HOMOTOPY TYPES OF SPHERICAL FIBRE SPACES OVER SPHERES

SEIYA SASAO

It is known that the fibre homotopy type of a spherical fibre space over a sphere is determined by its characteristic class. Our purpose is to describe the homotopy type of the total space of a spherical fibre space over a sphere in terms of its characteristic class, and to classify homotopy types of them by defining a kind of equivalence between characteristic classes.

I. M. James and J. H. C. Whitehead classified homotopy types of the total space of sphere bundles over spheres in [2] and [3]. Our results are a generalization of their theorems and also an answer to one of problems proposed by J. D. Stascheff in [7]. Let \mathscr{G}_k be the space of maps of a k-sphere into itself with degree 1 and let \mathscr{F}_k be the subspace of \mathscr{G}_k consisting of maps preserving the base point ${}^t(0, \dots, 0, 1)$. We denote by $\mathscr{G}_{k,n}(\chi)$ the total space of an orientable k-spherical fibre space over an n-sphere with $\chi \in \pi_{n-1}(\mathscr{G}_k)$ as its characteristic class. First we shall treat with the case where fibrations have cross-sections. Then we may suppose $\chi = i_{k^*}(\hat{\varsigma})$ where $i_k: \mathscr{F}_k \to \mathscr{G}_k$ denotes the inclusion map.

Now let

 $\lambda \colon \pi_{n-1}(\mathscr{F}_k) \longrightarrow \pi_{k+n-1}(\mathscr{S}^k)$

be the isomorphism defined by B. Steer in [5]. We are concerned with $\lambda(\xi)$ but not χ .

Then if $i_{k^*}(\xi) = i_{k^*}(\xi')$ we claim

(1)
$$\lambda(\hat{\xi}') = \lambda(\xi) + [x, \iota_k]$$

for some $x \in \pi_n(\mathcal{S}^k)$ where [,] denotes Whitehead product.

For, let *i* be the inclusion $\mathscr{R}_{k+1} \to \mathscr{G}_k$ where \mathscr{R}_{k+1} is the rotation group of \mathscr{S}^k . Clearly *i* induces a fibre map of the fibration $\mathscr{R}_{k+1} \to \mathscr{S}^k$ into the fibration $\mathscr{G}_k \to \mathscr{S}^k$. Since the restriction of λ on the image of $\pi_{n-1}(\mathscr{R}_k)$ is equal to (up to sign) ([5]), the homomorphism \mathscr{J} which is defined by G. W. Whitehead in [6], λ maps $\partial \pi_n(\mathscr{S}^k)$ onto the group $[\pi_n(\mathscr{S}^k), \iota_k]$ by the formula $\mathscr{J}\partial(x) = -[x, \iota_k]$ where ∂ denotes the boundary homomorphism taken from the homotopy sequences of fibrations. Thus, since $\xi' - \xi$ is contained in the $\partial \pi_n(\mathscr{S}^k)$, we obtain (1).

Let Σ be the natural projection

$$\pi_{k+n-1}(\mathscr{S}^k) \longrightarrow \pi_{k+n-1}(\mathscr{S}^k)/[\pi_n(\mathscr{S}^k), \iota_k] \ .$$

A map of \mathscr{S}^k into itself with degree -1 canonically induces an endmorphism of $\pi_{k+n-1}(\mathscr{S}^k)/[\pi_n(\mathscr{S}^k), \iota_k]$. We denote by $\widetilde{\mathcal{Z}}$ the composition of Σ and the endmorphism. The set

$$\mathscr{M}(\mathscr{C}_{k,n}(\mathcal{X})) = (\pm \Sigma \lambda(\xi), \pm \widetilde{\Sigma} \lambda(\xi))$$

is independent from the choice of ξ by (1). Then we shall prove

THEOREM 1. If the fibration χ_i (i = 1, 2) has a cross-section $(n, k \ge 2)$, $\mathscr{C}_{k,n}(\chi_1)$ has the same homotopy type as $\mathscr{C}_{k,n}(\chi_2)$ if and only if

(1) if $n \neq k$, or $n = k = even \mathcal{M}(\mathcal{C}_{k,n}(\chi_1)) = \mathcal{M}(\mathcal{C}_{k,n}(\chi_2))$

(2) if $n = k = odd \ d \cdot \lambda(\xi_1) \equiv \lambda(\xi_2) \mod [\pi_n(\mathscr{S}^k), \iota_k]$ for some integer d, (d, m) = 1, where m is the order of $\lambda(\xi_2) \mod [\pi_n(\mathscr{S}^k), \iota_k]$.

If $\mathscr{C}_{k,n}(\chi)$ has the same homotopy type as $\mathscr{S}^k \times \mathscr{S}^n$ the fibration has a cross-section. Hence we have

COROLLARY 1.1. $\mathscr{C}_{k,n}(\chi)$ has the same homotopy type as $\mathscr{S}^k \times \mathscr{S}^n$ if and only if the fibration χ is fibre homotopically trivial.

Secondly we consider fibrations which do not necessarily have cross-sections. Therefore, we are mainly concerned in the case n > k. However, the case n = k + 1 is different from others, so we suppose $n \ge k + 2 \ge 4$.

Let $\bar{\rho}: \mathscr{S}^k \to \mathscr{S}^k$ be the homeomorphism defined by

$$\bar{\rho}(x_1, x_2, \cdots, x_{k+1}) = (-x_1, x_2, \cdots, x_{k+1}),$$

and let $\rho: \mathscr{G}_k \to \mathscr{G}_k$ be the homeomorphism induced by $\bar{\rho}(\rho(f) = \bar{\rho}f\bar{\rho})$. For any $\alpha \in \pi_{n-1}(\mathscr{S}^k)$, from the diagram

$$\pi_{k+n-1}(\mathscr{S}^{n-1}) \xrightarrow{\alpha_{\ast}} \pi_{k+n-1}(\mathscr{S}^{k}) \xleftarrow{\lambda} \pi_{n-1}(\mathscr{F}_{k}) \xrightarrow{i_{k_{\ast}}} \pi_{n-1}(\mathscr{G}_{k}) ,$$

we have the subgroup of $\pi_{k+n-1}(\mathscr{G}_k)$ defined by

$$\mathscr{G}(\alpha) = i_{k^*} \lambda^{-1} \cdot \alpha_* \pi_{k+n-1}(\mathscr{S}^{n-1})$$
 .

