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PROJECTIVE PSEUDO COMPLEMENTED
SEMILATTICES

G. T. JoNES

This paper is concerned with the properties of free, and
projective pseudo complemented semilattices (PCSL).

It is proved that a projective PCSL is complemented and
all its chains and disjointed subsets are countable, and that
a Boolean algebra is projective in the category of PCSL if
and only if it is projective in the category of Boolean algebras.
Further, necessary and sufficient conditions are established for
a finite PCSL to be projective.

1. Preliminaries. A semilattice A is a partially ordered set
closed under meets. If A has a least element we will denote it by
0. We say that a* is the pseudo complement of a € A, A a semilattice
with 0, if we have (i) ¢-a* =0, (ii) If ab = 0 then b < a*, for be A.
Clearly pseudo complements are unique when they exist. A semi-
lattice with 0 called a pseudocomplemented semilattice (PCSL) if each
element has a pseudo-complement. A PCSL has a greatest element,
0*, which we denote by 1. A function f: A— B, A, B PCSL’s, is
called a homomorphism if f(ab) = f(a)- f(b), f(@*) = fla)* for a,bec A.
We observe that f(0) =0, and f(1)=1. For SS A4 let S*={x*:2e S}

It is easily shown that the following identities are true in any
PCSL.

(1) zy =yx (13) (xy)* = (@**y**)*

(2) x(yz) = (xy)z (14) «*y** =0—a*y* =a*
(3) azx=2 15) zy=0—2a < y*

(4) 0-2=0 16) x(xy)* = xy*

(5) w(wy)* = ay* A7) z@*y)* =2

(6) =0*=u (18) &*(zy)* = «*

(7) 0%* =0 (19) a*@*y)* = z*y*

(8) z < pt* (20) w**(w*y)* = p**

(9) e=sy—y*=s2o* (21) a**(wy)* = x**y*

The definitions of the concepts discussed in this paper may be found
in References 3, 4, 5, and 7.

2. Free PCSL.

LEMMA 2.1. Let X freely generate the PCSL F. Then
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(1) 0¢X, 1¢X.

(2) If S X, S finite then II(S) # 0.

(3) If S X*, S finite then II(S) + 0.

(4) If ve X then x =+ x**.

(5) If o, € X, o, # x,, then xf # x5, o™ + &%,
(6) S X, then |S|=|S*|=|S**|.

(7) z,2,eX and x, < x, then x, = %,

(8) If = II(T), T< X then xc T, where xc X.

Proof. (1) If 0e X, then let f be a homomorphism f: FF— 2
such that f(0)=1. But f(0) = f(a-a*) = f(a)- f(@)* =0. Thus
=1 in 2, a contradiction. Also, suppose 1€ X. Let g be a homo-
morphism g: FF— 2 such that g(1) =0. But 1 =0* =g(1)* = ¢(0) =0,
again, a contradiction.

(2) Suppose II(S) = 0. S finite, SS X. Then there is a homo-
morphism f: F— 2 so that f(z) =1 all xeS. Thus 1 = f(/I(S)) =
f(0) = 0 a contradiction.

(8) Suppose II(S) =0, S finite S X*. Then there is a homo-
morphism f: F— 2 so that f(x) =0 for all z*e S. Thus 1= f(I(S)) =
f(0) = 0 a contradiction.

(4) Suppose 2 = z**. Then there is a homomorphism f: F— 3,
the 3 element chain 3=(0, a, 1) such that f(x) =a. Butae**=f(a**)=
f(x) = a is false since ¢** = 0 in 3.

(5) Let », # 2, and suppose x¥ = x¥. Since F is free let f be
the homomorphism from F onto the boolean algebra, such that z, —a,,

1
N
a’l\O/aZ ’

and x,—a,. Since x¥ = xF then a* = a*. That is @, = a,, a contra-
diction. Thus ¥ = .

If aF* = a¥* then we have a*** = g¥**, i.e., o = x¥, a contradiction.
Thus af* # x¥*.

(6) Let S X. Then S* = {z*:2¢S}. Letf:S—S* be
defined by f(x) = «*. Clearly f is onto. Suppose f(z) = f(=,), i.e.,
af=af.". 4, =a, i.e., fisl—1. Thus|S|=]|S*|. Alsolet g: S—S**
be defined by g(z) = #**. If g(») = g(x,) hence z** = x7* and 2z, = x,,
i.e., gis 1 —1. Thus |S|=]|S**|.

