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AUTOMORPHISM GROUPS OF OPERATOR ALGEBRAS

Riciarp H. HERMAN

The general setting of this paper is that of a von
Neumann algebra, M, with weight, ¢, and a group, G, of auto-
morphisms which commute with the modular automorphism
group associated with this weight.

The first section is devoted to the question of when the
given weight is invariant under the action of G. Should G
leave the center of M elementwise fixed results have been
obtained by Pedersen, Stgrmer, Takesaki, and the present
author. If, alternatively, it is assumed that ¢ is invariant
under a subgroup, H, of G, then by requiring an ergodic
action of H on the center of M it is shown here that ¢ must
be (semi-) invariant under the action of G. This is done with
the aid of some technical assumptions H. Less demanding
hypothesis are shown to lead to a G-invariant weight bicom-
muting with the given weight.

Section two is mostly devoted to a discussion of ergodicity in
time or the requirement that the centralizer of a given state coincide
with the center of the von Neumann algebra in question. In par-
ticular, we show that if the fixed point algebra of a given group of
automorphisms, commuting with the modular automorphism group of
the given state, is semifinite, then it is contained in the center if
we have ergodicity in time. We also show, in the spirit of [6], that
if the centralizer is a factor, then there is no semifinite von Neumann
algebra which properly contains the centralizer and is invariant under
the modular automorphism group.

I. The general setting for this section will be that of a von
Neumann algebra, M, acted upon by two commuting automorphism
groups, {a,: g€ G} and {o{:¢te R}. The latter will be the unique
modular group associated with a normal, faithful semifinite, weight o,
and the former will always be assumed continuous in that g — (a,(x))
is continuous on G for arbitrary € Mx, x € M.

Recall that a weight, #, on a von Neumann algebra M, is a
mapping from M* to [0, -] satisfying

(i) plax) = ap(x); ac BT, x€ M*

(ii) o@ + y) = P@@) + P¥); «, ye M*.

The weight is said to be normal if in addition there is a set of
bounded normal positive functionals on M such that

(iii) e(x) = sup w,(x) for each xe M*.

Further, the weight is semifinite if the linear span mt of the set
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mt = {xe M+ | () < oo}

is o-weakly dense in M. Faithfulness requires that @(x) = 0 implies
x =0 for all xe M~.

It turns out the most important additional stipulation on the
group of automorphisms {a,} is its action on the center, 2, of M.
The case where the center is pointwise fixed has been discussed in
[53] and [12]. The action of {«,} is sain to be ergodic on 2~ if there
are no elements in 2 fixed by all a, gc G, save the scalars.

THEOREM 1. Let @, 0f and «, be as above. Suppose that for
a normal subgroup H of G we have @oa, =@ for he H. If {a),:he H}
acts ergodically on % then P(a,(x)) = AP(x) for x€ M where N, is
a continuous homomorphism of G — R*.

Proof. Since a, commutes with of it follows, [12], that
P(a,(x)) = P(z,%)

where z, is a unique positive element affiliated with 2"
If he H then

Pla(an®) = Plau(v)))
= @P(a;,(x)) for some »' € H by the normality of H

= P(ay(®)) .

Thus the weight @oa, is invariant under {«,:hec H}. Its Radon-
Nikodym derivative, z,, is then affiliated with those elements in 2~
fixed by {a,:he H}. This is the scalars by assumption. Hence
P(a,(x)) = N@(x) and the homomorphic nature of g — A, follows easily.
The continuity is then a consequence of the lower semicontinuity of
g — A, which follows from (iii).

We would like to avoid the normality restriction on H. This
can be done if we restrict our attention to state and assume H is
“large” in G.

THEOREM 2. Let G be a topological group with closed subgroup
H such that the homogeneous space of right cosets, H|G, s locally
compact and supports a finite G-invariant, regular, Borel measure
r. Let {a,} and {0f} be commuting automorphisms of M. If ¢ is
a normal, faithful, state on M and {a,:he H} acts ergodically on
2 and leaves @ imvariant, then ® is invariant under the action
of all of {a,: g€ G}.