Then we claim

(2)
$$\mathscr{G}(\alpha) = \mathscr{G}(-\alpha) \text{ and } \rho_*(\mathscr{G}(\alpha)) = \mathscr{G}((-\iota_k)_*\alpha).$$

For, the former is clear and the latter follows from the following commutative diagram (see Lemma 2.2)

208

where $\rho \mid \mathscr{F}_k = i_k \cdot \rho'$ is the natural factorization.

Now let $\mathscr{S}[\mathcal{X}]$ $(\chi \in \pi_{n-1}(\mathscr{G}_k))$ be the set of elements

$$\{\chi, -\chi, \rho_*\chi, -\rho_*\chi\}$$

and let $\mathscr{P}_k: \mathscr{G}_k \to \mathscr{S}^k$ be the projection of the canonical fibration. We define a relation in $\pi_{n-1}(\mathscr{G}_k)$ as follows $\chi_1 \sim \chi_2$ if and only if $\theta_1 \equiv \theta_2 \mod \mathscr{G}(\mathscr{P}_k^*(\theta_1))$ for some pair $(\theta_1, \theta_2), \theta_i \in \mathscr{S}[\chi_i]$.

It can be easily checked by (2) that this is an equivalence relation.

THEOREM 2. If $n \ge k+2 \ge 4$, then $\mathscr{C}_{k,n}(\chi_1)$ has the same homotopy type as $\mathscr{C}_{k,n}(\chi_2)$ if and only if $\chi_1 \sim \chi_2$.

If fibrations have cross-sections this is an alternative version of Theorem 1. For, since $\mathscr{P}_{k^*}(\chi_i) = 0$ we have $\chi_i = i_{k^*}(\xi_i)$. Then the condition $\chi_1 \sim \chi_2$ means that $\chi_1 = \pm \chi_2$ or $\chi_1 = \pm \rho_* \chi_2$, i.e.,

$$i_k^*(\xi_{\scriptscriptstyle 1}) = \pm i_{k^*}(\xi_{\scriptscriptstyle 2}) \quad ext{or} \quad i_{k^*}(\xi_{\scriptscriptstyle 1}) = \pm i_{k^*}((
ho'_*)(\xi_{\scriptscriptstyle 2})) \; .$$

These are satisfied if and only if $\xi_1 = \pm \xi_2 + \partial \sigma$ or $\xi_1 = \pm \rho'_* \xi_2 + \partial \sigma$ where $\sigma \in \pi_n(\mathscr{S}^k)$. Now apply λ to the both side, then we have that

$$\lambda(\hat{\xi}_1) \equiv \pm \lambda(\hat{\xi}_2) \text{ or } \pm (-\iota_k)_* \lambda(\hat{\xi}_2) \mod [\pi_n(\mathscr{S}^k), \iota_k].$$

This is so if and only if $\mathscr{M}(\mathscr{C}_{k,n}(\chi_1)) = \mathscr{M}(\mathscr{C}_{k,n}(\chi_2)).$

From Theorem 2 the following is easily deduced.

COROLLARY 2.1. Suppose that $\mathcal{J}\pi_{n-1}(\mathscr{R}_k) \supset \mathscr{P}_{k^*}(\chi)\pi_{k+n-1}(\mathscr{S}^{n-1})$. If $\mathscr{C}_{k,n}(\chi)(n \ge k+2 \ge 4)$ has the same homotopy type as the total space of an orthogonal \mathscr{S}^k -bundle over \mathscr{S}^n , then the fibration itself is fibre homotopically equivalent to an orthogonal \mathscr{S}^k -bundle over \mathscr{S}_n .

As special cases we have

COROLLARY 2.2. Suppose that the fibration χ has a cross-section. If $\mathscr{C}_{k,n}(\chi)(n \geq k+2 \geq 4)$ has the homotopy type of the total space of an orthogonal \mathscr{S}^k -bundle over \mathscr{S}^n , the fibration is fibre homotopically equivalent to an orthogonal \mathscr{S}^k -bundle over \mathscr{S}^n .

COROLLARY 2.3. A k-spherical fibring over \mathscr{S}^n is stable fibre homotopically equivalent to an orthogonal \mathscr{S}^k -bundle over \mathscr{S}^n if and only if the total space of the fibring has the same homotopy \mathscr{S} -type as the total space of an orthogonal \mathscr{S}^k -bundle over \mathscr{S}^n . 2. $\mathscr{C}_{k,n}(\chi)$ as a CW-complex. Let $f: (\mathscr{S}^{n-1}, *) \to (\mathscr{C}_k, 1)$ be a representative of χ and let $\tilde{f}: \mathscr{S}^{n-1} \times \mathscr{S}^k \to \mathscr{S}^k$ be the adjoint map. We denote by $\mathscr{K}(f)$ the complex $\mathscr{S}^k \cup \mathscr{D}^n \times \mathscr{S}^k$ obtained from identifying (x, y) with $\tilde{f}(x, y)$ for $(x, y) \in \mathscr{S}^{n-1} \times \mathscr{S}^k$.

Then it is known that $\mathscr{C}_{k,n}(\chi)$ has the same homotopy type as $\mathscr{K}(f)$ (Prop. 1 of [4]). It may be considered that $\mathscr{K}(f)$ is given the natural *CW*-decomposition $\mathscr{S}^k \cup e^n \cup e^{k+n}$ in which attaching maps for cells are as follows

(4)

$$\alpha: \mathscr{S}^{n-1} \longrightarrow \mathscr{S}^{k}, \ \alpha(x) = f(x, *)$$

$$\beta: \mathscr{S}^{k+n-1} = \mathscr{D}^{n} \times \mathscr{S}^{k-1} \cup \mathscr{S}^{n-1} \times \mathscr{D}^{k}$$

$$\longrightarrow \mathscr{D}^{n} \times * \cup \mathscr{S}^{n-1} \times \mathscr{S}^{k} \xrightarrow{\overline{\alpha} \cup \widetilde{f}} \mathscr{S}^{k} \cup e^{n}$$

where $\overline{\alpha}: (\mathscr{D}^n, \mathscr{S}^{n-1}) \to (\mathscr{S}^k \cup e^n, \mathscr{S}^k)$ denotes the characteristic map for $e^n(\alpha = \partial \overline{\alpha})$.

