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ON THE NORMAL SUBGROUPS OF INTEGRAL
ORTHOGONAL GROUPS

D. G. JAMES

Let if denote the spinorial kernel of an orthogonal group
of an indefinite unimodular quadratic form over the integers
in a global field. The normal subgroups of §f that arise from
the local structure of if are studied.

Let S be a Dedekind set of spots on a global field F with charac-
teristic not two and o the ring of integers of F at S. Let V be a
finite dimensional quadratic space over F with dimension at least 5
and associated bilinear form B and quadratic form q. The orthogonal
group of V is

0{V) = {φeEndV\q(φ(x)) = q{x) for all xeV} .

Assume V supports a unimodular lattice M with orthogonal group
O(M) = {φsO(V)\φ(M) = M). At each spot peS we can localize
and consider the orthogonal group O(MP) of the isotropic unimodular
lattice Mp over the ring of integers op in the local field Fp. The
subgroups of O(MP) normalized by its commutator subgroup have
been classified in [1, 2, 3]. We show here how this local structure
can be injected into O(M) when S is an indefinite set of spots for
V. A rich structure of normal subgroups of the spinorial kernel of
O(M) is then provided by the local behaviour at the dyadic spots.
Most of our terminology and notation is taken from O'Meara [4].

1* ^-invariant sublattices of M. Mp is split by a hyperbolic
plane Hp at each spot peS. Write Mp = Hp ± Kp and Hp = opup +
opvp where Bp(up, vp) = 1 and qp(up) = qp(vp) = 0. In [2] it is shown

that if,, the group generated by the Siegel transformations E(u99 xp)
and E(vP9 xp), is equal to the spinorial kernel of O(MP). Define

ϊ? = {φeO(M)\φpe<ί?p f o r a l l peS}.

Note that g" is defined if dim V ^ 5, even when V is anisotropic.
In fact, using the global square theorem [4, 65:15] and [2, Theorem
2.9], it is easily seen that έ? is the spinorial kernel of 0{M).

A sublattice P of M is called gf-invariant if φ(P) = P for all
φe &. Let M* denote the lattice

M* = {x e MI q(x) e o}

with dual lattice
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M* = {xe V\B(x, Λf

Define an ideal a(P) in o by

Then

a{P)-ιP s AT .

LEMMA 1.1. Let P be sublattίce of M and

M* c α(P)-\P s M* .

P is ^-invariant.

Proof. Locally, Pp is g^-invariant [2, Theorem 3.1] since
(Λf,),, a(Pp) = a(P)p and

Take φ e ξf and let φ{P) = Q. Then ^ e ^ and

for all t>6 S. Hence P = Q by [4, 81E].

THEOREM 1.2. Leέ S be an indefinite set of spots for V and
assume dim V ^ 7 if [op: p] = 2 at any dyadic spot. Then a sublattice
P of M is ^-invariant if and only if

Proof. We need only show that if P is ^-invariant, then (ikQ* g
^ for all peS. Fix p e S and take θpe <gp. By the strong

approximation theorem for rotations [4, 104: 4], there exists φeO(V)
such that ||ψ - θp\\p < ε and ||<p||q = 1 for q Φ p. Then φeO(M)
and, since gf is the spinorial kernel, φe &. Hence φ(P) = P. By
making ε sufficiently small, we may assume (φp — ΘP)(PP) <Ξ Pp. Thus
ΘP(PP) = Pp for all θpe^p. Hence P, is ^-invariant and by [2,
Theorem 3.1] it follows that a(Pp)(Mp)* S PP.

THEOREM 1.3. i^or βαc/z, dyadic spot p assume given an o^lattice
Jp with {Mp)* g J P S {Mp)*. Then there exists an o-lattice P such
that Pp — Jp at each dyadic spot and M* g P g M*.

Proof. This follows immediately from [4, 81:14] since (Mp)* =
(Mp)* = Mp at all nondyadic spots.
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REMARK 1.4. If 2 is unramified, the lattices satisfying (M2)* g
PQ(Jlί2)* were determined in [1]. When 2 ramifies the number of
such lattices proliferates (even for the gaussian integers, there are
lattices M having more than 20 such P).

2* Normal subgroups of g\ Let Ξ be an indexing set such
that Mξf ξ G Ξ, gives all the lattices on V such that

Λf* g Λf* S M * .

Let α be an ideal in o such that aMξ g M*. Then α̂ Λf̂  g (Mp)*
and we define ^p(apMζp) as in [2] as the normal subgroup of g^
generated by all isometries of the form θpE(up, xp)θ~ι or θpE{vPt xjθ"1

where θp e
 <&p and xp e Kp Π α̂ Λf̂ . Define

&(aMe) = {φ e & I φp e ξ?p(opMξp) for all peS}

and

^(aM€) = {φ e ξf I [<p, &\ g ^(αM,)} .