(7) Suppose #, # x,. Let f:F—2 be a homomorphism such
that f(2,) =1 and f(z,) = 0. But since 2, < %, thus 1 £ 0 —a contra-
diction.

(8) Let = II(T) and suppose ¢ T. Let f: F—2 be a homo-
morphism such that f(x) =0 and f(x;) =1, 2,€ 7. Then we have
1 £ 0 — a contradiction.
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LEMMA 2.2. If A is a PCSL then A* is a retract of A.

Proof. @: A— A* defined by @(x) = x** is a homomorphism onto
A*, If xe A* then o(x) = =, since *** = x*. Hence, A* is a retract
of A.

THEOREM 2.1. If F' is a PCSL freely generated by X, then F*
18 freely Boolean generated by X**; i.e., F* is free in the class of
boolean algebras.

Proof. Let @: F— F* the homomorphism @(x) = z**, and let
¥t F'* — F' be the inclusion map. Then @ = I,.. Let X = {z;:te I}
and let B be any Boolean algebra and suppose b€ B, for i€l then
there exists a homomorphism f:F— B such that f(x;) =05, Let
h= fy: F*—> B. Then h(xf*) = f(x¥*) = b¥* = b,. Also we note
that % is a Boolean homomorphism.

THEOREM 2.2. Let A be any free PCSL and let X freely generate
A. Then every element of A is of the form II(T)-(II(P))* - -+ (II(P,))*,
where TS X, P,=R,US}, R,US, & X, R,nNS, = O, P, finite for
t=12 «--,m, n=0, using the convention that II(Q) = 1.

Proof. Let B={II(T)-r: T< X, re A* T finite}. Then B is a
subalgebra of A, since 0c¢ B, and B is closed undermeets. Also if
be B, then b*c A*, and thus b* e B. Further, we note that X & B,
hence B= A. Since the homomorphism @: A— A* given by () = &**
is onto, then A* is freely Boolean generated by X**. Hence any
element » 21 of A* is a product of elements of the form «a =
>+ (UU V*) where U and V are finite disjoint subsets of X**. But
U= S** and V = R** for some R, S subsets of X. Clearly RN S=©
and V* = R*, Hence

a = ;‘,(S** U R*) = (II(S* U R**))* = (II(R U S*))*,

by [2, Theorem. 2] and (18) of §1. Since az(xy)* = ay*, x(z*y)* = =,
((16), (17) of § 1) we may assume that TN R, = TN S, = @ for all
1= m.

THEOREM 2.3. Let X, Y freely generate a PCSL F. Then X=1Y.

Proof. Let xe X. Then ¢ = II(T)-r where @ = TS Y and
reF*., Thena=<y,forally,e T={y, ¥, -+, ¥Ya}. Also, y,=1(T)-r;
for @ # T, = X and r,e F*. Hence x = II(T)-r = IIUJ T)Ir)-r
from which we see that « < II({J T}), and conclude that U T; = {«},
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using Lemma 2.1(7). Hence ¥y, = -7, and thus y, < 2 and hence

=1y, i.e., e Y. Thus X< Y, and by a similar argument Y < X.

LEMMA 2.3. Suppose X freely generates a PCSL F, and let
xeX, RUSUT<Z X, RUSUT finite. If 0 II(TUR** U S*) <z,
then ze T.

Proof. Since 0= II(TU R** U S*), then TnS=RNS= Q.
Clearly x¢ S. Suppose x¢ T. Let f: F— F be a homomorphism such
that

1if yeRUT — {2}
f)={zify==2
0if ye S.

This is possible since X freely generates F. Then

1 if ze¢R

I(T U R** U S*) =
JUTy U ST o** if xeR.

Hence 1<z or o** <, so x =1, or & = x**. But this is impossible
by Lemma 2.1, and the result follows.

LemMA 2.4. Let X freely generate F, and T < X, and r<€ F*,
veX., If0<I(T)-r =2x. Then xc T.

Proof. r is a sum in F'* of elements of the form II(R** U S*),
where RUSES X, RN S= ©». Hence for some R and S we have
0<II(TUR*US*)<x. Then by Lemma 2, z¢c T.

THEOREM 2.4. Let X freely gemerate a PCSL F. Then the
elements of X are super-meet trreducible. That s, leta, a,, -+, a, € F,
zeX, and 0 < aa,---a, = x, then a, < x for some 1.

