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HOMOTOPY TYPES OF SPHERICAL FIBRE
SPACES OVER SPHERES

SEIYA SASAO

It is known that the fibre homotopy type of a spherical
fibre space over a sphere is determined by its characteristic
class. Our purpose is to describe the homotopy type of the
total space of a spherical fibre space over a sphere in terms
of its characteristic class, and to classify homotopy types of
them by defining a kind of equivalence between characteristic
classes.

I. M. James and J. H. C. Whitehead classified homotopy types
of the total space of sphere bundles over spheres in [2] and [3].
Our results are a generalization of their theorems and also an answer
to one of problems proposed by J. D. StascheίE in [7]. Let %\ be
the space of maps of a /c-sphere into itself with degree 1 and let
J^l be the subspace of 2̂ fc consisting of maps preserving the base
point '(0, •••, 0, 1). We denote by &k,n(χ) the total space of an
orientable ά-spherical fibre space over an -^-sphere with χ e π^(&k)
as its characteristic class. First we shall treat with the case where
fibrations have cross-sections. Then we may suppose χ — ik*(ζ) where
ik: J^l —> 2?k denotes the inclusion map.

Now let

be the isomorphism defined by B. Steer in [5]. We are concerned
with x(ξ) but not χ.

Then if ik*(ξ) = ik,(ξf) we claim

(1) λ(f') =λ( f ) + [x,ck]

for some x e πn{S^k) where [, ] denotes Whitehead prodμct.
For, let i be the inclusion &k+1 —> ^k where &k+ί is the rotation

group of S^k. Clearly i induces a fibre map of the fibration ^?/c+1 —> S^k

into the fibration Z?k —> S*k. Since the restriction of λ on the image
of πn^(&k) is equal to (up to sign) ([5]), the homomorphism ^ which
is defined by G. W. Whitehead in [6], λ maps dπn{S^k) onto the group
[πn{S^k), ck] by the formula ^d(x) — — [x, ck] where 3 denotes the
boundary homomorphism taken from the homotopy sequences of fib-
rations. Thus, since ξ' — ζ is contained in the δπn(^k), we obtain

(1).

Let Σ be the natural projection

> πk+n-^k)/[πn(^k), ck] .
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A map of S^k into itself with degree —1 canonically induces an
endmorphism of 7r*+»_i(^*)/[7rn(J/^*), ck]. We denote by Σ the compo-
sition of Σ and the endmorphism. The set

is independent from the choice of ξ by (1). Then we shall prove

THEOREM 1. If the fibration χi(i=l,2) has a cross-section
(n, k ^ 2), Sfjb,»(%i) has the same homotopy type as ^htJχd if
if

(1) if nφk, or n = k = even
(2) ifn — k — odd cZ λίfO = λ(f2) mod [πn(^k), h] for some integer

d, (d, m) = 1, where m is the order of λ(£2) mod [πn(S^k), ck]

If ^kΛlO ^ a s *^ e same homotopy type as S^k x £S% the fibration
has a cross-section. Hence we have

COROLLARY 1.1. i?*,»(χ) has the same homotopy type as S^k x S^%

if and only if the fibration χ is fibre homotopically trivial.

Secondly we consider fibrations which do not necessarily have
cross-sections. Therefore, we are mainly concerned in the case n> k.
However, the case n = k + 1 is different from others, so we suppose
n ^ k + 2 ^ 4.

Let p: £fk —> (f* be the homeomorphism defined by

and let /t>: ̂ k-^^k be the homeomorphism induced by p(p(f) =
For any a e π^i/^*), from the diagram

) * +

we have the subgroup of πt+n-ii&k) defined by

Then we claim

(2) gf(α) = gf(-α) and /0,»(gf(α)) = S?((-

For, the former is clear and the latter follows from the following
commutative diagram (see Lemma 2.2)

( 3 ) |
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where p \ ^\ = ik p' is the natural factorization.
Now let £*[X] (XGKn-ii&k)) be the set of elements

iX, - Z , ^ χ , -pj]

and let &h\ ^k —> ^ * be the projection of the canonical fibration.
We define a relation in π*S&k) as follows χx ~ χ2 if and only if
θ, = #2mod &(&*?&)) for some pair (#,, 02), 0 t e ^ [ Z J .