Let j be the inclusion: $(\mathscr{S}^k \cup e^n, *) \to (\mathscr{S}^k \cup e^n, \mathscr{S}^k)$. Then we have

LEMMA 2.1. $\mathscr{P}_{k^*}(\chi) = \alpha$, and $j_*(\beta) = \pm [\overline{\alpha}, \iota_k]_r$ if n > k + 1 or $\alpha = 0$. Thus we can define the orientation of $\mathscr{K}(f)$ by $j_*(\beta) = [\overline{\alpha}, \iota_k]_r$.

Proof. The former follows from (4) and the definition of \mathscr{P}_{k^*} . Since the group $\pi_{k+n-1}(\mathscr{S}^k \cup e^n, \mathscr{S}^k)$ is isomorphic to the direct sum

$$\mathscr{Z}[\overline{\alpha},\iota_k]_r+\overline{lpha}\pi_{k+n-1}(\mathscr{D}^n,\mathscr{S}^{n-1})$$

under the assumption, $j_*(\beta)$ is of the form

$$m[\bar{\alpha}, \iota_k]_r + \bar{\alpha}x$$

for some integer m and $x \in \pi_{k+n-1}(\mathcal{D}^n, \mathcal{S}^{n-1})$. Let $\mathscr{X}_i(i = k, n, k+n)$ be generators of $\mathscr{H}^i(\mathscr{K}(f)) = \mathscr{X}$. Then, by the theorem in [1],

$$\mathscr{X}_k \cup \mathscr{X}_n = \pm m \mathscr{X}_{k+n}$$
.

On the other hand, since $\mathscr{K}(f)$ has the homotopy type of $\mathscr{C}_{k,m}(X)$ we have

$$\mathscr{X}_k \cup \mathscr{X}_n = \pm \mathscr{X}_{k+n}$$
,

i.e., $m = \pm 1$. And moreover $\overline{\alpha}x = 0$ follows from the existence of the projection of the fibration.

Now we consider the special case where $0 = \alpha = \mathscr{P}_{k^*}(\chi)$. Then the map f may be considered as a map: $(\mathscr{S}^{n-1}, *) \to (\mathscr{F}_k, 1)$. Since $\tilde{f} | \mathscr{S}^{n-1} \times * = *, \mathscr{S}^n$ is naturally imbedded as the image of $\mathscr{D}^n \times *$. In this situation, after identifying $\pi_{k+n-1}(\mathscr{S}^k \vee \mathscr{S}^n)$ with $\pi_{k+n-1}(\mathscr{S}^k) +$ $\pi_{k+n-1}(\mathscr{S}^k \vee \mathscr{S}^n, \mathscr{S}^k)$, it follows from Lemma 2.1 that

$$(5) \qquad \qquad \beta = \iota_{k^*}(x) + [\iota_k, \iota_n] .$$

And also β may be considered as follows

(6)
$$\mathcal{S}^{k+n-1} = \mathcal{D}^{n} \times \mathcal{S}^{k-1} \cup \mathcal{S}^{n-1} \times \mathcal{D}^{k} \xrightarrow{1 \times \varphi_{k}} \mathcal{D}^{n} \times U \mathcal{S}^{n-1} \times \mathcal{S}^{k} \xrightarrow{\varphi_{n} \times * \cup * \times \tilde{f}} \mathcal{S}^{n} \times U \mathcal{S}^{k} \xrightarrow{\varphi_{n} \times * \cup * \times \tilde{f}} \mathcal{S}^{n} \times U \mathcal{S}^{k}$$

where φ_k denotes the identification map: $\mathscr{D}^k \to \mathscr{S}^k / \varphi^{k-1}$.

We make use of λ to determine x, so we recall the definition of λ . Let ε be the map: $\mathscr{S}^p \to \mathscr{F}_k$ defined by $\varepsilon(\) =$ the identity of \mathscr{S}^k and let h be a map: $(\mathscr{S}^p, *) \to (\mathscr{F}_k, 1)$. Since adjoint maps $\tilde{h}, \tilde{\varepsilon}: \mathscr{S}^p \times \mathscr{S}^k \to \mathscr{S}^k$ has the same restriction on $\mathscr{S}^p \vee \mathscr{S}^k$, the separation element $d(\tilde{h}, \tilde{\varepsilon}) \in \pi_{p+k}(\mathscr{S}^k)$ is defined. B. Steer defined $\lambda(h)$ by $d(\tilde{h}, \tilde{\varepsilon})$. For example we have (see the diagram (3))

LEMMA 2.2.
$$-\lambda \rho'_*(\xi) = (-\iota_k)_*\lambda(\xi)(\xi \in \pi_p(\mathscr{F}_k))$$
.

Proof. Let g be a representative of ξ . Then we have

$$egin{aligned} &(-\iota_k)_*\lambda(\hat{arsigma}) = (-\iota_k)_*d(\widetilde{g},\,\widetilde{arsigma}) = ar{
ho}_*d(\widetilde{g},\,\widetilde{arsigma}) = d(ar{
ho}\widetilde{g},\,ar{
ho}ar{arsigma}) \ &= d(ar{
ho}\widetilde{g},\,\widetilde{arsigma}(id\, imes\,ar{
ho})) = d(ar{
ho}\widetilde{g}(id\, imes\,ar{
ho})(id\, imes\,ar{
ho}),\,\widetilde{arsigma}(id\, imes\,ar{
ho})) \ &= -d(ar{
ho}\widetilde{g}(id\, imes\,ar{
ho}),\,\widetilde{arsigma}) \ . \end{aligned}$$

Since $\rho \widetilde{\prime \cdot g}(x, y) = \overline{\rho}(\widetilde{g}(x, \overline{\rho}(y)) = \overline{\rho}'\widetilde{g}(id \times \overline{\rho})(x, y)$ we have $\rho \widetilde{\prime g} = \overline{\rho}\widetilde{g}(id \times \overline{\rho})$. Hence $d(\overline{\rho}\widetilde{g}(id \times \overline{\rho}), \overline{\varepsilon}) = d(\rho \widetilde{\prime g}, \overline{\varepsilon}) = \lambda(\rho'g) = \lambda(\rho'_*(\varepsilon))$.