Proof. For each 4,a,=I1(P;)-r, P,= X, r,e F*. Hence 0 <
P yv---UP)-r,-+-7r, <o, then by Lemma 2.5 zc¢P,U---UP,
and thus ze P, for some 7. Therefore a, < .

LeEMMA 2.5, Let X freely generate F, and acF,re F*. If
0<r<a, them ac F*.

Proof. Suppose a¢ F'* then a < x, for some x€ X. Hence 0 <
r <. But ris a sum (in F'*) of elements of the form /7(R** U S*),
where RUSE X, RN S= ¢. Hence for some such R, S, we have,
0 < IH(R**US*)=I(o UR**US*) < 2 and then by Lemma 2.4 we
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have e @, a contradiction.

LEMMA 2.6. Let X freely generate F, and ac F. If a* =0, then
a=1.

Proof. We have a =1II(T)-r where TS X, r< F*. Since a* =0,
then 1 = o** = II(T)**-r < r, thus » =1. Hence a =(T). If
T+ @ then a £ o for some ve X. Thus 1 < «**. But this is im-
possible by Lemma 2.1(3).

THEOREM 2.5. If F is a free PCSL, then F is complemented,
i.e., if a€ F, the a + a* exists and equals 1.

Proof. Suppose a < b, a* <b, then b* < a*a** =0. Hence b=1
by Lemma 2.6.

THEOREM 2.6. Let F be a free PCSL.

(1) Let S F*, S finite, and a = X5 (S). Then >, (S) ewists
and equals a.

(2) a* +b* = (ab)* for a, be F.

Proof. (1) Clearly true if S = {0}.

We may assume Sz {0}. Now a=s for all se S. If be F and
b=s all seS, then be F* by Lemma 2.6 and thus b = a. Thus
S (S) exists and equals a.

= (a**b**)* since F'* is a Boolean algebra
= (ab*) by (13) of §1.

LEMMA 2.7. Let Fbea free PCSL and e F*. Then{ac F:a**=r}
18 finite.

Proof. By Lemma 2.6, a* =0 iff @ = 1, and in any PCSL a¢* =1
iff @ = 0. Hence we may assume 0 <7 < 1. Let X freely generate
F. By Theorem 2.2 there exists a finite subset X, of X such that
re F), the algebra generated by X,. Now F| is finite. We need only
show that if a** = », then ac F,. If ac F*, then a = a** =reF..
Now suppose a¢ F*. Then a = II(T)-s, where @ = TS X, and
se F*. Further, from Theorem 2.2 we may assume that s is in the
subalgebra generated by a subset of X which is disjoint from 7. If
T & X,, then there exists an element x¢ T — X,. Let f:F— F be
a homomorphism such that f(z) = 0, and f(y) = v, for all ye X — {z}.
Then f(a) =0 and hence, 0 = f(a**) = f(r). But f(r) =r since
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x¢ X,. Then r =0, a contradiction. This proves that TS X,, and
so [I(T)e F,. Let g: F— F be a homomorphism such that g(y) =1
for all ye T, and g(y) =y for ye X — T. Then g(s) =s. Hence
s = g(s) = g(s- II(T)**) = g(a**) = g(r). But by definition of F), and
g, 9(r)e F,. Thus se F, and hence a = [I(T)-sc F,.

COROLLARY 2.1. Let F be a free PCSL and let re F*, then
{ac F:a* = r} is finite.

Proof. {acF:a* =r}={ac F:a** = r*} which is finite.

COROLLARY 2.2. Let F be an infinite free PCSL and let S & F,
S infinite. Then, |S*| =|S|. Proof is clear.

THEOREM 2.7. If B is a free Boolean algebra, then there exists
a free PCSL F such that F* = B.

Proof. Let X< B, freely Boolean generate B. Let F' be the free
PCSL on a set S of | X| free generators. Then F* is a free Boolean
algebra freely generated by S**. Since | X|=|S|=|S**|, by Lemma
2.1(6), then F'* = B.

LEMMA 2.8. Ewvery free Boolean algebra is a retract (vn the cate-
gory of PCSL) of a free PCSL.

Proof. Let B be a free Boolean algebra. By Theorem 2.7, there
exists a free PCSL F such that F* = B. But F* is a retract of
F, hence B is a retract of F.

THEOREM 2.8. In a free PCSL, all chains are countable.