It can be easily checked by (2) that this is an equivalence rela-
tion.

THEOREM 2. If n^ k + 2 :> 4, ίλew, i?j(.,»(Zi) ^ the same homo-
topy type as &k,n(χ2) if and only if χι - χ2.

If fibrations have cross-sections this is an alternative version of
Theorem 1. For, since ^ f c (χ<) = 0 we have χ, = ik*(ζt). Then the
condition Xx — Z2 means that χx = ±χ2 or χx = ±Lp*χ2, i.e.,

iί(fi) - ± i * (ί2) or ΐ ^ f , ) - ±ik*((p'*)(Q)

These are satisfied if and only if ζ1 = ±<f2 + 3σ or £x = ±/0*ί2 + dσ
where σ e πn{S^k). Now apply λ to the both side, then we have that

ίθ = ±λ(ί 2 ) or ± ( - O * λ ( ί 2 ) m o d [πn(^k)f ck) .

This is so if and only if ^ ( g W Z i ) ) = - ^ ( g 7 * . ^ ) ) .

From Theorem 2 the following is easily deduced.

COROLLARY 2.1. Suppose that
jfjf 8Ά;,W(Z)(^ ^ & + 2 ^ 4) Λαs the same homotopy type as the total
space of an orthogonal 6^k-bundle over 6^n, then the fibration itself
is fibre homotopically equivalent to an orthogonal S^k-bundle over £^n.

As special cases we have

COROLLARY 2.2. Suppose that the fibration χ has a cross-section.
If ^kΛlύi71 ^ ^ + 2 ^ 4 ) has the homotopy type of the total space of
an orthogonal 6^h-bundle over &"*, the fibration is fibre homotopically
equivalent to an orthogonal S^k-bundle over ,9*n.

COROLLARY 2.3. A k-spherical fibring over S^n is stable fibre
homotopically equivalent to an orthogonal 6^k-bundle over ^ n if and
only if the total space of the fibring has the same homotopy
as the total space of an orthogonal S^k-bundle over 6^n.
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2- &k,*(X) as a CW-complex* Let /: (£**-\ *) -> (Sffc, 1) be a
representative of χ and let / : Sf%~1 x cf^^c/** be the adjoint map.
We denote by SίT{f) the complex £fk U ̂ n x £fk obtained from
identifying (x, y) with f(x, y) for (xf y) e ^n~1 x £fk.

Then it is known that !?*,»(%) has the same homotopy type as
^T(/) (Prop. 1 of [4]). It may be considered that SΓ(f) is given
the natural CTF-decomposition 6^k UewU ek+n in which attaching
maps for cells are as follows

a: S**"-1 > ^ k , a(x) = f(x, *)

(4) β: s^k+n~ι = &n x S^k'1 U S^""1 x ^ k

> &n x * U S^n~x x £Sk ^ S^k U en

άϋf

where a: (&n, <9*n-ι)->(^k U en, ά^k) denotes the characteristic map
for en(a = da).

Let j be the inclusion: ( ^ & U en, *) —> (^ f c U β*, ^ f c ) . Then we
have

LEMMA 2.1. .^fc*(χ) = a, and j\(β) = ±[α, ̂ ] r i/ ^ > fc + 1 or
a = 0. TTms ^e cα^ define the orientation of ^Γ{f) by j*(β) — [a, ck]r.

Proof. The former follows from (4) and the definition of ^ * .
Since the group πk+n_1(S^k U en, 6^k) is isomorphic to the direct sum

ck]r + aπk+n

under the assumption, j*(β) is of the form

m[a, ck]r + άx

for some integer m and x e πlc+n_1{&n

9 ^n~ι). Let <^{i = k, n, k + n)
be generators of £έ?\3ίΓ{f)) = %. Then, by the theorem in [1],

U

On the other hand, since 3ίΓ{f) has the homotopy type of !?*,»(%)
we have

i.e., m = ± 1 . And moreover α# = 0 follows from the existence of
the projection of the fibration.