LEMMA 2.3. In the expression in (4) we have $x = \lambda(\xi)$, up to sign, where ξ denotes the homotopy class of f.

For the proof of Lemma 2.3 we prepare the following general

LEMMA 2.4. Let \mathscr{L} be a 1-connected CW-complex and let \mathscr{K} be a complex $\mathscr{L} \cup e^{\mathbb{N}}(\alpha \sim 0)$. Let f, g be maps: $\mathscr{K} \to \mathscr{X}$ such that $f \mid \mathscr{L} = g \mid \mathscr{L}$ and let ζ be a map: $\mathscr{S}^{\mathbb{N}} \to \mathscr{K}$ which induces the isomorphism: $\mathscr{H}_{\mathbb{N}}(\mathscr{S}^{\mathbb{N}}, *) \to \mathscr{H}_{\mathbb{N}}(\mathscr{K}, \mathscr{L})$. Then we have $d(f, g) = f_*(\zeta)$ $-g_*(\zeta)$ (up to sign).

Proof. Since $\alpha \sim 0$ there exists a homotopy equivalence $\varphi: (\mathscr{L} \vee \mathscr{S}^{N}, \mathscr{L}) \to (\mathscr{K}, \mathscr{L})$ relative to \mathscr{L} . Let δ be the inclusion $\mathscr{S}^{N} \to \mathscr{L} \vee \mathscr{S}^{N}$. Then

$$d(f, g) = \pm d(f arphi, g arphi) = \pm ((f arphi)_* \delta - (g arphi)_* \delta) \;.$$

From $\varphi^{-1}\zeta \in \pi_N(\mathscr{L} \vee \mathscr{S}^N)$ and the assumption on ζ we have

$$arphi_*^{-1}\zeta=\pm\delta+\eta(\eta\in\pi^{\scriptscriptstyle N}(\mathscr{L})), ext{ i.e., } \zeta=\pmarphi_*(\delta)+arphi_*(\eta)$$

Hence

$$egin{aligned} f_*(\zeta) &= f_*(\pm arphi_*(\zeta) + arphi_*(\eta)) - g_*(\pm arphi_*(\delta) + arphi_*(\eta)) \ &= \pm (f_* arphi_*(\delta) - g_* arphi_*(\delta)) = \pm d(f,g) \;. \end{aligned}$$

Proof of Lemma 2.3. Let \mathcal{Q} be the identification map:

 $\mathscr{S}^{n-1}\times \mathscr{S}^k \to \mathscr{S}^{n-1}\times \mathscr{S}^k/\mathscr{S}^{n-1}\times *\,.$

The maps

$$\widetilde{f} \mathscr{Q}^{-1}, \, \widetilde{\varepsilon} \mathscr{Q}^{-1} : \mathscr{S}^{n-1} imes \mathscr{S}^k / \mathscr{S}^{n-1} imes * o \mathscr{S}^k$$

are well-defined and has the same restriction on $* \times \mathscr{S}^k / \mathscr{S}^{n-1} \times *$. The complex $\mathscr{S}^{n-1} \times \mathscr{S}^k / \mathscr{S}^{n-1} \times *$ has a form $\mathscr{S}^k \cup e^{k+n-1} (\alpha \sim 0)$. Then we apply Lemma 2.4 to the case where

$$\mathscr{K} = \mathscr{S}^{n-1} imes \mathscr{S}^k / \mathscr{S}^{n-1} imes ^*, \quad \mathscr{L} = * imes \mathscr{S}^k / \mathscr{S}^{n-1} imes *, \ N = n + k - 1, \quad f = \widetilde{f} \mathscr{Q}^{-1}, \quad g = \widetilde{\varepsilon} \mathscr{Q}^{-1} ext{ and } \mathscr{X} = \mathscr{S}^k.$$

Thus we have

$$\lambda(f) = d(\tilde{f}, \tilde{\varepsilon}) = d(\tilde{f} \mathscr{Q}^{-1}, \tilde{g} \mathscr{Q}^{-1}) = \pm ((f \mathscr{Q}^{-1})_*(\zeta) - (\tilde{\varepsilon} \mathscr{Q}^{-1})_*(\zeta))$$

for any $\zeta: (\mathscr{S}^{k+n-1}, *) \to (\mathscr{K}, \mathscr{L})$ which induces an isomorphism

$$\zeta_*: \mathscr{H}_{k+n-1}, \, (\mathscr{S}^{k+n-1}, \, *) \to \mathscr{H}_{k+n-1}(\mathscr{K}, \, \mathscr{L}) \; .$$

Consider the following commutative diagram

Since we can take ζ with the composition of two maps in the upper row it follows from $(\tilde{\varepsilon} \mathscr{Q}^{-1})_*(\zeta) = 0$ that $\lambda(f) = \pm (\tilde{f} \mathscr{Q}^{-1})_*(\zeta)$. From the diagram (6) the proof is completed.

3. Proof of Theorem 1. Let ${\mathscr K}$ be a complex of the form

$$\mathscr{S}^k \vee \mathscr{S}^n \cup e^{k+n}$$

where $\beta = l_k \alpha + [l_k, l_n]$ under the decomposition

$$\pi_{k+n-1}(\mathscr{S}^k \vee \mathscr{S}^n) = \pi_{k+n-1}(\mathscr{S}^k) + \pi_{k+n-1}(\mathscr{S}^n) + \mathscr{Z}[\iota_k, \iota_n] \;.$$

212

By the cellular homotopy theorem \mathscr{K}_1 has the same homotopy type as \mathscr{K}_2 if and only if there exists a homotopy equivalence $(n, k \ge 2)$

$$\varPhi: \mathscr{S}^k \vee \mathscr{S}^n \to \mathscr{S}^k \vee \mathscr{S}^n$$

such that $\Phi_*(\beta_1) = \pm \beta_2$. Now consider the case $n \neq k$. It is obvious that a map Φ is homotopy equivalence if and only if $\Phi \mid \mathscr{S}^k = \pm \iota_k + \iota_n \circ \tau(\tau \in \pi_k(\mathscr{S}^n))$, and $\Phi \mid \mathscr{S}^n = \pm \iota_n$ if $n < k = \pm \iota_k$, and $\Phi \mid \mathscr{S}^n = \iota_k \circ \sigma + \pm \iota_n(\sigma \in \pi_n(\mathscr{S}^k))$ if n > k. From easy computation of $\Phi_*(\beta_1)$ we can obtain

LEMMA 3.1. If $n \neq k$, \mathscr{K}_1 has the same homotopy type as \mathscr{K}_2 if and only if the set $\{\pm \alpha_1, \pm (-\iota_k)_*\alpha_l\}$ is equal to the set

$$\{\pm \alpha_2, \pm (\iota_k)_*\alpha_2\} \mod [\pi_n(\mathscr{S}^k), \iota_k].$$

Next we consider the case n = k. By the same way as in [2] we have

LEMMA 3.2. (James and Whitehead). If n = k = even, \mathscr{K}_1 and \mathscr{K}_2 have the same homotopy type if and only if

$$\{\pm \alpha_1\} \equiv \{\alpha_2\} \mod [\pi_n(\mathscr{S}^k), \iota_k]$$
.

