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FREE PRODUCTS AND ELEMENTARY EQUIVALENCE

PHILIP OLIN

It is shown that the free product operation on two
groupoids preserves both elementary equivalence and ele-
mentary subsystem. An example is given showing the above
results for semigroups false, thus answering in the negative
a question of Feferman and Vaught.

In their important paper [3], Peferman and Vaught show, as a
consequence of a stronger result, that many of the usual product
operations preserve elementary equivalence. For example, if 2ti, 3l2,
ϊ&L, 952 are structures such that 3U and ^ have the same elementary
first order properties (denoted SU Ξ= SŜ  and similarly SX2 = 352, then
for the direct products we have % x Sl2 = SBj. x 332. In the footnote
on page 76 of that paper they state that their methods do not apply
to free products or tensor products, and they ask if these two
operations preserve elementary equivalence. The answer is known
to be negative for tensor products (see [2], [4]). We show here
that for free products the answer is also negative for both elementary-
equivalence and elementary subsystem. In our counterexample %, St2,
S5i, S32 are semigroups, and the idea used is similar to the idea in
Example 1.3 of [5].

In that same footnote, Feferman and Vaught mention a method
due to Fraϊsse and later developed by Ehrenfeucht [1], and they ask
if this method might by applied to the problem of preserving ele-
mentary equivalence. We show here, using this method of games
of Fraϊsse-Ehrenfeucht, that the free product operation on groupoids
preserves both elementary equivalence and elementary subsystem.
A groupoid is simply a nonempty set with a binary function.

Also explicitly mentioned in that footnote is the question whether
free products of groups preserve elementary equivalence. We have
been unable to answer this question.

It should be noted that the definition of free product depends
on the class of structures considered, so that if 2t and 33 are semi-
groups then their free product as semigroups is different from the
free product formed with them by thinking of them as groupoids.
At the end of the paper we attempt in a short space to give some
motivation for the example and the proof.

The results of this paper were announced in [6].
We denote the sentence ψ being true in the model SX by 5t 1= φ.

If for every elementary first order sentence φ we have 211= Ψ iff
S3t=^ then SI and S3 are said to be elementarily equivalent and
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we write 21 = S3. If 21 is a submodel of S3 and if for every such φ
with possibly constants from 2t we have 2LN Ψ iff S3 N ψ then we
say 21 is an elementary subsystem of S3 and we write 2t -< S3. The
free product operation (over a given, understood class) is denoted
by *. For the result for groupoids we assume some familiarity
with the method of games (see [1] or [2]).

EXAMPLE. We consider the class of semigroups and now con-
struct semigroups 5llf 2t2, S3X, S32 such that 2tx = f&19 2t2 s S32 and yet
2^ * 2l2 =έ S3X * S52. In fact we will have 2tx ~ 33^ the trivial semigroup;
and 2t2 -< 332, both being denumerably infinite.

Let S3 be the semigroup <J5, •> where B is the one-element set
{b} and b*b = b. Of course S3 -< S3. We will now define a semigroup
21 = (A, •>• The generators of 21 will be the members (all distinct)
of the set G = {at}i<ω U {c]}ίfj<ω. For each i < ω let {S}}j<0> be a list
of all the subsets of G of cardinality i. Let R be the following set
of relations:

{c)-di-y = y-c}-at | i, j <ω,yeS}} .

Then 21 is obtained by starting with the free semigroup on the set
G of generators and then introducing the relations in R.

Since the only relations which we have added to the free semi-
group on G are of a "commuting" nature and in particular introduce
no cancellation or reduction in the length of words, several proper-
ties follow. First, the indivisible members of 21 are exactly the
members of G; i.e., the formula ~(3xι)(3x2)(x1 x%=x)f denoted by
ψ(x), is satisfied in 21 by, and only by, the members of G. Also,
every member of 21 is either indivisible or can be written as an
indivisible times some other element; i.e.,

SI N (V2/)(3s)hHs) Λ (z = y V (lw)(y = z w))] .

