SELF ADJOINT STRICTLY CYCLIC OPERATOR ALGEBRAS

Mary R. Embry

Abstract

A strictly cyclic operator algebra \mathscr{A} on a Hilbert space X is a uniformly closed subalgebra of $\mathscr{L}(X)$ such that $\mathscr{A} x_{0}=$ X for some x_{0} in X. In this paper it is shown that if \mathscr{A} is a strictly cyclic self-adjoint algebra, then (i) there exists a finite orthogonal decomposition of $X, X=\sum_{j=1}^{n} \bigoplus M_{j}$, such that each M_{j} reduces \mathscr{A} and the restriction of \mathscr{A} to M_{j} is strongly dense in $\mathscr{L}\left(M_{j}\right)$ and (ii) the commutant of \mathscr{A} is finite dimensional.

1. Notation and terminology. Throughout the paper X is a complex Hilbert space and $\mathscr{L}(X)$ is the algebra of continuous linear operators on X. \mathscr{A} will denote a uniformly closed subalgebra of $\mathscr{L}(X)$ which is strictly cyclic and x_{0} will be a strictly cyclic vector for $\mathscr{A}:$ That is, $\mathscr{A} x_{0}=X$. We do not insist that the identity element I of $\mathscr{L}(X)$ be an element of \mathscr{A}. We say that \mathscr{A} is self-adjoint if $A^{*} \in \mathscr{A}$ whenever $A \in \mathscr{A}$.

If $\mathscr{B} \subset \mathscr{L}(X)$, then the commutant of \mathscr{B} is $\mathscr{B}^{\prime}=\{E: E \in \mathscr{L}(X)$ and $E B=B E$ for all B in $\mathscr{B}\}$. A closed linear subspace M of X reduces \mathscr{B} if the projection of X onto M is in \mathscr{B}^{\prime}. In this case M is a minimal reducing subspace of \mathscr{B} if $M \neq\{\theta\}$ and $\{\theta\}$ is the only reducing subspace of \mathscr{B} properly contained in M.

We say that a collection $\left\{M_{j}\right\}_{j=1}^{n}$ of closed linear subspaces of X is an orthogonal decomposition of X if and only if the M_{j} are pairwise orthogonal and span X. A collection $\left\{P_{j}\right\}_{j=1}^{n}$ of projections is a resolution of identity if and only if the collection $\left\{P_{j}(X)\right\}_{j=1}^{n}$ of ranges of the P_{j} is an orthogonal decomposition of X.
2. Introduction. Strictly cyclic operator algebras have been studied by R. Bolstein, A. Lambert, the author of this paper and others. (See for example [1], [2], and [4].) In Lemma 1 of [1] Bolstein shows that if N is a normal operator on X and $\{N\}^{\prime}$ is strictly cyclic, then $\{N\}^{\prime \prime}$ is finite dimensional. This raised questions about the nature of arbitrary self-adjoint, strictly cyclic operator algebras. In this paper we show that if \mathscr{A} is such an operator algebra, then there exists a finite orthogonal decomposition $\left\{M_{j}\right\}$ of X such that each M_{j} reduces \mathscr{A} and \mathscr{A} / M_{j} is strongly dense in $\mathscr{L}\left(M_{j}\right)$. From this it follows that \mathscr{A}^{\prime} is finite dimensional; indeed we show that $\mathscr{A}^{\prime}=\sum_{j, k=1}^{n} P_{j} \mathscr{A}^{\prime} P_{k}$ (where P_{j} is the projection of X onto M_{j}) and that for each j and $k, P_{j} \mathscr{A}^{\prime} P_{k}$ is of dimension zero or one. If \mathscr{A}^{\prime}
is abelian, we are able to show more; namely that $\mathscr{A}^{\prime}=\left\{\sum_{j=1}^{n} \lambda_{j} P_{j}: \lambda_{j}\right.$ complex\}, giving us a complete generalization of Bolstein's result.

Each of the results mentioned above is a consequence of two basic facts concerning a self-adjoint strictly cyclic operator algebra \mathscr{A} : (1) (Lemma 1) each collection of pairwise orthogonal projections in \mathscr{A}^{\prime} is finite and (2) (Theorems 1 and 2 of [3]) \mathscr{A} has minimal reducing subspaces.
3. Decomposition theorem. The first lemma in this section demonstrates a very special characteristic of strictly cyclic operator algebras on a Hilbert space.

Lemma 1. Let \mathscr{A} be a strictly cyclic operator algebra on X. Each collection of mutually orthogonal projections in \mathscr{A}^{\prime} is finite.