Now we consider the special case where 0 — a = ^*(χ) . Then
the map / may be considered as a map: (S^*"\ *) —> (^ί, 1). Since
/ | ^ 7 % - 1 x * = *, ^ % is naturally imbedded as the image of £&% x *.
In this situation, after identifying πk+1^.1(S^k V<9*n) with πk+n_1(S<Pk) +
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πk+n^(S^k V £**, £^k), it follows from Lemma 2.1 that

( 5 ) β = c»(x) + [ck, in] .

And also β may be considered as follows

(6)
x * U ^ w ~ 1 x ^ f c > ~

φnX* U*X/

where φk denotes the identification map: z&k —» ^kjφk~ι.
We make use of λ to determine as, so we recall the definition of

λ. Let ε be the map: ^ p —> ^ f c defined by e( ) = the identity of
S^k and let h be a map: (^*, *) —• (_^, 1). Since adjoint maps
h, ε: S^p x ^ f t -> ̂ ^ has the same restriction on ^ V ^ * , the
separation element d(h, e)e τϋp+k(^7k) is defined. B. Steer defined X(h)
by d(h, έ). For example we have (see the diagram (3))

LEMMA 2.2. -xp'*(ζ) = ( - O

Proof Let g be a representative of f. Then we have

, έ) = d(pg, pε)

x ^)) = d(ρg(id x ^( id x io), έ(id x p))

= -d(pg(id x £), έ) .

Since ρ'-g{x, y) = ^(^(a;, (̂2/)) = ^ ( i d x ^(a?, 3/) we have ^

Hence d(^( id x 5), έ) = d(f/g, ε) = λ( f̂lr) - λ(/o;(f)).

LEMMA 2.3. In the expression in (4) we have x = λ(f), ^ ίo
r, where ξ denotes the homotopy class off

For the proof of Lemma 2.3 we prepare the following general

LEMMA 2.4. Let £f he a 1-connected CW-complex and let JίΓ
he a complex JZf U eN{a — 0). Let f g be maps: Sf —* £f such that
f\Jtf=g\J*f and let ζ be a map: £^N —> 3ίΓ which induces the iso-
morphism: ^fκ{6^N, *)-> ^(Jίr, £?). Then we have d(f9 g) =/*(ζ)
- g*(Q (UP to sign).

Proof Since a — 0 there exists a homotopy equivalence φ: {& V
iV, ^^) -^ (^7 .5f) relative to £f. Let δ be the inclusion S^N ~>
V 9*N. Then

) - ±d{fφt
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From φ~ιζ e πN{j5? V S^N) and the assumption on ζ we have

Hence

Λ(Q - sUO =h(±ψΛQ + <PM) -

= ±(f*ψj?) - flr*9>*(δ)) = ±d(/, flr)

Proof of Lemma 2.3. Let <̂ ° be the identification map:

The maps

f&\ εέ?-1: SSn~γ x 6Sk\SSn-1 x * —

are well-defined and has the same restriction on * x £fh\Sf"n'-1 x *.
The complex ^ ~ 1 x ^ V ^ "1 x * has a form ^ U β^*"1^ - 0).
Then we apply Lemma 2.4 to the case where

= S^^1 x Sfk\SSn-γ x * , ^ = * x ^V^"- 1 x * ,
, £ = έ^- 1 and 3f=- £^k

Thus we have

λ(/) - d(f, έ) =

for any ζ: (S^k+n~\ *) —• Ĉ ?7 =5̂ ) which induces an isomorphism

ζ*: <S£Vn-i, (^* + -S *) - ^k+^5T, Sf) .