Let φn(x) denote the formula

(VvJ(*z)[φ(x) A f(z) A (AUiΨiVi) -tz-x-Vi^VfZ- x))] .

The formula "says" of x that it is indivisible and for any ylf * ,yn

there is an indivisible z such that, for each i, if yt is indivisible
then Z'X yi ~ yi z x. 2t was constructed in such a way that
2t μ <Pn(an), the desired z being any c] where S* contains all the
indivisible yt'&. Furthermore, if gu g2, g3eG then gι g2 9s = 93 9i 9z
in 21 iff this relation is already in R or g1 = #2 = #3. We omit a
proof of this; such a proof would first note that because there is
no cancellation involved in the relations in R, words of length other
then three could not be used to derive such a new relation, and then,
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by considering the various cases as to whether gx is some aύ or some
c{ and so on, one could eliminate the different possibilities.

Hence for any g e G there is a positive integer m and g19 ••-,gmeG
such that for any g' eG there is at least one i, 1 ^ i <̂  m, such that
gf d gί^ gt g' g lί g = at t h e n m = % + 1 and gl9 , gm all dif-

ferent will suffice. But the set of formulas T = {ζPn{%)}n<ω is finitely
satisfiable in 21 because, given any finite subset T of T, if n is the
largest integer such that φn e T then clearly an satisfies all the
members of ϊ7 '.

By the Compactness Theorem for elementary first order logic
there is a semigroup 21' such that 21' is denumerably infinite, 21' > 21,
and there is some αe2 l ' such that for each n < α>, 21' |= φn(ά).

We will now show that S3 * 21 and S3 * 21' are not elementarily
equivalent and hence S3 * 21 is not an elementary subsystem of 33 * 21'.
Let θ be the sentence

(x) A ψ{z) A v v = v

A [(y = Uί v u2 v uz A ~ (3w4)(3w5)(w2 = u± v u6))

—> (3w)(3r)((%2 — tί; V ^ 2 = w r) Λ ψ(w) A z a? w = w z x)]} .

This sentence θ, as it will be applied below, says roughly the follow-
ing: There is an idempotent (which will have to be δ) and an indi-
visible x such that for any word y we can find an indivisible z such
that for any way of writing y as ux b u2 b uz with u2e A or e A'
(as the case may be), there is a left-most indivisible factor w of u2

such that z x w=w z x. We are using here the fact that
S3* 21 |= ~(3^4)(3%5)(w = u4 b uδ) iff ueA, and similarly with Af in
place of A.

We claim S3 * 21' t= θ and S3 * 21 t= - 0. First, why S3 * 21'|= 0?
Let v be 6 e S3 and let x be the a e 21'. ψ (̂α) holds in S3 * 21' because
a satisfies φ^x) in 21'. Now suppose y e S3 * 21' is given. We can
assume y is of the form ht 6 tx 6 ί2 b b tm b h2 where m ^ 1,
each ί€ e 21' and hlf h2 are each either b or in 21'; otherwise the ante-
cedent of [.. .—>...] in θ could not be satisfied and we would easily
finish. So for each tt there is an indivisible wt e 21' such that either
tt = Wi or U = Wi rt for some r* e 21'. (Recall every member of 21
has this property and 21 = 21'.) We know 21' N φm{a). So replacing
yt in this formula by wt we get an indivisible zeW such that for
all ij 1 <Ξ i fg m, 3 ά w* = wt £ α. Now for any ux, u2, uz in S3 * 21',
if the antecedent of [ . . .—>...] is satisfied, it must be the case that
for some i, u2 = tt. So let w be wi9 let r be ^ and we are done.