Proof. Let $\left\{P_{j}\right\}$ be a collection of mutually orthogonal projections in \mathscr{A}^{\prime}. Without loss of generality we may assume that $\left\{P_{j}\right\}$ is countable. Let $Q_{n}=\sum_{j=1}^{n} P_{j}$ and note that Q_{n} converges strongly to $Q=$ $\sum_{j \geq 1} P_{j}$. Thus by Lemma 2.1 in [2] Q_{n} converges uniformly to $Q=$ $\sum_{j \geqq 1} P_{j}$. However, $Q-Q_{n}$ is a projection and hence has norm zero or one. Thus for n sufficiently large $Q_{n}=Q$ and thus $\left\{P_{j}\right\}$ is finite.

This lemma and its proof were suggested by Robert Kallman, University of Florida.

Corollary 2. Let \mathscr{A} be a strictly cyclic operator algebra on X. Each normal element of \mathscr{A}^{\prime} has finite spectrum.

Proof. By Lemma 3.6 in [2] if $E \in \mathscr{A}^{\prime}$, then E has no continuous spectrum. Thus if E is a normal element of \mathscr{A}^{\prime}, the spectrum of E consists entirely of point spectrum and by Lemma $1 E$ has only a finite number of distinct eigenspaces. Thus the spectrum of E is finite.

Corollary 2 was proven by R. Bolstein in [1] in the special case in which \mathscr{A} is the commutant of a normal operator N.

Before considering further the nature of the commutant of a self-adjoint, strictly cyclic operator algebra \mathscr{A}, we shall study the algebra \mathscr{A} itself.

THEOREM 3. If \mathscr{A} is a self-adjoint strictly cyclic operator algebra on X, then there exists a finite orthogonal decomposition $\left\{M_{k}\right\}_{k=1}^{n}$ of X such that each M_{k} reduces \mathscr{A} and \mathscr{A} / M_{k} is strongly dense in $\mathscr{L}\left(M_{k}\right)$.

Proof. By Theorem 1 of [3] if X and $\{\theta\}$ are the only reducing
subspaces of \mathscr{A}, then \mathscr{A} is strongly dense in $\mathscr{L}(X)$ and the trivial decomposition $\{X\}$ of X satisfies the requirements of the theorem.

Assume that $\left\{M_{k}\right\}_{k=1}$ is a collection of mutually orthogonal subspaces of X such that each M_{k} reduces \mathscr{A} and \mathscr{A} / M_{k} is strongly dense in $\mathscr{L}\left(M_{k}\right)$. If the M_{k} span X, the conclusion of the theorem is satisfied. Otherwise consider $\mathscr{A}_{1}=\mathscr{A} /\left\{M_{1}, \cdots, M_{p}\right\}^{+}$. If P is the orthogonal projection of X onto $\left\{M_{1}, \cdots, M_{p}\right\}^{\perp}$, then $P \in \mathscr{A}^{\prime}$, and if x_{0} is a strictly cyclic vector for \mathscr{A}, then $\mathscr{A}_{1} P x_{0}=\mathscr{A} P x_{0}=P \mathscr{A} x_{0}=$ $P(X)=\left\{M_{1}, \cdots, M_{p}\right\}^{+}$. Thus \mathscr{A}_{1} is strictly cyclic. Again by Theorem 1 of [3], if \mathscr{A}_{1} has only trivial reducing subspaces, \mathscr{A}_{1} is strongly dense in $\mathscr{L}\left(\left\{M_{1}, \cdots, M_{p}\right\}\right)^{\perp}$ and the construction is complete. Otherwise \mathscr{A}_{1} has a nontrivial reducing subspace. Then by Theorem 2 of [3] \mathscr{A}_{1} has a minimal reducing subspace M_{p+1} and by Theorem 3 of [3] $\mathscr{A}_{1} / M_{p+1}$ is strongly dense in $\mathscr{L}\left(M_{p+1}\right)$. Thus M_{1}, \cdots, M_{p+1} are pairwise orthogonal reducing subspaces for \mathscr{A} and \mathscr{A} / M_{k} is strongly dense in $\mathscr{L}\left(M_{k}\right)$ for $k=1, \cdots, p+1$. By Lemma 1 the construction will terminate with a finite number of pairwise orthogonal reducing subspaces.

