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ON THE DIVISIBILITY OF KNOT GROUPS

KUNIO MϋRASUGI

Some conditions for the knot group to be an i^-group, i.e.,
the group in which the extraction of roots is unique, will be
discussed in this paper. In particular, the group of a product
knot is an i?-group iff the knot group of each component is
an R-group. For a fibred knot, a sufficient condition for its
group to be an i?-group will be given.

A group G is called an R-group if for every pair of elements
x and y, and every natural number nf it follows from xn = yn that
x = y. In other words, G is an ϋϊ-group if G has not more than
one solution for every equation xn = a. If G is an iϋ-group, G is
locally infinite. The converse, however, need not be true even if
G is restricted to the group of a knot in S3. For example, let G be
the group of K(m, ri), the torus knot of type (m, n). G has a presen-
tation G = (α, b: am = bn). Then the equation xm = am has infinitely
many distinct solutions, x = a, (ba)a(ba)"ι

f (ba)2a(ba)~2,
This observation gives immediately a negative answer to Problem

N in [3]. Neuwirth asks if a knot group can be ordered. In fact,
the group of K{m, n)(\ m |, | n | ^ 2) cannot be ordered, since an ordered
group is always an i?-group. Therefore, Problem N now leads slightly
weaker problems: Can a knot group other than torus knot groups
be ordered? Or, is a knot group other than torus knot groups an
iZ-group?

The purpose of this paper is to give a sufficient condition for the
group of a fibred knot to be an iϋ-group. (See Theorem 2.) Using
this condition, we can prove, for example, that the group of the
figure eight knot is an i2-group. (See Proposition 3 or Proposition 5.)

!• Statement of main results* To make our statement precise,
we will introduce some concepts relevant to an i?-group.

DEFINITION 1. Let n > 1 be an integer. A group G is said to
be ^-divisible if for any pair of elements x and y in G it follows from

Therefore, a group G is an i?-group if G is ^-divisible for every
n. However, n may be restricted to a prime number. In fact, we
have the following easy

PROPOSITION 1. G is rnn-divisible iff G is m- and n-divisible.

491



492 KUNIO MURASUGI

Proposition 1 implies

PROPOSITION 2. A group G is an R-group iff G is p-divisible for
every prime p.

The group of K(m, n) is neither m-divisible nor -^-divisible.
However, it will be shown in § 4 that it is p-divisible iff (n, p) =
(m, p) ~ 1, (see Theorem 3).

Now the following theorem shows that we need only consider the
groups of prime knots.

THEOREM 1. Let K be the product knot of two knots K^ and K2.
Let G, G19 and G2 denote the groups of knots K, Klt and K2, respectively.
Then G is an R-group iff Gλ and G2 are R-groups.

The proof will be given in § 2.
Finally, the main theorem of this paper is stated as follows.

THEOREM 2. Let K be a nontrivial fibred (or Neuwirth) knot.
Suppose that the Alexander polynomial A(t) of K has no repeated
roots and let au , am be all the roots of A(t). If the group of K
is not p-divisible, p a prime, then the multiplicative subgroup
generated by al9 •••, am in the complex number field contains a
nontrivial pth root of unity.

The proof will be given in § 3.

2* Proof of Theorem 1. Since a subgroup of an iϋ-group is an
β-group, "only if" part of Theorem 1 is trivial.

To prove "if" part, we will show a slightly stronger theorem
below.

Let G = GXHG2 denote the free product of two groups Gx and
G2 with an amalgamated subgroup H.

Let ®i (i = 1, 2) be the system of right coset representatives for
Gi modulo H. Then any element x of G has a unique normal form:
x = hxλ - xk, where h e H, each xt( 0 H) belongs to only one system
©! or ©2 and no two successive elements xt and xi+ί (i = 1, , fc — 1)
belong to the same system, k is the length of x, denoted by l(x).
h will be called the initial factor of x, and is denoted by i{x). If
x e H, or if l(x) ^ 1 and if xk and xt belong to different systems, x
is said to be cyclically reduced.

THEOREM lA. G = GX%G2 is an R-group if the following con-
dition (l)-(3) are satisfied:
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(2.1) (1) £?! and G2 are R-groups,
(2) H is an isolated subgroup of G1 and G2. In other words,

if l(x) <. 1 and l(xn) = 0 for some natural number n, then l(x) — 0.
(3) xn = yn for some natural number n yields i{x) = i(y).

Theorem 1A implies immediately

COROLLARY. G = G^G2is an R-group iff G1 and G2 are groups.