We now wish to show S3 * 21 N ~ θ. Suppose not. So we get
v and x. Since v v = v we must have v = b since b is the only
idempotent in S3 * 21. Since S3 * 21 |= Ψ(%) we must have x — geG.
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As remarked above, there is an m and gl9 , gm e G such that for any
g'eG, 2L h ~ ΛΓ=i(0' 0 0ί = Qi-g'-g)- Let y = b-g1-b-g2 δ βr» δ.
So we then get z. Since SB * 2L (= ̂ (z), we must have z e G; say z = #\
Say i0 is such that g' g gHΦ gio * g' g. If 1 < i0 < m, let w2 be gio,
let ^ be 6 - flΓi - 6 6 #ίo_i and let u3 be # ί o + 1 6 b gm b. If
i0 = 1, let u2 be #<0, let uγ be 6 and let uz be as above. The case
i0 — m is similar. Clearly the antecedent of [...—•...] in θ is satis-
fied. So we get w and r. I t must be the case that w = u2( = gio).
But z x w{— gr g gίo) Φ w z x(= giQ g' g), contradicting 35 *21 (= 0.
So 33 * 21 N - ί.

We remark that in the logical hierarchy of formulas, θ is a
IVsentence. I t seems likely that an example showing that free
products do not preserve elementary equivalence could be constructed
in which the sentence θ is Σ4, or perhaps Σs. It also seems likely
that Σz or at least Σ2 equivalence is preserved by free products, and
the method of games of the next result should suffice to show it.

A groupoid 21 = <A, •> is a nonempty set A and a function
from A x A into A; and * is now in the class of groupoids. We
wish to show that if 2^, 2t2, S3X, S52 are groupoids, 2tL Ξ= S ,̂ 2t2 = 332,
then 2tx * 2t2 = 33X * S52. The method to be used is the method of games
[1], [2], and the winning strategy for player II is similar to that
which is used in showing that, as linearly ordered sets, a)Ξ=ω + ω* + ω.
We wish to thank the referee whose questions and comments led
to, among other things, improvement in the proof of the following
theorem.

THEOREM. // 2tx, 2l2, S ,̂ S32 are groupoids and % Ξ= S ,̂ 2t2 Ξ 332

then % * 2t2 = ^ * 332.

Proof. We can assume A1 Π A2 = Bλ Π JB2 — 0 . Let % be a fixed
positive integer. We will describe a winning strategy for player II
in the game GΛ(Sl1 * 2t2, S^ * 352). We can assume that the nonlogical
constants of the language are only = (interpreted always as identity)
and a three-place predicate P, where P(α, 6, c) means a b — c. This
allows us to avoid considering terms. In the game, xx, 2x, , nx will
be chosen from SXL * 2L2 and 1y1 2y, * ,ny from SB^SSa II wins iff
for all 1 ^ i9 j , k ^ n

iX jx = fcα; iff ,1/ # = fci/

and

tx = ,-a? iff ty = ^ .

We shall need IΓs winning strategy in Gm(Uu 350 and in Gm(2t2, 352),
where m = Σ?=i2 ( 3 ί" 2 ). We require some notation. For each ^ in



FREE PRODUCTS AND ELEMENTARY EQUIVALENCE 179

%t * §X2, let iX = iX\. Then by induction, for j ^> 1 and k ^ 1, if

txi e Six * 2ta — (2Xi U SXa)> let <&{ = ^fί-ii ^lΐ1. This decomposition is
unique because of the definition of free product of groupoids. We
say that each txi is a factor of <&£', if j :> f and 2(i~~i')(fc' — 1) + 1 ^
k <L 2(i"i')(fc') And w e s a Y iχί has depth j in tχ. Similar notation
is adopted for each tym The m defined above is the largest number
of members of, say, At which can appear among &, , %x at a depth
<; 3" in !» or ^ 371"1 in 2α; or or <: 3 in nx. It is these members
which are, in some sense, directly threatened by player I in the game.
It will be convenient to assume first that Alf A2y Blf B2 are all infinite.
We now begin to describe IPs strategy.