Then g"(aMf) g ^~(aMξ) and any subgroup ^/^ of g7 such that

g ^r g Γ

is a normal subgroup of if.
We also define the local group ^(apMξp) by

^p(apMζp) = {φpe &p\[φp, gfj g &P(a9Mξp)} .

Note that this definition is more restrictive than that in [2] where
φp was taken in O(MP), not g7,,.

THEOREM 2.1. Le£ S 6β α^ indefinite set of spots for V and
dim V ^ 5. T%e% /or α ^ ίrfeαϊ α Φ {0} wiί/z- αikf̂  g M*,

Proof. Observe first that for pJfa we have

Define a mapping

Γ:

by sending φe^(aMξ) into (•••, ̂ , •••)>!« where ^ denotes the
coset determined by φp in ^7(αtJMίlJ)/g?

ί)(αί)MflJ). I t is necessary to
show that Γ is well-defined, namely φp e ^p(apMζp) for each p\a. Let
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ψpe g", and take ^ e ? such that \\ψ~ιθ - I\\p < ε. Then [φ, θ] is in
<?f(aMξ) and hence [<pp, θp] is in &p(apMξp). For sufficiently small ε,
it follows from Corollary 3.3 that ψp~

ιθp is in &p(apMξ9) and hence
\Φ*> fλ G &p(apMξ9). Thus Γ is a well-defined group homomorphism.

φ is in the kernel of Γ if and only if φp e &p(apMζp) for each
t>|α. But φpe ξ?p = gf,(α,Afeι,) for t>|α. Hence the kernel of Γ is

It remains to show that JΓ is surjective. For each £|α fix ^
in ^l(apMξp). By the strong approximation theorem, there exists
ψ G g* such that

H ^ V - I | | p < e for J) |α.

It now suffices to show 9>e^"(αΛff), for if ε is sufficiently small,
Ψ71(PP e ^(σ^Λf^) by Corollary 3.3 and hence ψp and φp determine
the same coset in ^~p(apMξp)l&p{apMeP). We must show [φp,θp]e
&p{apMζp) for any θe gf and all p e S . For £ | α this is trivial. For
p\a and ε sufficiently small, χp = f ^ P e ^p(apMξp) and hence

is in &p{apMζp). This completes the proof.

REMARK 2.2. We restricted ourselves to Dedekind domains com-
ing from global fields so that the strong approximation theorem for
rotations could be used. If, however, we assume M has hyperbolic
rank at least one, so that globally M = H _]_ K with H — ou + ov a
hyperbolic plane and K is free, a strong approximation theorem
can still be established for any Dedekind domain. Define all g?#

with respect to the localization of H. Then, from [2, Theorem 2.9],
any θp in the spinorial kernel is of the form

n(p)

ΘP = U E(u, 1,(^(11, yip))

with xt(p) and yt(p) in ( i Q * . By approximating to the coefficients
of xt(p) and yt(p) in the Dedekind domain o, we can approximate to
θp by an isometry in O(M) for a finite number of p.

3. The structure of ^(apMξp)/^p(apMξp)* We close with some
comments on the structure of the abelian group ^p{apMζp)j &p(apMξp).
For simplicity, since only the local situation is considered in this
section, the suffix p is dropped and we write o for op, M for Mp, V
for Fp, and so on.

For ξeΞ, let

ikP - {xe V\B(x,Mζ)Qo}
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be the dual lattice of Mξ. Write M* = H1 K* and Mξ = H L Kξ.
Then K* £ Kξ and [we can choose a basis α?x, •••,$» for K* such
that

if* = ox1 + + oxn

and

with the integers fc< invariants for iΓ^, Kξ and

0 ^ fcx ̂  fc2 ̂  ^ &M .

Let ylf * ,yn be t h e dual basis of xl9 •••, a?n. Then

if* = 02/1 + + oyn

and

Kξ = p^y, + + pk-yn .

