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RINGS WHOSE PROPER HOMOMORPHIC IMAGES
ARE RIGHT SUBDIRECTLY IRREDUCIBLE

M. G. DESHPANDE AND V. K. DESHPANDE

The structure of the lattice of ideals in a ring whose every
proper homomorphic image is right subdirectly irreducible has
been determined in all cases except when the ring is primitive
and contains a nonzero primitive ideal. In the commutative
case, the rings described in the title have been shown to be
noetherian and their proper homomorphic images to be self-
injective.

Right subdirectly irreducible rings have been introduced in [1, 2]
and their structure determined under chain conditions. In this paper,
we consider rings whose proper homomorphic images are right sub-
directly irreducible. It is customary in literature to define rings
whose proper homomorphic images satisfy a certain property P as
restricted P rings and we will use this terminology. The main object
of this paper is to obtain characterizations of restricted right sub-
directly irreducible rings (denoted by r-RSI) in terms of their ideal
structure. As an interesting side result we show that commutative
restricted subdirectly irreducible rings are noetherian and that they
are closely related to the restricted self-injective rings of Faith [3],
and Levy [5].

Preliminaries* All rings considered here contain an identity. A
ring R is called r-RSI if each proper homomorphic image of R is RSI,
while an RSI ring is one in which the intersection of all nonzero
right ideals (which is always two-sided) is nonzero. For properties
of such rings, we refer to [1, 2].

If A is a nonzero ideal in a r-RSI ring R, then R/A is RSI. This
implies, R has an ideal B which properly contains A and that A is
maximal in the family of right ideals of R properly contained in B.
The proof of the following proposition depends on this fact.

PROPOSITION 1. Let R be a r-RSI ring. Then
( i ) any two nonzero ideals in R are either comparable or their

intersection is zero;
(ii) if L is a nonzero ideal and K a strictly right (not two-

sided) ideal, then either L n K is a strictly right ideal or L £ K;
(iii) intersection of any family of strictly right ideals is zero or

is a strictly right ideal.

We will prove (ii) and leave (i) and (iii) whose proofs are similar.
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Proof of (ii). If L Γi K is a nonzero two-sided ideal, then R/[L Π K]
is a RSI ring in which L/[L f] K] and K/[L n ̂ ] are right ideals with
intersections zero. Hence L Γl if is either equal to L or K. Being
two-sided, it must equal L. Hence L £ K.

PROPOSITION 2. If R is a r-RSI ring and P a nonzero prime
(or primitive) ideal, then P is a maximal right ideal of R.

Proof. Since R/P is a prime ring, the heart of R/P cannot be
nilpotent. Being the unique minimal right ideal, it is idempotent
and consequently [1, Proposition 1.3] R/P is a division ring.

We can now consider a classification of all r-RSI rings on the
basis of the number of prime ideals. Since primitive ideals in a ring
are prime, the following lemma implies that rings without nonzero
prime ideals are simple.

LEMMA 3. If R is a ring without a nonzero primitive ideal,
then it is a simple ring.

Proof. Since a primitive ideal is the largest two-sided ideal con-
tained in a maximal right ideal, any nonzero two-sided ideal must be
contained in a maximal right ideal and therefore, is contained in a
primitive ideal.

Now suppose R is a r-RSI ring with two distinct nonzero prime
ideals P and Q. Then each is a maximal right ideal by Proposition
2 and P f) Q = 0 by Proposition 1. Thus, R = P 0 Q is a direct sum
of two division rings. This gives us the preliminary classification of
r-RSI rings as stated in the following.

THEOREM 4. Let R be a r-RSI ring. Then either
( i ) R has no nonzero prime ideal and it is a simple ring, or
(ii) R has exactly two nonzero prime ideals and it is isomor-

phic to a direct sum of two division rings, or
(iii) R has precisely one nonzero prime ideal.

Since the ideal structure of rings of type (i) and (ii) above is
trivial, we consider only case (iii) in what follows.

Nontrivial r-RSI rings* Suppose R is a r-RSI ring with precisely
one nonzero prime ideal. If R is not a primitive ring, i.e., if 0 is
not a primitive ideal, then M is the unique primitive ideal of R.
Also, M is a maximal right ideal of R by Proposition 2. Hence, M
is the unique maximal right ideal and consequently R is in this case
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a local ring. The following property of local rings will be needed in
the sequel and is a partial converse of [1, Theorem 2.1].

PROPOSITION 5. Let R be a local ring, the maximal right ideal
M being nilpotent. Then R has both a c c and d c c on right ideals
if and only if M is finitely generated as a right ideal.

Proof. Let Mn = 0 and M^1 Φ 0. Since M is finitely generated
as a right i?-module, each of M/M\ M2/M\ •• ,Λί%~1 are finite di-
mensional vector spaces over R/M and consequently the composition
series for each of them can be lifted and connected into a composi-
tion series for RB. The converse is trivial.

COROLLARY 6. If R is a local ring with nil maximal ideal, then
R has d c c on right ideals whenever it has a c c on right ideals.

Proof. With α c c on right ideals, nil ideals are nilpotent and
every right ideal is finitely generated.