In view of Theorem 3 it is tempting to write $\mathscr{A}=\oplus \sum_{k=1}^{n} \mathscr{L}\left(M_{k}\right)$. However, this is misleading since \mathscr{A} may not be the full direct sum of the $\mathscr{L}\left(M_{k}\right)$. The following simple finite dimensional example demonstrates this:

$$
\mathscr{A}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \text { a } 2 \times 2 \text { complex matrix }\right\}
$$

Here \mathscr{A} is a strictly cyclic self-adjoint operator algebra on \mathscr{C}^{4}.
We shall use the decomposition of \mathscr{A} developed in Theorem 3 to study the commutant of \mathscr{A}. It is worthwhile noting at this point that the decomposition in Theorem 3 may not be unique. We shall investigate this further in Corollary 7.

Theorem 4. Let \mathscr{A} be a self-adjoint strictly cyclic operator algebra and $\left\{M_{k}\right\}_{k=1}^{n}$ a decomposition of X as required in Theorem 3. Let P_{k} be the orthogonal projection of X onto M_{k}. Then $\mathscr{A}^{\prime}=$ $\sum_{j, k=1}^{n} P_{j} \mathscr{A}^{\prime} P_{k}$ and for each value of j and of $k, P_{j} \mathscr{A}^{\prime} P_{k}$ is of dimension one or zero. In particular \mathscr{A}^{\prime} is finite dimensional.

Proof. We note that $\sum_{k=1}^{n} P_{k}=I$ and that since M_{k} is a minimal reducing subspace of \mathscr{A}, then P_{k} is a minimal projection in \mathscr{A}^{\prime}. Further $\mathscr{A}^{\prime}=\left(\sum_{j=1}^{n} P_{j}\right) \mathscr{A}^{\prime}\left(\sum_{k=1}^{n} P_{k}\right)=\sum_{j, k=1}^{n} P_{j} \mathscr{A}^{\prime} P_{k}$.

We first show that $P_{j} \mathscr{A}^{\prime} P_{j}=\left\{\lambda P_{j}\right\}$. Assume that $C=P_{j} E P_{j}$ is a projection. Note that $C \in \mathscr{A}^{\prime}$ and $C=P_{j} C P_{j} \ll P_{j}$. Thus since P_{j} is minimal, either $C=0$ or $C=P_{j}$ and the only projections in $P_{j} \mathscr{A}^{\prime} P_{j}$
are 0 and P_{j}. Therefore $P_{j} \mathscr{A}^{\prime} P_{j}=\left\{\lambda P_{j}\right\}$.
Secondly we show that either $P_{j} \mathscr{A}^{\prime} P_{k}=0$ or $P_{j} \mathscr{A}^{\prime} P_{k}=\left\{\lambda U_{j_{k}}\right\}$ where $U_{j_{k}}$ is the partial isometry with initial set $P_{k}(X)$ and final set $P_{j}(X)$. Let $F=P_{j} E P_{k}, E \in \mathscr{A}^{\prime}$. Then $F F^{*} \in P_{j} \mathscr{A}^{\prime} P_{j}$ and hence by the preceding paragraph $F F^{*}=\lambda P_{j}$ for some complex λ. Therefore, $F F^{*} F=\lambda F$. If $P_{j} \mathscr{A}^{\prime} P_{k} \neq 0$, then some $F \neq 0$. Since $F F^{*} F=\lambda F=$ $\lambda P_{j} E P_{k}, F$ is a scalar multiple of the partial isometry with initial set $P_{k}(X)$ and final set $P_{j}(X)$.

The proof of Theorem 4 was provided by T. Hoover.
Corollary 5. If \mathscr{A} is a self-adjoint strictly cyclic operator algebra with an abelian commutant, then $\mathscr{A}^{\prime}=\left\{\sum_{j=1}^{n} \lambda_{j} P_{j}: \lambda_{j}\right.$ complex $\}$ where $\left\{P_{j}\right\}$ is a resolution of identity as required in Theorem 4. In particular \mathscr{A}^{\prime} consists of normal operators with finite spectra.

Proof. By Theorem $4 \mathscr{A}^{\prime}=\sum_{j, k=1}^{n} P_{j} \mathscr{A}^{\prime} P_{k}$. Thus if \mathscr{A}^{\prime} is abelian, $\mathscr{A}^{\prime}=\sum_{j=1}^{n} P_{j} \mathscr{A}^{\prime} P_{j}$. Moreover, by Theorem 4, $P_{j} \mathscr{A}^{\prime} P_{j}=$ $\left\{\lambda_{j} P_{j}: \lambda_{j}\right.$ complex $\}$.