LEMMA 3.3. (James and Whitehead). If n = k = odd, \mathcal{K}_1 and \mathcal{K}_2 have the same homotopy type if and only if there exists an integer d which is prime to m_2 and $d\alpha_1 \equiv \alpha_2 \mod [\pi_n(\mathcal{S}^k), \iota_k]$ where m_2 is the order of $\alpha_2 \mod [\pi_n(\mathcal{S}^k), \iota_k]$.

Thus Theorem 1 follows from Lemmas 3.1, 3.2, 3.3, and 2.3.

4. Some Lemmas. Let \mathscr{L} be a complex of the form $\mathscr{S}^k \cup e^n$ with the characteristic map $\overline{\alpha}: (\mathscr{D}^n, \mathscr{S}^{n-1}) \to (\mathscr{L}, \mathscr{S}^k)$ for the *n*-cell. Let $\overline{\mathscr{S}}$ be the complex obtained from identifying \mathscr{S}^k of two copies of \mathscr{L} , i.e., $\overline{\mathscr{L}} = e^n \cup [\mathscr{S}^k \cup e^n]$. It may be considered that two maps $\mu_i (i = 1, 2): \mathscr{L} \to \overline{\mathscr{L}}$ and a map $\nu: \overline{\mathscr{L}} \to \mathscr{L}$ are naturally defined and satisfy $\nu \mu_i =$ the identity. Since $\mu_1 | \mathscr{S}^k = \mu_2 | \mathscr{S}^k$ the separation element $d(\mu_1, \mu_2)$ is defined. Then we have

LEMMA 4.1. If $\beta \in \pi_{k+n-1}(\mathscr{L})$ and $j_*(\beta) = m[\overline{\alpha}, c_k]_r$, then $\mu_{1*}(\beta) - \mu_{2*}(\beta) = m[d(\mu_1, \mu_2), c_k]$.

Proof. Consider the following commutative diagram

$$\begin{aligned} \pi_*(\mathscr{S}^k) & \xrightarrow{i_+} \pi_*(\overline{\mathscr{L}}) \xrightarrow{j_+} \pi_*(\overline{\mathscr{L}}, \mathscr{S}^k) \\ & \uparrow id & \uparrow \downarrow \uparrow & \uparrow \mu_{i_*} \downarrow & \nu_* \uparrow \mu_{i_*} \\ \pi_*(\mathscr{S}^k) \xrightarrow{i_*} \pi_*(\mathscr{L}) \xrightarrow{j_*} \pi_*(\mathscr{L}, \mathscr{S}^k) \end{aligned}$$

which is taken from the homotopy sequence of the pair and * = k + n - 1.

From the commutativity it follows that

$$j_{+}(\mu_{1*}(eta) - \mu_{2*}(eta)) = m[\mu_{1*}\overline{lpha} - \mu_{2*}\overline{lpha}, \iota_{k}]_{r}.$$

On the orther hand, we have

$$j_+[d(\mu_1, \mu_2), \iota_k] = [j_+d(\mu_1, \mu_2), \iota_k]_r = [\mu_{1*}\bar{\alpha} - \mu_{2*}\bar{\alpha}, \iota_k]_r.$$

Thus, for some element $\gamma \in \pi_*(\mathscr{S}^k)$, it holds

$$m[d(\mu_1, \mu_2), \iota_k] = \mu_{1*}(\beta) - \mu_{2*}(\beta) + i_+(\gamma) .$$

Applying ν_* to the both side, then, from

$$\nu_* d(\mu_1, \mu_2) = d(\nu \mu_1, \nu \mu_2) = d(id, id) = 0 \text{ and } \nu \mu_i(\beta) = \beta$$
,

we have $\nu_* i_+(\gamma) = 0$. Hence $i_+(\gamma) = 0$ from the commutativity of the diagram.

As an application of Lemma 4.1 we have

LEMMA 4.2. Let f, g be maps: $\mathscr{L} \to \mathscr{X}$ such that $f | \mathscr{L} = g | \mathscr{L}$. For any β , $j_*(\beta) = m[\overline{\alpha}, \iota_k]_r$, we have

$$f_*(eta) - g_*(eta) = m[d(f, g), f \mid \mathscr{S}^k]$$
.

Proof. Define a map $f \cup g: \overline{\mathscr{L}} \to \mathscr{X}$ by

$$(f \cup g)\mu_1 = f$$
, and $(f \cup g)\mu_2 = g$.

Since $d(f, g) = d((f \cup g)\mu_1, (f \cup g)\mu_2) = (f \cup g)_*d(\mu_1, \mu_2)$ the proof is completed by applying $(f \cup g)_*$ to the both side of the equality in Lemma 4.1.

Let *id* be the identity map of $\mathscr{L}(n \ge k + 2 \ge 4)$ and let $w: \mathscr{L} \to \mathscr{L}$ be a map with $w | \mathscr{S}^k = id | \mathscr{S}^k$. In general, d(id, w) is belonging to $\pi_n(\mathscr{L})$. However, we have

LEMMA 4.3. w is a homotopy equivalence preserving the orientation of the n-cell if and only if d(id, w) is contained in $i_*\pi_n(\mathscr{S}^k)$. *Proof.* Let x_n, y_n be the orientation generators of $\mathscr{H}_n(\mathscr{L})$, and $\mathscr{H}_n(\mathscr{L}^n)$ respectively, and let δ be d(id, w). Since $x_n - w_*(x_n) = \delta_*(y_n), x_n = w_*(x_n)$ holds if and only if $\delta_*(y_n) = 0$. On the other hand, the diagram

$$\pi_n(\mathscr{S}^k) \xrightarrow{} i_* \pi_n(\mathscr{L}) \longrightarrow \pi_n(\mathscr{L}, \mathscr{S}^k) = \mathscr{H}_n(\mathscr{L}, \mathscr{S}^k) = \mathscr{H}_n(\mathscr{L})$$

shows that $\delta_*(x_n) = 0$ is equivalent to $\delta \in i_*\pi_n(\mathscr{S}^k)$.