Proof. Let g denote the coset H,. Then we have
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P(as,(x)) = P(a,(¢)) and so

J— P(a;(x)) (= P(a,(x))) defines a continuous function in H|G.
Let
@) = |

JH

. P(a,(x))dre(g) .

Then « is a normal [7], G-invariant, faithful state on M, which
is easily seen to satisfy the KMS boundary condition with respect
to £ — 0y (¢ is in the norm closed convex hull of {poa,}).

Thus +(x) = ®(2x) where z >0 and z¢ 2.

As in Theorem 1 we conclude that z is a scalar (= 1) and since
< is G-invariant, so is ®.

DEFINITION. A von Neumann algebra acted upon by a group of
automorphism {a,: g€ G} is said to be G-finite if for xe M, x + 0,
there exists a G-invariant state ¢ such that (z) > 0. In this case
there exists a normal faithful projection, ., of M onto M, = {x: a,(x) =
z, g€ G}, [8].

In the above we have sought to obtain the G-invariance of a
given weight, . Suppose instead that we are willing to settle for
obtaining a G-invariant weight “closely related” to . Suppose then
that @ is a normal, faithful state on M and M is G-finite. If «,
commutes with ¢f then we can easily see that @og, is a faithful,
normal state satisfying the KMS boundary condition with respect
to t —of. However, if @ is only assumed to be a semifinite weight
then one cannot necessarily conclude the semifiniteness of @og,.

With some additional restrictions and work of Stermer we can
obtain a result in this direction.

First some definitions are needed.

DEFINITION. A faithful normal semifinite weight @ is said to be
strictly semifinite if

(a) M is {0{:te R}-finite in the sense of the above definition
equivalently (b). The restriction of @ to M, = {x: 0{(x) = «, te R} is
a faithful, normal, semifinite trace. (See [1] for other equivalent
statements.)

DEFINITION. Two faithful, normal, semifinite weights, @ and
are said to bicommute if @(x) = +(2x) for all x € M, where z is positive,
nonsingular operator affiliated with 27 = My, N M. (It is frequently
the case that 2% coincides with the relative commutant of My, [2].)

THEOREM 3. Let @ be a strictly semifinite, normal, faithful
wetght on M with modular awtomorphism group t— af. Suppose
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that, {a,: g€ G} is a group of automorphism of M commuting with
the modular automorphism group of ® and that M is a G-finite von
Neumann algebra. If G acts ergodically on the center of M, (= 27)
or leaves %, elementwise invariant, then there ewists a strictly
semifinite, normal, faithful weight, , bicommuting with @ such
that + is G-imvariant. If the action of G is ergodic on =, then
the wetght +» is unique wp to a positive multiple.

Proof. Since @ is strictly semifinite, M, is a semifinite von
Neumann algebra. Further, the fact that «, commutes with o means
that «, is an automorphism of M,, and thus that M, is G-finite. The
action of {a,: g€ G}on M, allows us to apply results of Stermer [13,
14, 15] to obtain a G-invariant, faithful, normal, semifinite trace,
7, on M,. But @ is such a trace and so

7(x) = p(zx) for all xe M, where

2= 0 and z927.
Define

P(x) = Togy(x) for all ze M

where ¢, is the normal, faithful projection of M onto M, the existence
of which follows from the strict semifiniteness of @, (see definitions
above).

Recall, [8], that for xze M, e, (x) is the unique point in
co*{oi(x)} N M,.

Then

(@) = 7(ep(@) = Plzes(@)) -

For ye M; ®(zy) is defined to be liH} @(z.y) where z. = 2(1 + ez)7.
(See the remarks preceding Proposition 4.2 of [12].) With this com-
ment we conclude that

¥(x) = p(zx) .

Now + is G-invariant, since zo¢, is. From [12] we have ol(x) =
2¥of(x)z™", so that My 2 M,. We conclude that every o;-invariant
state is o7-invariant and thus that + is strictly semifinite.

