + 1 /or all n^2.

Proof. (The proof is a slight modification of the proof of Theorem
3.1.) The statement is true for n = 2 since property R{k) is the
same as property R(k, 2). Now suppose the statement is true for
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n = m9 and let M = {xl9 x2, , ^{2w_3)fc+1, , £{2w_1)fc+1} be a [(2ra —l)fc +
l]-set. (Note that [(2m - l)fc + 1] - [(2m - 3)fc + 1] = 2k.) Let iΓ0 -
{a?!, x2, -", X(2m-3)k+i} be the subset of M containing the first (2m —
S)k + 1 points of M. Thus there exist m mutually exclusive subsets,
K01,K02,---,K0m, of Ko and a point τ/oe flΓ-i Co (Koi). It follows
then that there exist points s0 and t0 in Ko such that sQ < yQ <tQ.
Now let jfî  be the [(2m - Z)k + l]-set [KQ ~ {s0, ί0}] U {x^-m+z, X^-VM}.

Again there exist m mutually exclusive subsets, Kllf Kί2, « ,iΓ lw, of
K, such that Γ)T=ιCo(KH) Φ 0. If yoe f|Γ=i Co (1Q, the theorem is
proved.

Suppose 2/0 g ΓlΓ=i Co ( i ^ ) . Let yx e ΓlΓ=i Co (iΓu). Then there exist
points Sx and tx in ^ such that sx < ^ < t^

Continuing this process for 2 ^ i ^ ky we obtain Kt = [i^-! ^
{Si-!, ί4-i}] U {x{2m-m+2u (̂2m-3)̂ +(2ί+i)} and correspondingly m mutually
exclusive subsets, Kιly Kι2f , Kim9 of Kt such that Π?=i Co (JBL<P)

contains a point s/t. Now if for some j and i, 0 ^ j < i ^ k, yjβ
ΠP=ICO (Kip), the theorem is proved.

Suppose that if 0 ^ j < i £ k, y3- $ Π?=i Co (2ίrί3,). Then the (& +
l)-set C — {y0, Vi, mmm

9Vk} is 2-divisible. Let C1 and C2 be mutually
exclusive subsets of C such that Co (CL) n Co (C2) ^ 0 . It can be
shown that if we Co (Cx) Π Co (C2) then there are m + 1 mutually
exclusive subsets, Ml9 M2, , Λfw+1, of I f such that w e Π S 1 Co (ik^).
Hence M is m + 1 divisible. Therefore, ^ ( ^ ) has property R(k, n)
with respect to f(k, n) — (2n — S)k + 1 for all n ^ 2.
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