The proof of Theorem 1A will follow from Lemmas 1-6 below.

LEMMA 1. Let y be a noncyclically reduced element ofG = G1πG2

and yίH. Then y can be written as

y = u~ιy^u ,

where
(2.2) (1) yois a cyclically reduced element of G. Let yo = hzι* zk,
heH, be the normal form of y0. Then l(y0) — k ^ 1.

(2) uhas the normal form, u — hu^ -uλ, where he H, X = l(u)^l,
and Ui e ©! or ©2.

(3) ( i ) If k ^ 2, then k is even, and zk and uγ are not in the
same system, and uτιh~ιhzx $ H. Therefore, l(y) = k + 2λ — 1.

(ii) If k — 1, then zt and uλ are not in the same system and
l(y) = 2λ + 1.

Since the proof is straightforward, it will be omitted, or see [2,
§4.2]. Denote k = T(y).

In the following lemmas, we assume that the group G = Gγ%G2

satisfies (2.1) (l)-(3).

LEMMA 2. Let y be a noncyclically reduced element of G = G1HG2

and y$H. Then for any positive integer n, l(yn) is given as follows:
(2.3) (1) // ΐ(y) = k ^ 2 and l(u) = λ ( ^ 1), then l(yn) = nk + 2X -
1^2.

(2) // l{y) = 1, then l(yn) = 2λ + 1 ̂  3.

Proof. (1) is obvious.

To prove (2), let y = u~ιyQu be the form obtained in Lemma 1.
Since ΐ(y) = 1, we see that yQ — hz,zeGι — H or G2 — H. Since z
and ux are not in the same factor, it follows that

(2.4) l(yn) = l(u-\hz)nu) ^ 2λ + 1 .

An inequality in (2.4) holds only when (hz)n and ux belong to the
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same factor, i.e., (hz)n e H. Then by (2.1) (2) hz e H, and hence, z e H.
This is a contradiction. Therefore, l(yn) = 2λ + 1.

LEMMA 3. Let x and y be cyclically reduced elements of G. If
xn = yn

f then l(x) = l(y).

Proof. First we note that for any cyclically reduced element z

(2.5) l(zn) ̂  1 iff l{z) ̂  1 .

Now the proof will be divided into the following three cases.

Case 1. l(x) ̂  2.
Then l(xn) = nl(x) ̂  2. Since xn = yn, l(yn) = l(xn) = nl(x) ̂  2

and hence l(y) ̂  2. Therefore, l(yn) = nl(y). Now, the conclusion
of Lemma 3 is immediate.

Case 2. l(x) = 1.
Then l(xn) = 1, and hence, l{yn) = 1, since xw = yn. Therefore,

it follows from (2.5) that l(y) ̂  1. l{y) cannot be 0, otherwise l(yn)
would be 0. Therefore, l(y) = 1 = l(x).

Case 3. l(x) = 0.
Then l(xn) = 0 and hence Z(?/*) = 0. Then it follows from (2.1) (2)

that l(y) = 0.

LEMMA 4. Let x and y be cyclically reduced elements of G.
Then xn = yn yields x = y.

Proof. By Lemma 3, we know that l(x) = l(y). Let x = hxx xk

and y = gy1 - yk be the normal forms of x and #.

1. l(x) = k^2.
The normal forms of x% and τ/w can be written as

»ϋ — ft/ Xl X% * aft; t(/i^/2 v t̂ί/]_ tί/β

a n d

r = g ' y [ n - 1 ] y { 2 n - l ) 2 / S r 1 * y[yί y ' k y , • • • » * .

Since α;% = τ/%, we obtain t h a t x1 = y1, •••, xk = Vk Moreover, it

follows from (2.1) (3) t h a t i(x) = h = i(y) = g. Therefore, x = hxι

Xk = QVi * Vk = 2/

Case 2. l(x) = k = l.
Then a? = hx1 and y = gyx. Suppose that xΣ and 2/x are not in
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the same system. Then x* = (hx^ — {gy^)n = yn must belong to
H = Gif) G2, and hence, x belongs to H by (2.1) (2). It contradicts
our assumption. Therefore, xr and y1 belong to the same system.
Since Gx and G2 are iϊ-groups, x — y follows.

Case 3. l(x) = l(y) = 0 .
Then x = y, since H is an E-group as a subgroup of G>

LEMMA 5. Let x and y be elements of G. Suppose that only
one of x and y, x say, is cyclically reduced, but y is not, and hence
y$H. Then xn Φ yn.

