AXIOMS FOR THE ČECH COHOMOLOGY OF PARACOMPACTA

PHILIP BACON

The Čech cohomology of paracompact Hausdorff spaces is characterized (up to isomorphism) by supplementing the Eilenberg-Steenrod axioms for cohomology.

- 1. The theorem. Let C be an admissible category for homology theory, as defined by Eilenberg-Steenrod [2, p. 5]. We say H is a cohomology theory on C if H satisfies the Eilenberg-Steenrod axioms [2, p. 14] and (1.1) and (1.2) below.
- (1.1) Additivity axiom. If a space X is the union of a collection $\mathscr U$ of pairwise disjoint open sets and for each U in $\mathscr U$ the inclusion map $j_v \colon U \subset X$ is in C, then $\{j_v^* \colon H^q(X) \to H^q(U) \mid U \in \mathscr U\}$ is a representation of $H^q(X)$ as a direct product.
 - (1.2) Nonnegativity axiom. $H^q(X, A) = 0$ if $(X, A) \in C$ and q < 0.

We say a cohomology theory H is point reductive if (1.3) holds. The Čech and Alexander-Spanier cohomology theories are examples of point reductive cohomology theories.

(1.3) If $X \in C$, if S is a singleton (one-point) subset of X, if $h \in H^q(X)$ and if h|S=0, then there is a neighborhood N of S such that the inclusion map $N \subset X$ is in C and h|N=0.

A homomorphism $t: H \to J$ of cohomology theories H and J on C is a natural transformation from H to J that commutes with coboundary homomorphisms. A pair (X, A) is a paracompact pair if X is a paracompact Hausdorff space and A is a closed subset of X. The category P of paracompact pairs and all maps among them is an admissible category for homology theory. We shall prove—

THEOREM 1. Suppose H and L are cohomology theories on P, S is a singleton, $k^{\circ}(S): H^{\circ}(S) \to L^{\circ}(S)$ is a homomorphism and H is point reductive. There is a unique extension of $k^{\circ}(S)$ to a homomorphism $k: H \to L$ of cohomology theories. If L is point reductive and $k^{\circ}(S)$ is an isomorphism, then k is an isomorphism.

For related theorems see [1], [2, p. 287, Theorem 12.1], and [6].

2. The proof. As an immediate consequence of a theorem due to Lawson [3] we have the following.

LEMMA 2.1. Suppose J and H are point reductive cohomology theories on P and $m: J \to H$ is a homomorphism of cohomology theories such that $m^{\circ}(S): J^{\circ}(S) \to H^{\circ}(S)$ is an isomorphism for some singleton S. Then m is an isomorphism of cohomology theories.

A polyhedron is the union of the simplexes of a geometric simplicial complex with the metric topology [2, p. 75]. A polyhedron and its underlying simplicial complex will be denoted by the same symbol. If L is a subcomplex of a simplicial complex K, (K, L) is a polyhedral pair. The category K of polyhedral pairs and all maps among them is an admissible category for homology theory. It is a subcategory of P.

If H is a cohomology theory on K, the Čech method may be applied to H to define a cohomology theory J on P. J is called the Čech extension of H. We briefly recall the method (see [4]). Let (X,A) be a paracompact pair and let $\Lambda(X)$ be the collection of all locally finite open covers of X. If $\alpha \in \Lambda(X)$, let (X_{α}, A_{α}) be the polyhedral pair determined by the nerve of α . If $\beta \in \Lambda(X)$ and β refines α , there is a simplicial map $r_{\alpha\beta}\colon (X_{\beta}, A_{\beta}) \to (X_{\alpha}, A_{\alpha})$ that maps each vertex V of X_{β} to a vertex U of X_{α} such that $V \subset U$. If in addition $\gamma \in \Lambda(X)$ and γ refines β , $r_{\alpha\beta}r_{\beta\gamma}$ and $r_{\alpha\gamma}$ are homotopic, which implies that $r_{\beta\gamma}^*r_{\alpha\beta}^* = r_{\alpha\gamma}^*$. Hence there is a direct system of groups $\{H^q(X_{\alpha}, A_{\alpha}) | \alpha \in \Lambda(X)\}$ and homomorphisms $\{r_{\alpha\beta}^*|\beta \text{ refines }\alpha\}$, whose direct limit we shall denote by $J^q(X, A)$. The coboundary homomorphism $\delta\colon J^q(A) \to J^{q+1}(X, A)$ for a paracompact pair (X, A) and the homomorphism $J^q(f)\colon J^q(Y, B) \to J^q(X, A)$ induced by a map $f\colon (X, A) \to (Y, B)$ in P are suitable limit homomorphisms.