First of all, if I chooses tx then the ty that II will choose will
have exactly the same "form" as tx — i.e., tyί^Bι iff tx

3

keAlf and

ty{ e B2 iff tx{ e A2. Similarly if I chooses ty.
Secondly, say I chooses tx and rxk\ •••, IOJJJ is a list of those

factors of xx which are at a depth ^ 3% in ^(i.e., each j t ^ 3%) and
which are in Aλ. Then II chooses {yi\, •••, ̂ j j from Bγ according to
his winning strategy in Gm(%ί9 350. Note that p ^ 2(3n"2). A similar
procedure is followed for such factors from A2 and B2. If I had
chosen $, again the procedure is similar. The method II uses for
completing his choice of factors of xy (if xy is not already completely
defined) will be specified later. I t will not affect some parts of his
later strategy, which it is convenient to give now. Say I chooses 2y.
Say tyί\, •••, 2y

3

k

r

r is a list of those factors of 2y which are in Bx and
which are at a depth ^ Zn~ι in 2y. Note r ^ 2{3%~1'2). Then II
chooses 2x{\, , 2xίr

r from Ax by using his winning strategy in Gm(%lf 350
and taking into account the choices made in this game when λx and
!?/ were discussed above. (So this involves choices number p + 1 to
p + r in Gn£$llf 330.) Similarly for factors of depth ^ 3*"1 in ,x and

xy which are from A2 and B2, and also similarly if I had chosen 2x.
Player II continues in this way for the rest of the game, choosing
factors which are to be in At U A2 or Bx U B2 and at depth ^ y~dJrl

in dx according to his given winning strategies in the games Gm and
in the light of earlier choices in these games. Note that the choice
of m ensures that II has enough "room to work in". Note also that
the winning strategy for II in these games Gm(%, 350 and Gm(%2, 332)
certainly includes maintaining equalities and inequalities — i.e., for
those choices of factors specified above, we have tχ% — rx

c

d iff ty% = ry
c

d.
This will be required later. Furthermore, at the end of the game,
since the above winning strategies were used, we will have: If
% j , k ^Ln then tχ, 3 χf kχ are all in Aλ iff ty, dy, ky are all in Bl9 and
in this case tx = sx iff ty = όy and and tx , x = kx iff ty /y = ky.
Similarly for A2 and B2.

We define for each r, 0^r<Ln, conditions Kr(l)r ,iΓr(4) as follows:
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Kr(l): Suppose 1 ^ s < r and j \ + j 2 — 1 ^ 3*"r+1. Suppose rί»ίj
and 8x{\ are defined and equal. Then ry{\ and ,3/£| are also defined
and equal.

Kr(2): Suppose j \ + j2 — 1 ^ 3^-r+i and suppose rajjj and ra?ί* are
defined and equal. Then ry{\ and ry{\ are also defined and equal.

Kr(S): Replace "equal" in Kr(l) by "unequal".
ifr(4): Replace "equal" in Kr(2) by "unequal". Clearly K0(l),--,

K0(4) are vacuously satisfied.
Assume that 1 <.t t^n and that ±xf , <_!# and ιyί , f_j3/ have

been completely specified, following that part of IΓs strategy already
indicated above and, for the rest (if any) of the factors in these
elements, in such a way that for each r, 0 <L r ^ t — 1, Kr(l), , Kr(4)
are all satisfied. Suppose I chooses tx. Then for those factors of

ty which are to be in B, U B2 and at a depth ^ s*-^ = sn~t+1 in ^ ,
II specifies these factors according to that part of his strategy
already given above. We now wish to show that II can complete
his definition of ty so that Kt(l), •••, Kt(4) are all satisfied.

Consider those factors ty{ of ty which are in Bx U B2 and with
j ^ Sn~t+1 — i.e., those just specified by II. Conditions Kt(l) and 1^(3)
might require some ty% equal or unequal to some ry

c

d, r < t and
a + c — 1 ^ %*-*+i f and this in turn might mean that there is a factor
tVi oί tVb, which is a member of Bx U B2, has j ^ g"-^1 (and thus
was specified by II already) and which, if we are to have tyl equal
or unequal to ry