The following corollary due to Bolstein, inspired the ideas which have been developed in this paper. The techniques used by Bolstein in [1] to arrive at this result differ radically from those used in this paper.

Corollary 6. (Bolstein) Let N be a normal operator with a strictly cyclic commutant $\{N\}^{\prime}$. Then there exist orthogonal projections P_{1}, \cdots, P_{n} such that

$$
\{N\}^{\prime \prime}=\left\{\sum_{j=1}^{n} \lambda_{j} P_{j}: \lambda_{j} \text { complex }\right\}
$$

Proof. By the Fuglede theorem $\{N\}^{\prime}$ is self-adjoint. Thus since $\{N\}^{\prime \prime}$ is abelian, we can apply Corollary 5.

We return now to the question of the uniqueness of the decomposition $\left\{M_{k}\right\}_{k=1}^{n}$ in Theorem 3 or equivalently the uniqueness of a resolution of identity $\left\{P_{k}\right\}_{k=1}^{n}$ in \mathscr{A}^{\prime}, consisting of minimal projections.

Corollary 7. The decomposition $\left\{M_{k}\right\}_{k=1}^{n}$ in Theorem 3 is unique if and only if \mathscr{A}^{\prime} is abelian.

Proof. Assume first that \mathscr{A}^{\prime} is abelian. By Corollary $5 \mathscr{A}^{\prime}=$ $\left\{\sum_{j=1}^{n} \lambda_{j} P_{j}: \lambda_{j}\right.$ complex $\}$. If Q is any projection in $\mathscr{A}^{\prime}, Q P_{j}=P_{j} Q$ for each j. Hence $Q P_{j}$ is a projection and since P_{j} is minimal, either
$Q P_{j}=0$ or $Q P_{j}=P_{j}$. Therefore, if Q is a minimal projection in \mathscr{A}^{\prime}, or equivalently $Q(X)$ is a minimal reducing subspace of X, then $Q=$ P_{j} for some j. Thus the decomposition $\left\{M_{k}\right\}_{k=1}^{n}$ is unique.

Now assume that the decomposition $\left\{M_{k}\right\}_{k=1}^{n}$ of Theorem 3 is unique. Let P be any nonzero projection in \mathscr{A}^{\prime} and P_{0} a minimal projection dominated by P. Since the decomposition is unique, necessarily $P_{0}(X)=M_{k}$ for some k. Consequently $P=\sum_{j=1}^{n} \lambda_{j} P_{j}$ where λ_{j} is zero or one. Thus all projections (and hence all elements) in \mathscr{A}^{\prime} commute.

In conclusion we note that if \mathscr{A} is an arbitrary strictly cyclic operator algebra on X, then $\mathscr{A}=\mathscr{A}_{1} \oplus \mathscr{A}_{2}$ where \mathscr{A}_{1} is self-adjoint strictly cyclic and \mathscr{A}_{2} is strictly cyclic but has no reducing subspaces on which it is self-adjoint. To see this we argue as follows: Let \mathscr{K} be the class of all reducing subspaces of \mathscr{A} on which \mathscr{A} is self-adjoint. Order \mathscr{K} by inclusion and note that Lemma 1 implies that any linearly ordered subset of \mathscr{K} is finite. Thus the Maximal Principle can be applied and there exists a maximal reducing subspace M such that \mathscr{A} / M is self-adjoint. Finally if x_{0} is a strictly cyclic vector for \mathscr{A} and P the projection of X onto M, then $P x_{0}$ is a strictly cyclic vector for \mathscr{A} / M.

Addendum. The referee kindly pointed out that Rickart (Section 3, pp. 622-623, of "The uniqueness of norm problems in Banach spaces", Annals of Mathematics, 51 (1950), 615-628) showed that the commutant of a strictly cyclic transitive algebra consists only of scalars and that the algebra is n-transitive for every n. Thus \mathscr{A} is strongly dense in $\mathscr{L}(X)$. These facts make it unnecessary to quote Theorem 1 of [3] in the proof of Theorem 3 of this paper.

References

1. R. Bolsten, Strictly cyclic operators, Duke Math. J., 40 (1973), 683-688.
2. M. R. Embry, Strictly operator algebras on a Banach space, Pacific J. Math., 45 (1973), 443-452.
3. -, Maximal invariant subspaces of strictly cyclic operator algebras, Pacific J. Math., 49 (1973), 45-50.
4. A. Lambert, Strictly cyclic operator algebras, Pacific J. Math., 39 (1971), 717-726.

Received October 6, 1973 and in revised form January 30, 1974.
University of North Carolina at Charlotte