Consider the following commutative diagram

x * u <9*n~ι x ^ f c > S^n-γ x ^ V ^ 7 * - 1 x *

^ V

Since we can take ζ with the composition of two maps in the upper
row it follows from (ε^ '%(ζ) - 0 that λ(/) = ± ( / ^ - % ( ζ ) . From
the diagram (6) the proof is completed.

3* Proof of Theorem 1. Let J ^ be a complex of the form
^k v c^n y ek + n

where β = cka + [̂ , ^] under the decomposition

l h V ^ % ) - πk+
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By the cellular homotopy theorem 3t[ has the same homotopy type
as 5ίΓ2 if and only if there exists a homotopy equivalence (n, k :> 2)

Φ: S^k V &** -> £fk V &*"

such that Φ*(βi) = ±/S2. Now consider the case nΦ k. It is obvious
that a map Φ is homotopy equivalence if and only if Φ \ S^k = ±ck +
;,or(re T Γ * ^ * ) ) , and Φ | ^ n = ±cn if w < fe = ±ck, and Φ | £f* = ckoσ +
± φ e πn{Sfk)) if n> k. From easy computation of Φ*(/3i) we can
obtain

LEMMA 3.1. If n Φ k, 3ίf[ has the same homotopy type as
if and only if the set {±alf ± ( — O*αi} ^s eQwal to the set

{±a2, ±(ck)*a2} mod [πn(S^k), ck] .

Next we consider the case n = k. By the same way as in [2]
we have

LEMMA 3.2. (James and Whitehead). If n — k — even, Sέfl and
1 have the same homotopy type if and only if

{ ± α j ΞΞ {a2} mod [πn(^k)f ck] .

LEMMA 3.3. (James and Whitehead). If n ~ k = odd, Sέ^ and
have the same homotopy type if and only if there exists an integer

d which is prime to m2 and dav ΞΞ a2 mod [πn(Sfk), tk\ where m2 is the
order of α:2mod \^n(

Thus Theorem 1 follows from Lemmas 3.1, 3.2, 3.3, and 2.3.

4* Some Lemmas* Let ^ be a complex of the form £fk U en

with the characteristic map a: (3ίn, ^%-γ) —> ( ^ c^k) for the π-cell.
Let <5? be the complex obtained from identifying 6^k of two copies
of ^ i.e., β ^ 7 = en \}\£fk U en. I t may be considered that two maps
μ%(% = 1, 2): <&>-* £? and a map v: £f—+ £f are naturally defined and
satisfy yμ< = the identity. Since μx \ ̂

k = μ2 \ S/"k the separation
element d(μu μ2) is defined. Then we have

LEMMA 4.1. If βe πkΛ.n_γ(£f) and j*(β) = m[ά, ck]r, then μx*(β) -
M S ) =m[d(βlf μ2), ck).

Proof Consider the following commutative diagram
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* lii W
H 3*

which is taken from the homotopy sequence of the pair and * = k +
n-1.

From the commutativity it follows that

On the orther hand, we have

Thus, for some element ye π*(S^k), it holds

Applying v* to the both side, then, from

A, A) = d(vft, yft) - d(id, id) = 0 and vft(/5) = β ,

we have ^ + ( 7 ) = 0. Hence i+(i) = 0 from the commutativity of the
diagram.

As an application of Lemma 4.1 we have

LEMMA 4.2. Le£ /, g be maps: £? —+ <%f such that f\J*?=g\ £?.
For any β, i*(/3) = m[ά9 ck]r, we have

fΛβ) ~ Q*(β) = m[d(f, g), f I Sf*\ .

Proof. Define a map / U g: £?-* <%f by

ft=/f and (f Ό g)μ* = g .

Since d(/, g) = d((/ U flr)^lf (/ U g)μ2) - (/ U ̂ )*d(A, A) the proof is
completed by applying (/ U g)* to the both side of the equality in
Lemma 4.1.