Proof. Case 1. l(x) ^ 2.

It follows from Lemma 2 that l(xn) = 0 (mod 2), while l(yn) =
1 (mod 2). Therefore, xn Φ yn.

Case 2. l(x) = 1.

Since x belongs to one factor, we see that l(xn) = 1. On the other
hand, l(yn) ̂  2 by Lemma 2. Therefore, xn Φ yn.

Case 3. l(x) = 0. Suppose xn = yn.

Then xn belongs to H and so does yn. Therefore, y belongs to
H by (2.1) (2). It contradicts our assumption.

LEMMA 6. Suppose that neither x nor y is cyclically reduced.
Then xn = yn yields x = y.

Proof. By Lemma 1, we can write

x — u~ιxou and y = v~ιy^v ,

where xQ and y0 are cyclically reduced. Then xn = yn yields U^XQU =
v~ιylτ and hence,

Xo = uv~ιylvu~γ = (uv~ιyQvu~ιy .

Since x0 is cyclically reduced, it follows from Lemmas 4 and 5 that
x0 = uv~1y^u~1. It implies that x = y.

Theorem 1A follows immediately from these lemmas.

Now what it remains to show is that the group of the product
knot K^K2 satisfies (2.1) (l)-(3).
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Let Gi = G(Ki) be the knot group of Kt. Then it is well known
that G = G^G2f where G = G(K^K2) and H is the infinite cyclic
group generated by t that is represented by a meridian. Denote P'
the commutator subgroup of a group P.

Now (2.1) (1) is exactly the assumption of Theorem 1.
To prove (2.1) (2), take an element x from G19 say. x is written

as x = ί*αjlf where αjt 6 GJ. Then #% = i**ajj for some a?[ e G[. There-
fore xn = έfcwα?ί = £m, for some m, yields kn = m, and hence, ίfcna?I = ί*\
Since Gt is an Λ-group, it follows that (ί*^)" = (tk)n yields tkx, = tk.
Therefore, xt = 1, and hence, xe H.

To prove (2.1) (3), let x = ί% % and /̂ = tryι yx be the
normal forms of x and #. Then xn = tqng and #* = trnh for some
g,heG'. Thus of1 = 2/% implies that tqn = trn in G/G', and hence,
q = r. This proves (2.1) (3).

3. Proo/ o/ Theorem 2. Let if be a fibred knot in S\ Then
the knot group G of iΓ is a semi-direct product of Z and F, where
Z is an infinite cyclic group generated by t and F is a free group
freely generated by r elements xlf , xr. The action of Z on F is
given by an automorphism φ of F:

φ: xt > teiί"1 = TΓ* , i = 1, , r .

Let {Fn} be the lower central series of F, where F = Ft and
Fn = [ί7, i*V_J. Then ^ induces an automorphism φn: Fn-*Fn for each
n9 since ί^ is a characteristic subgroup of F. Using φn, we can
construct a semi-direct product Gn(K) of ϋΓ and Fn, where the action
of Z on Fn is given by φn.

Now we know that FJFn+1 is a free abelian group of finite rank
and φn induces an automorphism φn of FJFn+1. Let Δn(t) be the
characteristic polynomial of the integer matrix Mn associated with
φn. We should note here that the Alexander polynomial Aκ(t) of K
is just Jλ(t) defined above.

First we want to know the characteristic roots of φn.
To do this, we use a technique given in [2, § 5.7].
Let A0(Z, r) be the graded associative Z-algebra freely generated

by r elements yίt y2, , yr. We define the bracket product in
A0(Z, T) by [u, v] = uv — vu. Then there exists a free Lie algebra
ΛQ(Z, r) freely generated by ξu , ξr that is imbedded in A0(Z9 r)
equipped with the bracket product [2, Lemma 5.5]. Let Λn be the
submodule consisting of all homogeneous elements of degree n in
A0(Zf r). Then FJFn+ι is isomorphic to Λn, as an abelian group, under
a natural mapping [2, Theorem 5.12]. Therefore, the automorphism
φn of FJFn+1 induces an automorphism φn of Λn.
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Let C denote the complex number field. For ulf , uke C — {0},
we denote by (uu , uk} the multiplicative subgroup in C — {0}
generated by ux, •••,%*.

LEMMA 7. Suppose that Δκ{t) has no repeated roots, and let
au , ar be all the roots of Δκ(t). Let βί9 , βs be all the roots of
Δ%(t). Then

<ficlf •••, ar}ZD(βu •-., β8} .