LEMMA 2.2. If H is a cohomology theory on K, then the Čech extension of H is a point reductive cohomology theory on P.

The proof is left to the reader.

Suppose H is a cohomology theory on P, L is the restriction of H to K and J is the Čech extension of L. We shall construct a homomorphism $m: J \to H$ called the canonical homomorphism.

Let (X, A) be a paracompact pair and let $\Lambda(X)$ be the collection of locally finite open covers of X. If $\alpha \in \Lambda(X)$, there is a map r_{α} : $(X, A) \to (X_{\alpha}, A_{\alpha})$ defined by a partition of unity subordinate to α [5, p. 833, Proposition 2]. Any two choices of r_{α} are homotopic. If $\beta \in \Lambda(X)$ and β refines α , then $r_{\alpha\beta}r_{\beta}$ and r_{α} are homotopic, which implies that $r_{\beta}^*r_{\alpha\beta}^* = r_{\alpha}^*$. Hence the homomorphisms $\{H^q(r_{\alpha}) | \alpha \in \Lambda(X)\}$ induce

a homomorphism $m^q(X, A): J^q(X, A) \to H^q(X, A)$. It follows from the way m is defined that m is a homomorphism from J to H.

If S is a singleton, $m^{\circ}(S): J^{\circ}(S) \to H^{\circ}(S)$ is an isomorphism because $\{r_{\alpha} | \alpha \in \Lambda(S)\}$ consists of just one map, a homeomorphism. Hence by Lemmas 2.1 and 2.2 we have—

LEMMA 2.3. If H is a point reductive cohomology theory on P and J is the Čech extension of the restriction of H to K, then the canonical homomorphism $m: J \rightarrow H$ is an isomorphism.

Lemma 2.3 implies Lemma 2.4, which in turn implies Lemma 2.5.

LEMMA 2.4. If H is a point reductive cohomology theory on P and $(X, A) \in P$, then $(H^q(X, A), \{H^q(r_\alpha) \mid \alpha \in \Lambda(X)\})$ is a direct limit of the direct system $(\{H^q(X_\alpha, A_\alpha)\}, \{H^q(r_{\alpha\beta})\})$.

LEMMA 2.5. Suppose H and L are cohomology theories on P and $t: H|K \to L|K$ is a homomorphism of cohomology theories. If H is point reductive, there is a unique extension of t to a homomorphism $k: H \to L$.

Lemma 2.6 was essentially proved by Milnor in [6], although the uniqueness part of it was not stated there.

LEMMA 2.6. Suppose H and J are cohomology theories on K. If S is a singleton and $t^{\circ}(S): H^{\circ}(S) \to J^{\circ}(S)$ is a homomorphism, there is a unique extension of $t^{\circ}(S)$ to a homomorphism $t: H \to J$ of cohomology theories on K.

Theorem 1 follows from Lemmas 2.5 and 2.6.

REFERENCES

- 1. C. H. Dowker, Homology groups of relations, Ann. of Math., 56 (1952), 84-95.
- 2. S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, N. J., 1952.
- 3. J. P. Lawson, Comparison of taut cohomologies, Aequationes Math., 2 (1973), 201-209.
- 4. C. N. Lee and F. A. Raymond, Čech extensions of contravariant functors, Trans. Amer. Math. Soc., 133 (1968), 415-434.
- 5. E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc., 4 (1953), 831-838
- 6. J. Milnor, On axiomatic homology theory, Pacific J. Math., 12 (1962), 337-341.

Received November 13, 1972 and in revised form October 24, 1973.

UNIVERSITY OF FLORIDA