Let id be the identity map of £?{n ^ k + 2 ^ 4) and let w: £f—>
J*f be a map with w \ S^k = id \ S^k. In general, d(idf w) is belonging
to π%(£f). However, we have

LEMMA 4.3. w is a homotopy equivalence preserving the orien-
tation of the n-cell if and only if d{id, w) is contained in i*πn
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Proof. Let xn, yn be the orientation generators of J%l(^f), and
n) respectively, and let δ be d(id, w). Since xn — w*(xn) =

δ*(yn), %n = w*(xn) holds if and only if d*(yn) = 0. On the other hand,
the diagram

shows that d*(xn) = 0 is equivalent to δei^

Now we prepare lemmas for the proof of Theorem 2. In what
follows, we use the notations in § 2 and suppose n ^ k + 2 ^ 4.

LEMMA 4.4. Leέ i 6β the inclusion: y ^
we have

Proof. Since the pair {?3Γ(f), S^k) is homotopy equivalent to

Hence from the homotopy sequence of the triple (JΓ(f), S^k U en,
we obtain

U β%, ^ f c ) - dπk+n+ι(Snf), ^ k U β%) U

Thus we have that

U e , ^ f c ) = α ^ ^ + ^

Let Xi(i = 1, 2) be elements such that ^*(Zi) = ^*(%2) = α- Then
βi e 7rk+n_1(^'k U en) and there exists an element f € V ι ( ^ * ) which
satisfies ifc*(5) = χi - χ2.

LEMMA 4.5. There exists a homotopy equivalence φ: 6^k U ^ - ^
(fk U e% which satisfies

( 1 ) Ψ M ) = β&, ̂ ,(e w ) = e
( 2 ) /Si - ^^(A) = i*X(ξ) (up to sign).

Proof. Let κ\ S^1-+&"l\/ 6^1 be a map of type (1, -1) and let
X be the fibration induced from X, V χ2 by A;, i.e., χ = Zx - χ2. Since
i* (5) = Z ^ " ( / ) has the form S*k V <9*n l) ek+n by (5). It may be
considered that K induces a map R\

= ^ k v s^n u efc+w — > JΓ(fi) u

= ^ Γ x Sfk U ^ f e U 3f\ X ^ f c
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which satisfies

K*(ek+n) = ek+n - ek+n , ϊc*(en) = el - el a n d κ*(ek) = ek .

Let tc: 6^k V <9*n —• el U ,5^* U e? be the map obtained from the restric-
tion of K on S?h V ^ w and let i, be the inclusion: ej V ^ * -> ef U
<$** U e?. Then we have

Define the map r: ef U ̂ f e U e ? ^ S^k U β% by

r I el U ̂ f c = identity = r | ^ f e U el .

We claim that

(**) f*(<w) is contained in ϊ^-image where ω = Έ \ &^n and % denotes
the inclusion: 6fk -* el U 6^k U β2

TO.
For, consider the commutative diagram

V ^ % ) ~ z - ^ ^ % (βΓ U ̂ f e U el) f πn(S^k U en) .

Let j?w be the element of πn(S^k V S^n) which is represented by
Then we have

= ^*(ίi*(^i) - ί2*(tf2)) = δ - α = 0 .

Thus (**) is proved.

Now, by applying r* to the both side of (*) we have

rj*(β) = βt - βz .

On the other hand, by using (5), we have

[ekf zn])9 (cn = ^ )

ω']), (ω'e τr%(^ f c), t > ' = rM by (**))

i.e., ft - β2 = i

If we take a map 9: ^ f c U en —> ̂ f c U e9* such that d(id, φ) = + ω ' , it
follows from Lemma 4.2 and Lemma 2.1 that

A - ?>*(&) - ί*(=F[< *J) i.e., ft - φ+fa) - i#(±λ(5)) .