Since, for a ring R, homomorphic image of a homomorphic image
is itself a homomorphic image of it, each homomorphic image of a
r-RSI ring is RSI and r-RSI. In the following theorem we show that
such rings are local artinian principal right ideal rings.

THEOREM 7. Let R be a RSI, r-RSI ring. Then R has a unique
maximal right ideal M which is nilpotent and all of the right ideals
of R are of the form mkR, k = 0, 1, 2, , n and m an element of M.

Proof. We exclude division rings from discussion for which the
theorem holds trivially. Hence, the heart H of R is a proper nonzero
ideal of R. Then R has at least one primitive ideal M containing H
(and hence nonzero) and since R is RSI, its intersection with any
nonzero ideal is nonzero. Then by Proposition 1, M contains each
ideal of R and thus it is the unique primitive ideal of R. (Note
that 0 cannot be a primitive ideal unless R is a division ring). Now,
let A and B be any two nonzero ideals of R. Again Af] B Φ 0 and
hence A g B or B g= A. This together with the fact that to each
nonzero ideal in a r-RSI ring corresponds a unique smallest ideal
containing it implies that the ideals of R form a well-ordered chain
under inclusion. In particular, ideals of R satisfy d c c. We will
now show that each right ideal is two-sided in R. In fact, suppose
there exists a strictly right ideal. Then, since the intersection T of
all strictly right ideals is nonzero (it contains H), it must be a strictly
right ideal by Proposition 1. Let L denote the sum of all two-sided
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ideals contained in T and containing H. Clearly, by the choice of T
and L, there is no right ideal of R between T and L. This however,
implies that T/L must be the heart of the RSI ring R/L; or in par-
ticular, that T must be a two-sided ideal which is a contradiction.

Now, R has d c c on right ideals and hence the unique primitive
ideal M of R coincides with the Wedderburn radical and must be
nilpotent. If Mn = 0 and ikP"1 Φ 0, then Mn~ι is contained in the
left annihilator of M. Since for a RSI ring with d c c, the left
annihilator of the maximal ideal is H [1, Theorem 3.1], we have
Λf"-1 = H. Now, if A is any ideal of R, there exists an integer ί,
0 fg i <^ n — 1 such that Mi+1 g i c M\ Then applying the above
argument to R/Mί+\ we have MijMi+ι contained in the annihilator
of M/Mi+1 and hence it is the heart of R/Mi+1. Thus A s Mi+1 which
implies that A = Λfί+1. This shows that i?, M, M\ , Mn~\ 0 exhaust
all the ideals of R. It is easy to argue that each of these is a
principal right ideal.

It may be remarked that in this ring, left ideals need not be
two-sided and inf act they need not satisfy either a c c or d c c. An
example of such a ring is given below.

EXAMPLE 8. Let F be a field and σ a monomorphism of F into
itself which is not onto and a an element of F, transcendental over
Fσ. Let R be the ring of ordered pairs of members of F with com-
ponentwise addition and with (α, b)(c, d) = (αc, be + aad) as the mul-
tiplication. Then there is exactly one nontrivial proper two-sided
ideal in R, namely H = {(0, b): be F) and it is also the only right
ideal. However, Ln = {(0, pan): pe Fσ} are distinct left ideals for n —
1,2, ••• whose sum is direct. Clearly R does not satisfy a c c on
left ideals.

Levy [5] has considered commutative noetherian rings whose
proper homomorphic images are self-injective. We first observe that
if R is commutative and each of its proper homomorphic images is
subdirectly irreducible, then for any nonzero ideal A in R, R/A
satisfies the above theorem and has a c c on ideals. In particular,
this means any chain of ideals A e i j S i j i s finite and thus R
is noetherian. Further, the homomorphic image R/A is local, satisfies
d c c and also the ideals in R/A satisfy the annihilator condition Ann
(Ann I) = I. Thus R/A is a commutative quasi-Frobenius local ring.
Also, by a well-known theorem of Morita [6], quasi-Frobenius local
rings are exactly the same as the completely indecomposable rings
which are in particular RSI. We have thus proved the following
theorem, which is another of the instances of an observation by K.
Morita that complete indecomposability and injectivity are closely
related concepts.
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THEOREM 9. If R is commutative, then the following are equiva-
lent:

( i ) R is restricted subdirectly irreducible;
(ii) R has a c c on ideals and each proper homomorphic image

is a local self-injective ring;
(iii) each proper homomorphic image of R is a quasi-Frobenius

local ring.