Therefore, in particular, the splitting field of Δn{t) is contained
in that of Aκ{t).

Proof. Since we are concerned with only the characteristic
roots, we consider the vector space Vn = FJFn+1 (x) C instead of a
free abelian group FJFn+1, and the vector space Λn(g)C instead of

Since Δκ{t) has no repeated roots, the characteristic polynomial
coincides with the minimal polynomial and further Vx is completely
reducible. Therefore, we can choose a new basis {xu •• ,xr} for Vx

so that φx(xτ) = ctiXi. The corresponding new basis of ^x(x)C will be
written as ξu , ξr and φ^ξi) = a^t. Then φn maps a basis element
ξit% of Λn (x) C to an element of the form aί1 αϊrf<>n- Therefore,
the matrix associated with φn is diagonal and each characteristic root
βi of Φn, and that of φn, is of the form a*1 ak

r

v. This proves
Lemma 7.

Now we proceed to the proof of Theorem 2.

Suppose that G is not ^-divisible, p > 1. Then there exist x and
y in G such that a? =£ 2/ but a?p = yp. Since G is a semi-direct product
of Z and F, x and # can be written as x = #£* and 7/ = A,£* for some
integer & and for some elements g and Λ, in F = Fγ = G'. g Φh,
since x Φ y. Therefore, there is an element t& =£ 1 in i ^ — F u + 1 ,
^ ^ 1, such that h ~ ug. Then it follows from xp = α;p that

(3.1) (flrί*)' - (ugtkY .

By induction on p, it is easy to show that

(3.2) (ugtky = u(tkut~k)(t2kur2k) (V*-1)kut-{p-ί)k)(gtk)p(mod Fn+ι).

Compare (3.1) and (3.2) to obtain

(3.3) u(tkurk)(t2kut~2k) (t{p~1)kut-{p~1)k) = 1 (mod Fn+1) .

Consider the semi-direct product Gn of Z and FJFn+1, where the
action of Z on FJFn+1 is given by an induced automorphism φn.
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Introduce a new multiplication mt-g = tg^t'1 for teZ and geFJFn+1

so that Gn becomes an i?-module, where R is the group ring of the
infinite cyclic group Z. This iu-module Gn is finitely presented and
its relation matrix is || Mn — tl\\ .

Then equation (3.3) is interpreted as a relation (3.4) below, which
holds in Gn:

(3.4) (1 + tk + t2k + + t{p-l)k)u = 0 .

Since \\Mn — tl\\ is a relation matrix of the iϋ-module Gn, some
factor of the characteristic polynomial An(t) of M% must divide
f(t) = 1 + tk + + t{p-1)k = (1 - ^ fc)/(l - ί*). Since p is prime, it
follows that the set of roots of An(t) contains a mpth root of unity,
m I k, and hence, it contains a pth root of unity. Theorem 2 now
follows form Lemma 7.

COROLLARY 1. Under the hypothesis of Theorem 2, ΐ/ the group
of a knot K is not p-divisible, then the splitting field of Δκ{t) contains
a pth root of unity.

4. Divisibility of the groups of torus knots.

THEOREM 3. The group G of the torus knot K(rn, n) is p-divisible,
p a prime, iff (n, p) — (m, p) = 1. In any case, any two solutions
of the equation xp = yp are conjugate.

Proof. Suppose that G is not p-divisible. We want to show that
p\n or p\m.

Since Δ{t) = (1- ί)(l - tmn)/(l - tm)(l - tn), all the roots al9 ,
tf(m-nu-i) of Δ{t) are distinct and they are mnth root of unity. There-
fore, <#!, •••, a^-ixn-u) contains only mwth roots of unity. On the
other hand, it follows from Theorem 2 that (au •••, a^^^^y must
contain a pth root of unity. Therefore, p must be a divisor of mn,
and hence, p \ m or p \ n. To prove the converse, let G have a
presentation (a, b: am — bn). If p\m, then m ~ pq, and baqb~ι Φ aq,
since am generates the center of G. However, {baqb~ιY = apq. There-
fore, G is not p-divisible.

To prove the last part1, first we should note that G = G1HG29

where Gl9 G2, and H are infinite cyclic groups generated by a, b, and
e = am(= bn), respectively, and H is the center of G, but H is not
an isolated subgroup of Gi9 i = 1, 2.

Now, suppose α^ = 2/p. We may assume without loss of generality
that p I m and hence, p \n, since (m, w) = 1.