Now we prepare lemmas for the proof of Theorem 2. In what follows, we use the notations in §2 and suppose $n \ge k+2 \ge 4$.

LEMMA 4.4. Let i be the inclusion: $\mathscr{S}^k \to \mathscr{S}^k \cup e^n \subset \mathscr{K}(f)$. Then we have

$$i_*^{-1}(0) = lpha_* \pi_{k+n-1}(\mathscr{S}^{n-1})$$
 .

Proof. Since the pair $(\mathcal{K}(f), \mathcal{S}^k)$ is homotopy equivalent to $(\mathcal{C}_{k,n}(\chi), \mathcal{S}^k)$

$$\pi_{k+n}(\mathscr{K}(f), \mathscr{S}^k) = \pi_{k+n}(\mathscr{S}^n) = E\pi_{k+n-1}(\mathscr{S}^{n-1})$$
.

Hence from the homotopy sequence of the triple $(\mathscr{K}(f), \mathscr{S}^k \cup e^n, \mathscr{S}^k)$ we obtain

$$\pi_{k+n}(\mathscr{S}^k\cup e^n,\,\mathscr{S}^k)=\partial\pi_{k+n+1}(\mathscr{K}(f),\,\mathscr{S}^k\cup e^n)\cupar{lpha}_*\pi_{k+n}(\mathscr{D}^n,\,\mathscr{S}^{n-1})$$
 .

Thus we have that

$$i^{-1}_*(0)=\partial\pi_{k+n}(\mathscr{S}^k\cup e^n,\, \mathscr{S}^k)=lpha_*\pi_{k+n-1}(\mathscr{S}^{n-1})$$
 .

Let $\chi_i(i = 1, 2)$ be elements such that $\mathscr{P}_{k^*}(\chi_1) = \mathscr{P}_{k^*}(\chi_2) = \alpha$. Then $\beta_i \in \pi_{k+n-1}(\mathscr{S}^k \cup e^n)$ and there exists an element $\xi \in \pi_{n-1}(\mathscr{F}_k)$ which satisfies $i_{k^*}(\xi) = \chi_1 - \chi_2$.

LEMMA 4.5. There exists a homotopy equivalence $\varphi: \mathscr{S}^k \cup e^n \to \mathscr{S}^k \cup e^n$ which satisfies

- (1) $\varphi_*(e^k) = e^k, \varphi_*(e^n) = e^n$
- (2) $\beta_1 \varphi_*(\beta_2) = i_*\lambda(\xi)$ (up to sign).

Proof. Let $\kappa: \mathscr{S}^n \to \mathscr{S}_1^n \vee \mathscr{S}_2^n$ be a map of type (1, -1) and let χ be the fibration induced from $\chi_1 \vee \chi_2$ by κ , i.e., $\chi = \chi_1 - \chi_2$. Since $i_k (\mathfrak{z}) = \chi \mathscr{K}(f)$ has the form $\mathscr{S}^k \vee \mathscr{S}^n \cup e^{k+n}$ by (5). It may be considered that κ induces a map $\bar{\kappa}$:

$$\mathcal{K}(f) = \mathscr{S}^k \lor \mathscr{S}^n \cup e^{k+n} \longrightarrow \mathcal{K}(f_1) \cup \mathcal{K}(f_2)$$

= $\mathscr{D}_1^n \times \mathscr{S}^k \cup \mathscr{S}^k \cup \mathscr{D}_2^n \times \mathscr{S}^k$

which satisfies

$$ar{\kappa}_*(e^{k+n}) = e_1^{k+n} - e_2^{k+n} \ , \ \ ar{\kappa}_*(e^n) = e_1^n - e_2^n \ ext{and} \ \ ar{\kappa}_*(e^k) = e^k \ .$$

Let $\bar{\kappa}: \mathscr{S}^k \vee \mathscr{S}^n \to e_1^n \cup \mathscr{S}^k \cup e_2^n$ be the map obtained from the restriction of $\bar{\kappa}$ on $\mathscr{S}^k \vee \mathscr{S}^n$ and let i_j be the inclusion: $e_j^n \vee \mathscr{S}^k \to e_1^n \cup \mathscr{S}^k \cup e_2^n$. Then we have

$$(\ ^{*}\) \qquad \qquad ar{ar{\kappa}}_{*}(eta) = i_{1*}(eta_{1}) - i_{2*}(eta_{2}) \; .$$

Define the map $r: e_1^n \cup \mathscr{S}^k \cup e_2^n \to \mathscr{S}^k \cup e^n$ by

$$r \mid e_1^n \cup \mathscr{S}^k = ext{identity} = r \mid \mathscr{S}^k \cup e_2^n$$
 .

We claim that

(**) $r_*(\omega)$ is contained in \tilde{i}_* -image where $\omega = \bar{\bar{\kappa}} | \mathscr{S}^n$ and \tilde{i} denotes the inclusion: $\mathscr{S}^k \to e_1^n \cup \mathscr{S}^k \cup e_2^n$.