Suppose - is another such weight and G acts ergodically in 27.
We claim 4 restricted to M, is a (normal) semifinite, trace. Since
Mj; 2 M,,  is clearly a normal trace in M,. But (z) = P(2,2) where
2, is a positive operator affiliated with the center of M,. Hence the
argument of Proposition 4.2 of [12] shows that ¢ restricted to M,
is semifinite. Considering the restrictions of 4 and + to M, we see,
by the invariance of + and 4, that the Radon-Nikodym derivative
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of J with respect to + is affiliated with the fixed points in the
center of M, and thus ¢ is a positive multiple of . (This last
argument is given by Stermer in [13].)

THEOREM 4. With the setting as in Theorem 38, a G-invariant
weight, U, bicommuting with @ exists without assumptions concern-
ing the action of G on M,, of M, is separable.

Proof. Nest, [10], has shown that a semifinite, G-finite von
Neumann algebra with separable predual admits a faithful, normal
semifinite G-invariant trace.

COROLLARY 5. With the same hypothesis as im Theorem 3, if
2, = {\1} (e.g., if ® is maximal [6]) then ¢ is G-invariant.

The following is in the spirit of Theorems 1 and 2 and is im-
mediate from Theorem 3 but we offer an alternative proof.

COROLLARY 6. Suppose the setting to be the same as in Theorem
3 and in addtion suppose there exists a subgroup H S G such that
Plau®)) = p®), he H xe M. If H acts ergodically on %, then
P(a (@) = () for all ge G, xe M.

Proof. Again we restrict our attention to M, and obtain two
semifinite, normal, faithful traces @ and z where 7 is G-invariant.
Let v+ =@ + 7. Then + is a semifinite, H-invariant, trace. There
exists unique z, z,€ %, such that

P(+) = 9(2:7)
7(+) = ¥(2) -

But, # and 7 are H-invariant. This puts z, z,€ M, N 2, = (M},
The weight @ is then a multiple of 7 on M, and hence is G-invariant
there. But

Pa, (@) = Pleo(ay(@))) = Play(e.(((@)))
= P(ep(@)) = P(@) .

II. In §1I we considered the affect of an automorphism group
which commuted with a given modular automorphism group and in
some sense acted ergodically. Of course the center of M is always
elementwise fixed be any modular automorphism group and so we
shall consider consequences of what is referred to as “ergodicity in
time” namely the requirement that M, = 2. There seems to be no
advantage to working with weights at this point and so we stick to
states.
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We first prove a related result regarding the centralizer, M,
the proof of some being in the spirit of what follows (cf. [6]).

THEOREM 7. Suppose @ is a mnormal, faithful state and M, =
N & M where N is a von Neumann algebra invariant under t — o?f.
If M, is a factor then

(i) N s a factor.

(ii) If N 1is semifinite then N = M,, i.e., there are no invariant
semifinite von Neumann algebras properly containing M,.

Proof. Since N is invariant, the center of N is elementwise
fixed by t —0¢{. Thus NN N' & M, N M; = (M}

Suppose now that N is semifinite. By the invariance of N,
of(x) = u,xu_, for x € N, where the u, form a one parameter unitary
group in N, [16]. Since u,, s€ R is fixed by o¢, u,€ M,. But N2 M,
80 u,€ 2, = (M} and thus o¢(x) =« for all xe N.

We remark here that if M is in case III,, 0 < ) < 1 this result
is known [2], [6]. For under these circumstances, M, is a factor if
and only if M, N M = {\I}, [2].

Now let {a,: g € G} be an automorphism group of M, commuting
with the modular automorphism group t— o, of a given faithful,
normal state .

THEOREM 8. If in the setting just described M, = 2 and M, is
semifinite then My, & %

Proof. Again we have of is inner on M, viz; there exist ¢—
v, € My such that of{(x) = vov_, for xe M, as in Theorem 7 the
v,€ M,., But M, = 2 so that all of M, is fixed.