1 I owe the proof mostly to D. Solitar.
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Let x = hxx xk and y ~ gyι - - yt be the normal forms of x
and y, where h = cr = α m r and # = cs = ams. By Lemma 6, one of
x and i/, x say, is assumed to be cyclically reduced. Further, if
k = 1, we may assume that a? is in GL.

Case 1. 7/ is cyclically reduced.
It is obvious that k ^ 2 iff ί ^ 2 and if A, Z ̂  2, then & = I.

Therefore, x ~ y follows immediately from xp = yp.
Suppose that k <Ξ 1 and 1^1. There are six cases to be con-

sidered.

Ix = crad

\y = csae

— cr

where 0 < d, e < m, and 0 < / < n.
In Cases (i) and (vi), it is easy to see that x — y follows from

χp = ypt Case (ii) does not occur. In fact, xp = yp implies that
fp = 0 (mod n) and hence, / = 0 (mod n), since (p, n) = 1. Similarly,
Case (v) does not occur. Case (iii) also does not occur. In fact,
xp = yp implies that rmp + dp = smp, and hence, d ^O(modm).
Similarly, Case (iv) does not occur.

Case 2. y is not cyclically reduced.

Suppose that l(x) = k ^ 2. Then l(xp) is always even, while l(y)
is odd by Lemma 2. Therefore, xp Φ yv, and hence, l(x) ^ 1.

Suppose that l(x) ^ 1. Since y is not cyclically reduced, ϊ(y) Φ 0.
// T(y) ^ 2, then l{yp) ^ 2 by Lemma 2. This contradicts xp = yp.
Therefore, ΐ(y) = 1.

Now we have to consider the following four cases.

\x = crad

( i ) i ( i i ) i

α; = c r (x = c r

7/ =r u~ιcsaeu \y = u~ιcsbfu ,

where 0 < d, β < m, and 0 < / < w.
Now Case (ii) does not occur. In fact, xp = ?/p implies that

ίfV*3 = u~ιcspbfpu and hence, 6/ p e ίZ", otherwise l(yp) ^ 2. Therefore,



500 KUNIO MURASUGI

fp = 0(mod n). Since (p, n) = 1, it follows that / = 0 (mod n). This
contradicts 0 < / < n. By a similar argument, we can prove that
Case (iv) does not occur. Case (iii) does not occur. In fact x* = y*
implies that arprn = u~ιaspm+epu and hence, rpm = spm + ep. It shows
that e = 0 (mod m), which contradicts 0 < e < m.

Now consider Case (i). If (csae)* e if, then l(yp) ^ 2, while l{xv) = 1.
Therefore, (esαe)p e # . Then α?p - yp implies that α

rw2)+ίί2) = W'a^^u =
aspm+ep, since α s p m + e p e iϊ. Therefore, rmp 4- dp = spm + ep and hence,
rm + cί = sm + β. This shows that y = u-1xu.

This proves Theorem 3.

5* Applications*

PROPOSITION 3. The group G of the figure eight knot K is an
B-group.

Proof. Since Aκ(t) = 1 — 3ί + έ2 has two real roots α and I/a,
\a\ ^ 1, it follows that {a} contains only real numbers. Therefore,
G is p-divisible except possibly for p = 2. If <α> contains — 1, an =
— 1 for some integer w. Therefore | α | = 1, a contradiction. Since
(a} has no nontrivial roots of unity, it follows from Theorem 2 that
G is an iϋ-group.

Note that the figure eight knot is the only fibred knot K with
Aκ{t) = 1 _ 34 + t\

Finally we consider the knots whose Alexander polynomials A{t)
are of degree 4.2 Such a polynomial has the form:

Note that a Φ 1 and β Φ 1.

Case 1. Both α: and ^ are real.
Case 2. Only one of them, a say, is real.
Case 3. Neither a nor /3 is real.
Case 1. <#, /9> contains no nontrivial pth root of unity, except

possibly for —1.
If both a and β are positive, then (a, β} does not contain —1,

and hence, G is an i?-group.

Case 2. Since β and 1//3 are roots of a quadratic equation
1 + at + f = 0 for some real number α, we see that 1//3 — /3 and
\β\ = 1. Suppose that £ = αw(l/α0%/2r/3s is a pth root of unity. Then

2 I am grateful to R. A. Smith for his helpful suggestion.
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I ς I = I a \m~n = 1 yields m = n, and hence, ξ = βr~$. Therefore, β is
a p(r — s)th root of unity. Thus the splitting field of A(t) must
contain a p(r — s)th root of unity.