For each 1 ̂  ί ^ n, define

KM =K* + p*iKξ

= oxι + . . . + 0^ + t>fc<I"*ί+1α?<+1 + + t ) f c ί ~ ^ π

and let i ί ί ( ί ) , 1 ̂  i ^ u, be the dual lattices. Write MHi) = H± Kς{t)

and Mξ{i) = H±KM. Then

Mζ 3 Λfe(1) 3 M ί (2)

and

Define congruence subgroups by

= {φe <??\<p(r) = r mod aMζ for all r e M*} ,

O(aMξy = {φe O(aM;) \ φ(r) = r mod 2cφ-*<AΓe(<) for all r e

f or 1 <£ i ^ w, and

Since ^ i l ^ £ Λff(<), 1 ̂  i ^ w, it can be checked that

gf(αΛfe) S

provided that aq(Mξ) £ 0.
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THEOREM 3.1. For a s 4p, the subgroup O(aMζY is generated by
and the isometries Φ(ε) with ε = lmodα.

Proof. The isometries Φ(ε) are defined in [2]. Let φeO(aMξY;
changing φ by the given isometries, we will reduce it to the identity
mapping. Assume for some m ̂  n that φ(yj) — Vj, 1 ̂  j ^ m — 1,
(consider φeO(V)). Let

^ ( ^ + ym) = εu + βv + ym + Σ «Ά

Since <p(?/i) = i/,> it follows that a5 = 0 for 1 ̂  j ^ m — 1. For i ^
^ , ^ + ymeMζ{j) and hence α ^ ecφ^Aί^,. Thus αyecφ"^, so that
(XjXj e aMξ, m ^ j ^ n, and hence s = Σ?=i ̂ ^ ^s ίn α ^ ^ow let

ψ = E(u, -xm)E(u, (1 - s)xm)E(v, e-tyφEiu, xm) .

If ψ is generated by the given isometries, so is φ (since ε — 1 e
cφ~k™). Since now φ(y,) = y3- for 1 ̂  j ^ m, the proof is concluded
by induction.

REMARK 3.2. The assumption α s 4p in the theorem is used to
ensure ap~kί s J) (in particular ε is now a unit). When 4o § α, more
care is needed (see [3, Tables I, II]).

COROLLARY 3.3. 0(4aMξγ s %?(aM$) when a s t>

Proof. We need only show ^(εjGg^ίαil^) when ε = lmod4α.
By HenseΓs lemma ε = rf with η = lmodα. Now Φ{rf) is in ξ?(aM*)
by [2, Proposition 1.2].

COROLLARY 3.4. O(aMζ) = ^(aMζ) when p is nondyadic.

Proof. For nondyadic p, Mξ = M = M* = M*. Clearly O(oM) =
if by the definition of O(aM). If α g p , then ε = lmodα and by
HenseΓs lemma ε = rf with η = lmodα. Again, Φ(e) is in ^(aM).

For dyadic p, under the hypothesis of Theorem 3.1, O(aMζy/ξ?(aMξ)
is an abelian group with exponent dividing 2. We have indicated
in [3, VI] how to find the cardinality of this quotient group (when
2 is unramified). For nondyadic p the group Jr{aM)j0{aM) has
either 1 or 2 elements, depending on whether —/is in gf. For
dyadic p some comments on the group are made in [3, VII]. The
quotient group O(aMζ)/O(aMξy will now be determined explicitly in
two special cases.

EXAMPLE 3.5. Let M = H _i_ N j_ ow where q(N) S *>. Let A =
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[(1 + ord 2)/2J so that

Λf* = H 1 N 1 phw and M* = H _L N 1 p~hw .

The if-invariant dual lattices are

Mξ = H L N ± p~kw and Mς = H 1 N 1 pkw

where -h^k^h. We show, for α S 2£*+1+A, that

O(aMζ) = O(aMξγ .

Let φ e OiμMξ). Then φ(w) = ew + s where s e ap~~h(H i N). For all
teHi N, since 9>(ί) = ί modaMζ, it follows that B(s, t) is in α^~ft and
hence s e ap~k(H _l_ JV). Now g(tt ) = Q(<P(W)) gives

ε = 1 mod a2p~2k .

Consequently, φ(tt ) = w mod α^"^^^ and ψ e 0{aMξf.

EXAMPLE 3.6. Let M = H ± N ± (ow + oz) where q(N) S o and
ow + oz = <A(1, 0)>. Let fe = [(1 + ord2)/2] so that

M* = H _L N ± (phw + oz) and M* = H 1 N 1 (ow + p~hz) .

Fix O^i,j^h; then

Mξ = H ± N ± (p'w + ί>-^) and Mξ = H1 N 1 (p3'w + p~ιz)

are a pair of g"-invariant lattices (but not all are of this form). If

ί σ φ ^ if i + j < h

(o/p2h~%-3 if i + j ^h .

We omit the computational details of the proof except to mention
that representatives of the various cosets can be obtained from the
isometry defined by

ψε{w) = e~ιw + —(s - s~ι)z, ψε(z) = εz
Δ

by suitably choosing the unit ε.
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