REMARK. It is well-known that a right principal ideal ring with
d c c on right ideals is the same as a right uniserial ring. Faith
[3] has proved that a commutative ring is restricted uniserial if and
only if it is (i) itself uniserial or (ii) a local artinian ring with
(Rad Rf = 0 and Rad R is a direct sum of two minimal ideals or (iii)
it is a dedekind domain not a field. (He has also remarked in the
same paper that commutative restricted uniserial rings are the same
as restricted quasi-Frobenius rings.) While it is easy to see that
rings satisfying the above Theorem 9 are restricted uniserial, a de-
dekind domain (e.g. Z) is not restricted subdirectly irreducible.

r-RSI local rings* We now consider the nonprimitive r-RSI rings.
That these rings are local has been observed before. We will denote
the maximal ideal by M. Clearly M is nilpotent or not according as R
is not or is a prime ring. If M is nilpotent, the ideal structure of
R is completely determined by the following:

THEOREM 10. Let R be a r-RSI local ring with a nilpotent maxi-
mal ideal M. Then either

(a) R is RSI and hence satisfies Theorem 7 above, or
(b) M2 = 0, every nonzero proper ideal of R other than M is a

minimal ideal and M is the direct sum of any two of these minimal
ideals. Further, there is no right ideal of R strictly between M and
any one of these minimal ideals.

Proof. If M2 Φ 0, so that the index of nilpotency n ^ 3, we
will show that M is a principal right ideal. In fact, F " 1 Φ 0 implies
that for some me M, (mi Mz) we have mMn~2 Φ 0. In particular,
we have mR Π Mn~x Φ 0. In addition, mR n Mn~ι is a two-sided ideal
because if mx e Mn~x is nonzero, the conditions m$M2 implies that x
cannot be a unit, or equivalently, x e M. Now, R/Mn~ι is a ring
satisfying Theorem 7 above and hence M/M*1"1 is a right ideal in it
generated by each u + Mn~γ such that ueM\M2. Thus, if aeR is
arbitrary, am = mb + v for some b e R and v e Mn~ι. Consequently,
amx — mbx + vx = mbx e mR. Since M1*'1 is a two-sided ideal, amx e
Mn~ι is trivial and we have amx e mR f] M%~1 proving that mR Π M%~1
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is a two-sided ideal. Now Proposition 1 applies and we must have
Af*"1 § mR. Since, by considering right ideals in R/Mn~\ it is clear
that there are no right ideals in R containing M1"'1 other than the
powers of M, we have proved M = mR. By a theorem of Feller [4,
Corollary 3.6] it follows that all of the right ideals in R may be
listed as R, mR, m2R, •••, mn~ιR, 0 proving part (a) of our theorem.

Now suppose M2 — 0. Any other nonzero ideal A in R must be
contained in M and by applying Theorem 9 to R/A we see that there
is no right ideal of R between A and M. Thus, if B is any other
nonzero ideal, we have M = A + B and Proposition 1 requires that
A Π B = 0. Thus, all ideals of R other than M are minimal and M
is a direct sum of any two of them. This completes the proof.

Again we compare this theorem with that of Faith and Levy in
the commutative case. If R is commutative r-RSI local ring with
maximal ideal nil, by Theorem 9 it satisfies a c c and then by Corollary
6 it is artinian. Thus we have,

COROLLARY 11. If R is commutative, the following are equivalent:
(i) R is a restricted subdirectly irreducible local ring with

maximal ideal nil,
(ii) R is either a uniserίal ring or a local artinian ring with

(Rad R)2 = 0 and Rad R is a direct sum of two minimal ideals.

The observation of Levy [5, page 152] about the structure of
rings of type (ii) above holds in noncommutative case as well. A
typical example of such a noncommutative ring is D[x, y]/(x2, y2, xy)
where D is a division ring. In this case, M is generated by x and
y. The minimal ideals are generated by x + ay for distinct a in the
center of D; while if a is not in the center, x + ay generates the
ideal M. M is a direct sum of any two right ideals (x + axy)R +
(x + a2y)R for au a2 not in the center of D.

r-RSI rings with nonnil maximal ideal* If M is not nil in a
r-RSI local ring R, then M cannot be the prime radical of R, and
since the only other prime ideal that R may have must be zero, R
is a prime ring. The ring of formal power series in one variable
over a field or over a division ring is an example of a local r-RSI
prime ring. In general, if R is an arbitrary r-RSI local ring which
is prime, then as in Theorem 7 above, we can conclude that there is
no right ideal of R containing a power of M unless it is itself a
power of M. Also, there is no ideal in R other than one of the
powers of M. Note that flΓ^-M* must be 0 or it must equal Mn

for some n because otherwise R/Γi?=i M* cannot be RSI. This deter-
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mines the ideals of R, and gives us the following characterization of
r-RSI prime local rings:

THEOREM 12. If R is a r-RSI local ring whose maximal ideal
M is not nil, then R is a prime ring, the only ideals of R are powers
of M and there is no right ideal of R between any two powers of R.
In addition, we either have f\T=i Mι = 0 or, for some integer n, Mn =
Mn+1 and this is the unique minimal two-sided ideal of R.

Questions. It appears that in all cases of a r-RSI ring, we can
conclude that it is local except when it is primitive. The authors
have been unable to find an example of a nonsimple primitive r-RSI
ring with a nonzero primitive ideal M. It is clear that in such a
case, each proper homomorphic image of R must satisfy Theorem 7
and hence must be local artinian. It is conjectured that a primitive
r-RSI ring exists which is not simple. Also, we have not been able
to settle the question: Whether in a r-RSI local ring, the condition
M is nil implies M is nilpotent. The answer is yes in the commuta-
tive case.
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