e

d, will have to be equal or unequal (as the case may
be) to ry{\, which is a factor of τy\ and a member of Bx U B2. Is this
equality or inequality, needed for Kt(ί) or ^ ( 3 ) , satisfied? Assume
it is equality we need. We have a + c — 1 ^3 % ~ ί + 1 , j ^ 3n~t+1 and
o — 2ι = a — j . So j \ = c + i — α <̂  c + i . But c ^ c + α - 1 <;3%~ί+1.
So i x ^ Sn~t+1 + 3%~ί+1 ^ 3^-(*-1)+1 ^ 3 " r + 1 . Hence r ^ and ry{\ were
"earlier moves" in the games Gm being played and so, since tx% = rx

c

d

and thus tx{ = ^i^, player II, as required by his winning strategies
in the games Gm, chose ty{ — ry{\. We have shown that the part of
IΓs strategy already given does not conflict with conditions Kt(l)
and Kt(S). The check that there is also no conflict with Kt(2) and
Kt(4) is simpler and we do not give it.

We will now show how the rest (if any) of ty is to be defined
by II. Let tx{\, •••, tx

3

kp be a list of those factors of tx which satisfy
the hypothesis of condition Kt(l) and such that no member of this
list is a factor in tx of any other (and hence there is no "overlap"
among them at all, in the sense that they have no factors in common).
It follows that every tx{ which (together with some 8x{',, s < t)
satisfies the hypothesis of Kt{l) is a factor of one of the members
of this list.

Say tx{\ = rxi, r < t, j \ + i — 1 ^ 3w~ ί+1. For those tx{', which are
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factors of tx{\, are in Ax U A2 and satisfy j ' > Zn~i+\ II defines tyί so
that ty{\ = ry\. There is no difficulty in doing this. However, sup-
pose tx{ is a factor of tx{\ and suppose tx{ and sx

a

b(s < t) satisfy the
hypothesis of Kt(ϊ). Since ty{ has just been defined (since it is a
piece of tyi\), does it satisfy the conclusion of iff(l)? We have j +
a - 1 ^ 3w~ί+1. We require ^ j = 4/J. Since tx{\ = rx\ and since they
have exactly the same form, let tx*, be that factor of rx\ which cor-
responds to tx{ under the correspondence given by this "sameness of
form". Of course rx», = tx{ and V — ί = j — j t . In the same way,
tVί = r2/ί- But α + j \ + (i - iθ - 1 = a + j - 1 ^ 3"-ί+1 and this im-
plies a + (j - j\) ^ 3"-ί+1. Also j \ + i - 1 ^ 3w~ί+1 implies i ^ 3TO~i+1.
Hence α + i' = a + (i' - i) + i - α + (i - j1) + i ^ 2 - 3n~t+1 £ 3%"(ί-1)+1 ^
3""m a x ( s r ) + 1. So by the induction hypothesis for ifmax(s,r)(l) if r Φ s
or for Ks(2) if r - s, we get ,ya

b = r ^ . So sτ/6

α = ^ j .
Suppose tx{\ = ra;i (as above) and in addition ^jj = υx

e

d with v < t
and ii + c — 1 ^ 3n~t+1. Then by an argument similar to the above,
we could show vy

c

d — ry\ and so no conflict arises here.
Player II now repeats the above procedure for tx{\ on tx{\, , tx{%.

Since, as remarked above, no two of these overlap there is no dif-
ficulty in making the definitions to satisfy Kt(ϊ); and again as above,
factors of members of this list are automatically taken care of.

We now wish to consider condition Kt(2). Suppose tx{\ and tx{\
satisfy the hypothesis of Kt(2) (i.e., they are equal and i i+i 2 — 1^3%~ί+1).
Suppose further that there is no pair of factors of tχ satisfying
the hypothesis of Kt(2) and with either of these factors being
factors of tx{\ or of tx{\ — i.e., this latter pair is "minimal" with
respect to the hypothesis of ^(2). If there are any pairs satisfying
the hypothesis of Kt(2) then there is a minimal pair because: If
M\, t%i\ and txi\, tx{\ are different pairs satisfying the hypothesis of
Kt(2) and if tx{\ is a factor of tx{\ then if tx{\ were a factor of tx{\, we
would get tx{\ equal to a proper factor of itself and this is impossible
in a free product. So we can "work our way down in depth" and
consider a minimal pair tx{\, tx{\. Player II must arrange ty{\ = ty{\.
There are several ways in which the parts of ty defined in satisfying
Kt(l) might conflict with this desired result.