For, consider the commutative diagram

$$\begin{aligned} \pi_n(\mathscr{S}^k \vee \mathscr{S}^n, \mathscr{S}^k) & \xrightarrow{\overline{k}_*} \pi_n(e_1^n \cup \mathscr{S}^k \cup e_2^n, \mathscr{S}^k) \xrightarrow{} \pi_n(\mathscr{S}^k \vee e^n, \mathscr{S}^k) \\ & \uparrow j_{1^*} & \uparrow j_{2^*} & \uparrow j_{3^*} \\ \pi_n(\mathscr{S}^k \vee \mathscr{S}^n) & \xrightarrow{} \overline{k}_* \pi_n(e_1^n \cup \mathscr{S}^k \cup e_2^n) & \xrightarrow{} \pi_n(\mathscr{S}^k \cup e^n) . \end{aligned}$$

Let z_n be the element of $\pi_n(\mathscr{S}^k \vee \mathscr{S}^n)$ which is represented by \mathscr{S}^n . Then we have

$$egin{aligned} j_{3*}r_*(\omega) &= j_{3*}r_*ar{ar{k}}(z_n) = r_*j_{2*}(ar{ar{k}}(z_n)) = r_*ar{ar{k}}_*j_{1*}(z_n) \ &= r_*(i_{1*}(ar{lpha}_1) - i_{2*}(ar{lpha}_2)) = ar{lpha} - ar{lpha} = 0 \;. \end{aligned}$$

Thus (**) is proved.

Now, by applying r_* to the both side of (*) we have

 $r_*\bar{k}_*(\beta) = \beta_1 - \beta_2$.

On the other hand, by using (5), we have

$$\begin{split} r_*\bar{k}_*(\beta) &= r_*\bar{k}_*(\iota_k(\pm\lambda(\xi)) + [\iota_k, z_n]), \, (\iota_n = z_n) \\ &= i_*(\pm\lambda(\xi)) + [\iota_k, r_*(\omega)] \\ &= i_*(\pm\lambda(\xi) + [\iota_k, \omega']), \, (\omega' \in \pi_n(\mathscr{S}^k), \, \widetilde{i}_*\omega' = r_*(\omega) \, \text{ by } (^{**})) \\ &= i_*(\pm\lambda(\xi) \pm [\omega', \, \iota_k]) \end{split}$$

i.e., $\beta_1 - \beta_2 = i_*(\pm \lambda(\xi) \pm [\omega', \iota_k])$.

If we take a map $\varphi: \mathscr{S}^k \cup e^n \to \mathscr{S}^k \cup e^n$ such that $d(id, \varphi) = \mp \omega'$, it follows from Lemma 4.2 and Lemma 2.1 that

$$eta_2 - arphi_*(eta_2) = i_*(\mp[\omega', \iota_k]) \quad ext{i.e., } eta_1 - arphi_*(eta_2) = i_*(\pm\lambda(\hat{\xi})) \;.$$

Since $d(id, \varphi) \in i_*\pi_n(\mathscr{S}^k) \varphi$ satisfies (1) by Lemma 4.3.

216

LEMMA 4.6. There exist homotopy equivalences $u': \mathscr{K}(-f) \rightarrow \mathscr{K}(f)$ and $u'': \mathscr{K}(\rho \rho) \rightarrow \mathscr{K}(f)$ which satisfy (1) $u'_*(e^k) = e^k$ and $u'_*(e^n) = -e^n$, (2) $u''_*(e^k) = -e^k$ and $u''_*(e^n) = e^n$.

Proof. Let \mathscr{U} be the identification map: $\mathscr{S}^k + \mathscr{D}^n \times \mathscr{S}^k \to \mathscr{K}(f)$ and define u', u'' as follows

$$egin{aligned} &
ho_n(x_1,\,x_2,\,\cdots,\,x_n)=(-x_1,\,x_2,\,\cdots,\,x_n),\,((x_1,\,x_2,\,\cdots,\,x_n)\in\mathscr{D}^n)\ &u'(x)=x\,\,,\quad u''(x)=ar
ho x\,\, ext{if}\,\,x\in\mathscr{S}^k\,\, ext{and}\ &u'(y,\,z)=\mathscr{U}(
ho_n y,\,z)\,,\quad u''(y,\,z)=\mathscr{U}(y,\,ar
ho z)\,\, ext{if}\,\,(y,\,z)\in\mathscr{D}^n imes\mathscr{S}^k\,\,. \end{aligned}$$

u' and u'' are well-defined by the formulas

$$-ar{f}=ar{f}((
ho_n\,|\,\mathscr{S}^{n-1}) imes\,id) \,\, ext{and}\,\,\, ar{
ho f}=ar{
ho}ar{f}(id imesar{
ho})\,.$$

5. Proof of Theorem 2. First of all we prove

LEMMA 5.1. If $\mathscr{C}_{k,n}(\chi_1)$ has the same homotopy type as $\mathscr{C}_{k,n}(\chi_2)$ there exists a pair $(\theta_1, \theta_2), \theta_i \in \mathscr{S}[\chi_i]$ which satisfies

$$(\mathscr{A}) \quad \mathscr{T}_{k^*}(heta_1) = \mathscr{T}_{k^*}(heta_2)$$

(B) there exists a homotopy equivalence $\psi \colon \mathscr{K}(g_1) \to \mathscr{K}(g_2)$ with $\psi_*(e_1^i) = e_2^i \ (i = k, n).$

Proof. Let $h: \mathscr{K}(f_1) \to \mathscr{K}(f_2)$ be a homotopy equivalence which may be considered as a cellular map. Then we have

$$\mathscr{P}_{k^*}(\chi_1) = \pm (\mathscr{P}_{k^*}(\chi_2)) \, \text{ or } \, \pm (-\iota_k)_* \mathscr{P}_{k^*}(\chi_2) \; .$$

Since it is clear that each element on the right hand side can be obtained as $\mathscr{P}_{k^*}(\theta_2)$ of a suitable $\theta_2 \in \mathscr{S}[\mathcal{X}_2]$, there exists a pair (χ_1, θ_2) which satisfies (\mathscr{N}) , and a homotopy equivalence $u: \mathscr{K}(f_1) \to \mathscr{K}(g_2)$ by Lemma 4.6.

We suppose that $u_*(e_1^k) = \varepsilon_k e_2^k$ and $u_*(e_1^n) = \varepsilon_n e_2^n \cdot (\varepsilon_k, \varepsilon_n = \pm 1)$. Then we have the equation

(C) $(\varepsilon_k \iota_k)(\mathscr{P}_{k^*}(\mathcal{X}_1) = \varepsilon_n \mathscr{P}_{k^*}(\theta_2).$ Hence, by (\mathscr{A}) , we have

 $(\mathscr{D}) \quad \mathfrak{s}_n(\mathfrak{s}_k \iota_k) \mathscr{P}_{k^*}(\boldsymbol{\chi}_1) = \mathscr{P}_{k^*}(\boldsymbol{\theta}_2) = \mathscr{P}_{k^*}(\boldsymbol{\chi}_1).$

The case of $\varepsilon_k = 1$. Since, by Lemma 4.6, there exists a homotopy equivalence $u': \mathscr{K}(\varepsilon_n f_1) \to \mathscr{K}(f_1)$ with $u'_*(e^k) = e^k$ and $u'_*(e^n) = \varepsilon_n e^n$, the set

$$\{\theta_1 = \varepsilon_n \chi_1, \theta_2, \psi = u \cdot u'\}$$

satisfies (\mathscr{M}) and (\mathscr{B}) .