Since d(id, φ) e i *π Λ (^ f c ) φ satisfies (1) by Lemma 4.3.
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LEMMA 4.6. There exist homotopy equivalences u':
and u"\ SΓ(ρρ) —• Sf(f) which satisfy

( 1 ) u'*(ek) = ek and < ( β Λ ) = -e%,
( 2 ) <(e*) = -ek and u'l(en) = e\

Proof. Let ̂ / be the identification map: £Sk + ̂  x
and define u\ u" as follows

t6f(a?) = x , u"(x) = px if x e S^k and

M'(V, z) = ?/(ρny, z) , u"(y, z) - ^ ( i / , pz) if (i/, 2) 6 ^ r x

^ r and v," are well-defined by the formulas

- / - f((pn I ̂ n~ι) x id) and pf = pf(id x ^) .

5. Proof of Theorem 2. First of all we prove

LEMMA 5.1. If if'k,n{Xi) has the same homotopy type as
there exists a pair (θlt θ2), θ% £ ̂ X^A which satisfies

there exists a homotopy equivalence ψ: J3t~(gx) —* J%^(g2) with

Proof. Let A: J^"(/i) —̂  J^"(/2) be a homotopy equivalence which
may be considered as a cellular map. Then we have

Since it is clear that each element on the right hand side can be
obtained as ^ * ( # 2 ) of a suitable 02 e S^[X2]9 there exists a pair (χl9 θ2)
which satisfies ( jy) , and a homotopy equivalence %: ̂ "(/i) —* 3Γ(g^
by Lemma 4.6.

We suppse that u*(eϊ) = eke
k and u^{el) = εwβj (ελ, εw = ±1). Then

we have the equation

Hence, by ( j ^ ) , we have

The case of εk = 1. Since, by Lemma 4.6, there exists a homotopy
equivalence w': JΓ*(εn/1) — ̂ ( / ί ) with <(e*) = ek and <(e n ) = ene

Λ, the
set

{θ1 =ej.lf θ2, Ψ = u-u'}

satisfies (Ssf) and ( . ^ ) .
The case of e*. = — 1 . Similarly, by Lemma 4.6, there exists a
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homotopy equivalence u":.βΓ(enpf1)-+JΓ(fι) with u"(eh) = -ek and
uϊ(e*) = e\ The set

satisfies ( j^) and (.^) by

Proof of Theorem 2. First we suppose that &kΛ%ι) ^ a s the same
homotopy type as ίf*,»(X2) We choose (#!, #2, ψ) as stated in Lemma
5.1. Let Qi be a representative of et and let 7* be the attaching
class for the (k + w)-cell of J^r(^) Let ^: y ^ U e ^ y ' U e* be a
map as stated in Lemma 4.5 (χ, = #*) and let ^ be the map obtained
from the restriction of ψ on S^k U en. Since ^(7) = 72 we have

= 7 , - t * ( )

= T2 - 9>#(7i) + 9>*(7!) ~ f *

= (7a — ̂ *(7i)) + [d{φ, ψ), ck] by Lemma 4.2 and Lemma 2.1

+ [d(?>, ̂ ), ̂ ] by Lemma 4.5 and

On the other hand, since d(φ, ψ) = d(φ, id) + ώ(icί, ψ), d(φψ) is con-
tained in i^icn{S^h) by Lemma 4.3. Hence we obtain that

[̂  ckl + i^(0) for some δ e πn(£Sk) i.e.,

V Ξ λ - 1 [̂  <*J mod λ-^ίO) = λ - 1 ^ ^ ) ^ ^ , ^ - 1 )

by Lemma 4.4. By applying ik* to the both side we have

θi-θ1 = 0 mod g f ( ^ (*i)) , i.e., Zi - Z».

Secondly we assume that χt ^ χ2. Hence there exists a pair (θίf θ2)
such that î == θ2 mod ^(.^*(^i)) which means

Since ^ ^ ^ O = ^*(# 2 ) there exists a homotopy equivalence φ: j ^ k U
βn —> S^k U e% which satisfies (see Lemma 4.5)

Since ί*(±X(η))e i^k*{θ^-πk+n_1{^n~1) = 0 by Lemma 4.4, we have
71 = (Pt(y2), i.e., 9? is extendable over ^^(^0 to JΓ(g2). Then, by
Lemma 4.6, ^^(χO has the same homotopy type as £?fc,%(%2).
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