Suppose ty{, - ryt, ϊ + f ~ 1 ^ 3n~t+1, r < ί, and ty{'. = ty$, j " +
i" — 1 ^ Sn~t+\ s <t were arranged in satisfying Kt(l). Say ty{[ is
a factor of %y%, and ty{\ is a factor of tyζ»; hence ty{\ and ty{\ have
already been completely defined. Let ry

a

b be the factor of ryζ, which
corresponds (under the sameness-of-form correspondence between

ryt and ry{',) to ty{\. Similarly for sy
c

d and tyί\. It suffices to show
rVi = sVd We have V - a = f - jl9 i" - c = j" - j2t V + f - 1 ^

3n~t+\ i"+j" ~ 1 S 3"~ ί + 1, and jx + j2 - 1 ^ 3n~t+1. So i ' ^ 3%~ί+1, ΐ " ^

3 % " ί + 1 a n d (j, - j ' ) + j ' + 0 ' 2 - i " ) - j " - l £ T~t+1. H e n c e (j\ - f) +
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0*2 - i") - 1 ^ 3*~ί+1. But then a + c - 1 = V + λ - j ' + i" + i2 -
i " - 1 ^ 3 3%-ί+1 = 3%- ( ί- 1 ) + 1^3 ί i-m a x ( r s ) + 1. So by the induction hypo-
thesis, using KmΆX(r,s)(ΐ) if sφr and ίΓs(2) if s = r, we get ry% = sy

e

d.
Now suppose things are as above, except tyζ. is a factor of ^ ί |

instead of the other way round. By computations very similar to
those above we would get ty%, equal to its corresponding (under the
correspondence determined by tx{\ being equal to tx

3

k

2

2) image in ty{\.
Player II then defines those tyl which are factors of tyί\, which are
required to be in Bι U B2, and which are not already defined, by
making them equal to the corresponding (same correspondence) factors
in ty{\, all of which were defined earlier.

Now suppose things are as above, except tyζ, is a factor of ty{\
and ty%. is a factor of ty{\. There are now several subcases to con-
sider, depending on how these factors overlap under the corre-
spondence determined by tx{\ being equal to tx

j

k\. All of them involve
computations similar to the one given above, and we omit them.
Once the definitions made in satisfying Kt(l) are seen not to conflict
with ty{\ being equal to ty{\, II can define those factors of, say, ty{\
which are to be in B1 U B2 and which are supposed to equal factors
already defined in ty{\. One possibility remains. A certain factor of

ty{\ is to be a member of Bλ U B2 and equal to its corresponding
factor in ty{\— but neither has been defined by any of the above
considerations. In this case we use the assumption that Bx and B2

are each infinite, and II chooses any member (from Bx or B2, whichever
is needed so that ty and tx will have the same form) which is com-
pletely new — i.e., which appears nowhere in xxy ••-,*#, d/, •• ,t_1ί/
and that part of ty so far defined. This completes the definition of

tyί\ and ty{\.
Other minimal pairs satisfying the hypothesis of Kt(2) are handled

similarly. We then consider pairs which are minimal in the sense
above, but with respect only to those pairs not yet considered. The
arguments are analogous, and II proceeds to define as much of ty as
is required to satisfy Kt(2).

We have thus defined part of ty and at the same time shown
that Kt(l) and Kt(2) are satisfied. For the remaining (if any) factors
of ty which are to be members of Bx U B2 we again use the assump-
tion that Bγ and B2 are infinite and II chooses completely new ele-
ments. It follows that ^(3) and Kt{4) are thus satisfied.

If player I had picked ty then Kt(l), •••, ̂ (4) and IΓs strategy
are gotten by interchanging x and y.