The case of $\varepsilon_k = -1$. Similarly, by Lemma 4.6, there exists a

homotopy equivalence $u'': \mathscr{K}(\varepsilon_n \rho f_1) \to \mathscr{K}(f_1)$ with $u''_*(e^k) = -e^k$ and $u''_*(e^n) = e^n$. The set

$$\{\theta_1 = \varepsilon_n \rho_* \chi_1, \theta_2, \psi = u \cdot u''\}$$

satisfies (\mathscr{A}) and (\mathscr{B}) by $\mathscr{P}_{k^*}(\varepsilon_n \rho_* \chi_1) = \varepsilon_n(-\iota_k) \mathscr{P}_{k^*}(\chi_1).$

Proof of Theorem 2. First we suppose that $\mathscr{C}_{k,n}(\chi_1)$ has the same homotopy type as $\mathscr{C}_{k,n}(\chi_2)$. We choose $(\theta_1, \theta_2, \psi)$ as stated in Lemma 5.1. Let g_i be a representative of θ_i and let γ_i be the attaching class for the (k + n)-cell of $\mathscr{K}(g_i)$. Let $\varphi \colon \mathscr{S}^k \cup e^n \to \mathscr{S}^k \cup e^n$ be a map as stated in Lemma 4.5 $(\chi_i = \theta_i)$ and let $\overline{\psi}$ be the map obtained from the restriction of ψ on $\mathscr{S}^k \cup e^n$. Since $\psi_*(\gamma) = \gamma_2$ we have

$$0 = \gamma_2 - \psi_*(\gamma_1)$$

= $\gamma_2 - \varphi_*(\gamma_1) + \varphi_*(\gamma_1) - \overline{\psi}_*(\gamma_1)$
= $(\gamma_2 - \varphi_*(\gamma_1)) + [d(\varphi, \overline{\psi}), \iota_k]$ by Lemma 4.2 and Lemma 2.1
= $i_*(\pm \lambda(\eta)) + [d(\varphi, \overline{\psi}), \iota_k]$ by Lemma 4.5 and
 $\theta_2 - \theta_1 = i_{k*}(\eta)$.

On the other hand, since $d(\varphi, \psi) = d(\varphi, id) + d(id, \bar{\psi}), d(\varphi\bar{\psi})$ is contained in $i_*\pi_n(\mathscr{S}^k)$ by Lemma 4.3. Hence we obtain that

$$\lambda(\eta) = [\delta, \iota_k] + i_*^{-1}(0) \text{ for some } \delta \in \pi_n(\mathscr{S}^k) \text{ i.e.,}$$
$$\eta \equiv \lambda^{-1}[\delta, \iota_k] \mod \lambda^{-1} i_*^{-1}(0) = \lambda^{-1} \mathscr{P}_{k^*}(\theta_1) \pi_{k+n-1}(\mathscr{S}^{n-1})$$

by Lemma 4.4. By applying i_{k^*} to the both side we have

$$heta_{2}- heta_{1}\equiv 0 mod \mathscr{G}(\mathscr{P}_{k^{*}}(heta_{1})) \ , \ \ \ ext{i.e.,} \ \ \chi_{1}\sim\chi_{2} \ .$$

Secondly we assume that $\chi_1 \sim \chi_2$. Hence there exists a pair (θ_1, θ_2) such that $\theta_1 \equiv \theta_2 \mod \mathcal{G}(\mathcal{G}_{k^*}(\theta_1))$ which means

$$heta_{_1}- heta_{_2}=i_{_{k^*}}(\eta),\,\eta\in\pi_{_{n-1}}(\mathscr{F}_k),\,\lambda(\eta)\in\mathscr{P}_{_{k^*}}(heta_{_1})\pi_{_{k+n-1}}(\mathscr{S}^{_{n-1}})\,\,.$$

Since $\mathscr{P}_{k^*}(\theta_1) = \mathscr{P}_{k^*}(\theta_2)$ there exists a homotopy equivalence $\varphi: \mathscr{S}^k \cup e^n \to \mathscr{S}^k \cup e^n$ which satisfies (see Lemma 4.5)

$$\gamma_{\scriptscriptstyle 1} - arphi_{*}(\gamma_{\scriptscriptstyle 2}) = i_{*}(\pm \lambda(\eta)) \; .$$

Since $i_*(\pm\lambda(\eta)) \in i_*\mathscr{T}_{k^*}(\theta_1) \cdot \pi_{k+n-1}(\mathscr{S}^{n-1}) = 0$ by Lemma 4.4, we have $\gamma_1 = \mathscr{P}_*(\gamma_2)$, i.e., \mathscr{P} is extendable over $\mathscr{K}(g_1)$ to $\mathscr{K}(g_2)$. Then, by Lemma 4.6, $\mathscr{C}_{k,n}(\chi_1)$ has the same homotopy type as $\mathscr{C}_{k,n}(\chi_2)$.

References

1. I. M. James, Note on cup products, Proc. Amer. Math. Soc., 8 (1957), 374-383.

2. I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres I, Proc. London Math. Soc., (3) 4 (1954), 196-218.

3. I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres II, Proc. London Math. Soc., (3) 5 (1955), 148-166.

4. J. D. Stasheff, A classification theorem for fibre spaces, Topology, $\mathbf{2}$ (1963), 239-246.

5. B. Steer, Extensions of mappings into H-spaces, Proc. London Math. Soc., (3) 13 (1963), 219-272.

6. G. W. Whitehead, On products in homotopy groups, Ann. of Math., 47 (1946), 460-475.

7. H-spaces, Neuchâtel (Swisse) Aôut 1970. Lecture notes in Math., Vol. 196, Springer-Verlag.

Received January 11, 1973.

Tokyo Institute of Technology and University of Oxford