Case 3. If one of the roots has the absolute value 1, so do all
the roots. Kronecker's theorem, then, says that all the roots are
mth roots of unity for some m.

Suppose that | a \ Φ 1. Since a and β are complex roots, a and
β are also the roots of A(t). If a = I/a, then | a \ = 1, a contradiction.
If a = /3, then | α | = | /31, and hence, | α | = | /31 = .1, since \aβ\ = 1.
This contradicts our assumption. Therefore, ά = 1/β. Suppose that
{a, β) contains an wth root of unity ξ. We write ξ = akβι. Since
α = 1//3, we see that f = ahcrι. Then 1 = | ζ \ = | α: |&-z yields ft = I.
Therefore, ξ = (α/α)fc and α/α is a ft^th root of unity. Since a/a is
contained in the splitting field &~ of Δ(t), J?~ must contain a fcπth
root of unity.

These observations will be collected in the following

PROPOSITION 4. Let K be a fibred knot. Suppose that Aκ(t) is
of degree less than 5 and has no repeated roots. Then

(5.1) (1) If all the roots of Δκ{t) are positive real numbers, then
G, the group of K, is an R-group.

( 2) Suppose that Aκ(t) has only two complex roots β and β. If
G is not p-divisible, then β is a pqth root of unity for some q,
and therefore, the splitting field of Aκ{t) contains a pqtϊi root of
unity.

(3) Suppose that Aκ{t) has four complex roots a, a, β, β, and
that \a\φl. IfG is not p-divisible, then a/a is a ftpth root of unity
for some k, and therefore, the splitting field of Aκ(t) contains a kpth
root of unity.

This proposition will be used to prove Proposition 5 below.

In 1961, Trotter [4] studied the splitting fields of the Alexander
polynomials of certain fibred knots. Combining his results [4, p. 557]
with corollary, we obtain that

(5.2) (1) The groups of 4X, 62, 76, 812, 942, 944, 945, are p-divisible for all
prime p other than 2,

( 2) The groups of 3X, 63, 77, 820, 821, 948, are p-divisible for all prime
other than 2 or 3,

(3) The group of 51 is p-divisible for all prime p other than 2
or 5.
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Since the divisibility of the groups of 3X, 4lf and 5X has already
been determined, we consider the remaining eleven knots.

Now, each of the Alexander polynomials of 812 and 945 has four
positive real roots. Therefore by (5.1) (1), their groups are JB-groups.

On the other hand, each of the Alexander polynomials of 62,
76, and 942 has only two complex roots. If their groups are not
2-divisible, the splitting fields of their Alexander polynomial must
contain 2qth. root of unity by (5.1) (2). According to [4, p. 557] they
contain only 2nd root of unity. Therefore, one of the complex roots
must be —1, which cannot occur.

That the group G of 948 is an ϋί-group will be proved as follows.
Suppose that G is not p-divisible, p = 2 or 3. Since the splitting

field of the Alexander polynomial of 948 contains only 2nd, 3rd, or 6th
root of unity, it follows from (5.1) (2) that one of the complex roots,
β say, is either 2nd, 3rd, or 6th root of unity. However, the calcula-
tion shows that

which is none of 2nd, 3rd and 6th root of unity.

Therefore, G is an i?-group.

Finally, we consider the groups of 944, 63, and 77. Each of the
Alexander polynomials of these knots has four complex roots, each
of which does not lie on the unit circle. Therefore, we can apply
(5.1) (3) on these groups.

Let ^(K) denote the splitting field of Aκ{t). Then according
to [4, p. 557], we know that

(5.3) (1) ^(9U) contains only the 2nd and 4th roots of unity.
( 2) ^(63) and ^"(77) contain only the 2nd 3rd, and 6th roots of

unity.
Now a direct computation shows that

AAίt) has a root aγ = —\ (2 +

ΔAt) has a root α2 = —{(3 - VV52 - 5) + i(3 + VV52 + 5)} ,
4

and

Λ7(ί) has a root α3 = —{(5 + vV84 + 3) + <(3 + V\/U - 3)} .
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Then it is easy to verify that ajόc^ is none of the 2nd and 4th root

of unity, and each of a2/ct2 and a3/ά5 is none of the 2nd, 3rd, and

6th root of unity.

Therefore, the groups of these three knots are ϋ?-groups.

This proves the following

PROPOSITION 5. The groups of knots 41? 62, 63, 76, 77, 812, 942, 944, 945,

948 are R-groups.

REMARK. (2.1) (2) is not a necessary condition for G to be an

jβ-group.
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