Now suppose not all of Au A2y Bu B2 are infinite. If Aλ is finite,
since %x = 93̂  we get /: % ~ S^ If in addition A2 is finite, we get
2ti * 2t2 = 23i * S52. So assume A2 (and hence also B2) is infinite. Then
player IFs winning strategy is modified so that if I chooses tx and
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tx{ e Aι then II defines ty{ = f{txi)9 and similarly if I chooses ty. I t
can be shown that all of the conclusions above are obtained also in
this situation.

Now suppose the game is over and &, '"9nxflyy •••,»# have
been chosen. We want to show, for 1 ^ i, j , k rg n, that tx 3 x = kx
iff iV sV = kV and tx = , x iff ^ = jy. As noted above, if tx, sx, kx are
all in Ax then ^ , άy9 ky are all in B19 and conversely, and the result
then follows from IΓs winning strategy in Gm(^Llf 230. Similarly for
A2 and B2. So now assume this is not the case. There are now
several cases to consider; we discuss two of them.

( i ) Suppose i < k < j and tx άx = kx. So kx\ = ^ and kx\ — όx\.
Since i ^ ^ and k <>n we have δ ' 1 -^ 1 ^ 2 and 3"- y + 1 ^ 2. And so
2 + 1 - 1 ^ T~k+ι and 2 + 1 - 1 ^ 3n~j+1. Thus conditions ίΓ4(l),
Kk(S), Kj{l), Kά{Z) ensure that ky\ = ^ ί and ^ 1 = sy\, and thus t3/ =

(i i) Suppose i > k and *# <# = fc^ So fea;? = ^ = <#. Again
fc ̂  %, so 3 ^ 3w-fc+1, so 2 + 2 - 1 ^ 3*-*+1. Thus condition Kk(2) and
Kk(4:) ensured that, when kx and ky were chosen, we had kx\ = kx\ iff

kyl = jbi/i. Then, as in case (i) above, conditions K^l) and JK<(3) ensure
i« = k%l = *a?l iff *2/? = *2/i = i2/

The other cases are no more difficult.

REMARK. For any positive integer n, let m be defined (as a
function of n) as in the proof of the above theorem. Let Ξ p m e a n
equivalence with respect to sentences with at most p variables.
Then in fact the above proof shows that :

( 1 ) if 2U 3t» %, SS2, are all infinite,

%=mί&lf ai 2 Ξ Ξ m <δ 2 , then a , * ? ! , ^ ^ * ^ .

( 2 ) if a x = 33i, 2t2 and S52 are infinite, and

a a = w S 3 2 then 5^*21, = . » , * » , .

It seems likely that these last results could be strengthened — in
particular by weakening the hypotheses.

COROLLARY. Iflllf 3X2, S ,̂ 352 are groupoids, ll2 < 232, ^ •< 33̂  then
SU * 5>l2 -<' S3, * 5B2.

The proof of the corollary is essentially the same as that for
the theorem, except that we start with xx = xy, , pχ = py for some
fixed p < n, and the first part of IΓs strategy is modified to use
IΓs winning strategy gotten from the games appropriate for % < ^
and Sl2 •< §B2.

What follows is a short attempt to motivate intuitively the
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above results. The major reason the preservation result is true for
groupoids is that, because of the lack of an associative law, factors
of an x 6 SI * 33 — (21 U S3) which are inside a sufficient number of
brackets cannot be "connected" with x in a game with only n rounds.
For example, to "state" that &{ is a factor of tx9 player I would
need at least j rounds. If Gn is being played and n < j , player II
knows that I cannot do it. So when tx, in the game Gnf has been
chosen, only members of the original groupoids at a depth ^ Sn in

xx are "threatened" by I; for the others it suffices that II maintain
certain equalities and inequalities.

However, for semigroups an element, say aλ bx a2 b2 an bn

in 21 * S3, does not depend on the bracketing. And the δ/s are all
equally and quickly "accessible". Thus in round 1, player II commits
himself to some choice and in round 2 player I can then present II
with an arbitrarily large finite subset of elements, any one of which
is accessible in 2 or 3 more rounds. The above counterexample for
semigroups takes advantage of this, as well as the idea in Example
1.3 of [5].
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