COROLLARY 9. Writh the same setting, iof M, = {\I} then M, 1is
a factor so that either Mg is type III or M, = {\MI}.

Proof. Any central projection in M, is fixed by ¢ — of.

Let us now assume that {«,: g € G} fixes the states . Then, it
follows that «, commutes with ¢¢ [5]. Moreover suppose, without
any loss of generality, that M acts on a Hilbert space § and o(x) =
(®&,|&,) where &, is a cyclic and separating vector for M. Then
there exists a unitary group g — u, such that «,x) = u,ou_, and
u,Ep, = &, for all ge G. Let E, denote the projection onto the sub-
space of § given by {&:u,& = & for all geG}.
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DEFINITION. If E,ME, is abelian then the system {M, @, «,} is
said to be G-abelian [4] and [9].

COROLLARY 10. Let {M, ¢, of, ,} be as just described then if M
is G-abelian, M, = Z.

Proof. E,ME, equals, [4], M E, which is isomorphic to M;. The
latter being abelian is a fortiori semifinite, hence Theorem 8 applies.

1. The semifiniteness of M, is equivalent to that of (M, Uy).
For the latter one should see a recent paper of Pedersen and Stermer
[11].

What remains is some commentary on the condition M, = 2.
Suppose then that M = 7w, ()” arises via the GNS procedure [3],
from a C*-algebra U with state  and KMS automorphism group
t_)o.t.

In [5] a condition that M, = 2 was given and a class of repre-
sentation of the Clifford algebra were shown to satisfy ergodicity in
time. We offer

THEOREM 11. Suppose U is a C*-algebra acted wupon by a one-
parameter automorphism group, t — o, which, together with a state
@, satisfies the KMS boundary condition. If M = w,(N)", then M, = %~
if and only if whenever a state 4 on U is invariant under the group
{0:}ier and Ty 1s quasi-equivalent to mw, we have that + is o KMS
state for {o,}.

Proof. Suppose 7, and 7w, are quasi-equivalent and that + is
invariant. There then exists an isomorphism @ taking m,(2)"” onto
T,(A)” such that @(mwy(x)) = w(x), xeW. Let &y, & be vectors in
Ov, 9, respectively, such that

P(@) = (Ty(@)ey | &); P@) = (T, (@€, | &) for zel.
Define a normal state w on 7,(2)” by
y— (27w | &y) .
Then, if e
o(Ty(x)) = (D7 (2))ey | &p) = (@p(@)Ey | €y) = (@) .
Furthermore,

0(0(7o(x))) = O(T(0,(2))) = (Ty(0.(2))éw | &)
= P(0.(2)) = ¥(x) = O(7y(2)) .
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Thus @ is an invariant state on M. Since M, = 2]
o(y) = (yhé, |he,), ye M and he 2 [16].

It is clear then that @ satisfies the KMS condition on ()" and
thus  does on o

For the converse let M = 7w, (%)’ and consider %, nonsingular
belonging to M, with & = 0. Suppose ||ké,|| =1 and let &y = hé,.
Since ¢, is cyclic and separating M so is &,.. Define a state 4 on 2 by

¥ (@) = (T (@)&y | Ey)

Clearly the canonical representation m, of %, due to v is unitarily
equivalent to the triple {m,, &y, $,} and thus 7, and 7y are quasi-
equivalent [3]. Now by assumption  is a KMS state on % and
hence the vector state o, satisfies the KMS condition with respect
to of on M. It follows, [16], that for ye M

(hé, | hEy) = @e,(y) = (yké, | kE,) with k=0

bounded (since %€ M,, v < ®) and belonging to 2. Thus & =k and
M, is contained in, and hence equal to £~

The above theorem was prompted by a question to the author
by D. Kastler.

The author would like to thank G. K. Pedersen for bringing
reference [10] to his attention, and E. Stermer for conversations
about same.
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