Proof. Let F be a free PCSL, and let C = {a,c F: i€ I} be an
infinite chain. Then C* is an infinite chain in F* a free Boolean
algebra. But chains in F'* are countable [6], and since |C| = |C*|,
hence C is a countable chain.

THEOREM 2.9. All disjointed subsets of a free PCSL are count-
able.

Proof. Let S be an infinite disjointed subset of F, a free PCSL.
Now | S| = |S**|. Also a**b** = (ab)** = 0** =0, for ¢, be S. Thus
S** is a disjointed subset of F*. But in a free Boolean algebra all
disjointed sets are countable [7, p. 51], hence S is countable.
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3. Projective PCSL.

THEOREM 3.1. B, a Boolean algebra is projective in the category
of boolean algebras, iff it is projective im the category of PCSL.

Proof. B is aretract of a free Boolean algebra B. By Theorem
2.7 there exists a free PCSL F such that B = F'*, and thus B is a
retract of F in the category of PCSL. Hence B is a retract of F
in the category of PCSL and thus B is projective. Conversely, let
B be a Boolean algebra which is projective in the category of PCSL.
Thus there is a free PCSL F such that B is a retract of F. Then
by Lemma 2, it follows that B is a retract of F'* in the category of
Boolean algebras, and the result follows.

REMARK. The definition of projectivity makes it clear that the
results of the preceding section following Theorem 2.4, hold for
projective PCSL.

4. Finite projective PCSL.

DEFINITION 4.1. If Pis a partially ordered set and M S P, pe P,
let M, = {me M: m = p}.

DEFINITION 4.2. Let P be a finite partially ordered set and let
M be the set of maximal elements of P. Then a semi-lattice A with
least element, 0, is said to be freely generated by P with the defining
relation II(M) = 0 if there is an order preserving function ¢: P— A4
such that 7(6(M)) = 0, 6(P) generates A, and such that if B is any
semi-lattice with 0, and »: P— B is any order preserving function
such that [I(h(M)) = 0, then there exists a semi-lattice homomorphism
g: A— B such that ¢(0) =0, and ¢gd = h. The existence of A is
guaranteed by a known theorem of universal algebra. A is unique
up to isomorphism. See [4, p. 182, 183].

LEMMA 4.1. Let P be a finite partially ordered set and M be
the set of maximal elements of P. Suppose for each pe P — M we
have M, == M. Let A be a semi-lattice with 0 freely gemerated by
P with defining relation II(M) = 0 and let 6: P— A be an in Defi-
nition 4.2. Then,

(a) 0isanorder isomorphism. (So we may consider P contained
i A, and 0 as the inclusion function.)

(b) Ifp, -, p,cPthen pp,- -+ - p,=0if U{M:i<n}=M.

(¢) If p,p, -+, p.€P and 0 < pp,+ --- - p, =D then p;, < p,
some 1.
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(d) P is the set of meet irreducible elements of A.

Proof. (a) If SS P let M(S) = U {M,: pe S}, m(S) be the set
of minimal elements of S. Define

B={M}U{S: @ # S< P, M(S) = M and for
v, yeS, v = y—u|y}

where o || b means ¢ £b and b £ a. For S, S,e B, define

M it M(S,US) =M

SI.SZ = .
{ m(S,US;) if M(S,US,)+ M.

Then S,-S,=S8,-8, 8,-S,=8,S,-M= M for any S, S, B. It is
easy to verify that

M if M(S,US,U8) =M

S, (S,- S, =
( 0 {m(sluszuss) if (S,US,US)# M.

Therefore, (S,-S,) - S; = S;- (S, - S;)=8,-(S;- S;), and thus Bis a semi-
lattice with smallest element M if we define S, < S, whenever
S,-S;=S8,. Note that S, < S, iff either S, = M, or for any z€ S,
there exists y ¢ S, such that = y. Define h: P— B by ¢(p) = {p}
for pe P. If p, < p, then {p} < {p.}. Also, II(R(M)) = II{{m}: me
M} = M. Thus there exists a homomorphism g: A — B such that
90 = h. If 0(p) =< 6(p,), then h(p,) < h(p,). But {p} = {p.} implies
v, < p,or M, =M. If M, = M then p,e M and hence M = P = {p}},
so p, = p,. Therefore, 6 is an order isomorphism. Henceforth we may
assume PS A and 6(p) = p for all pe P.

(b) If pp,++---p,=0, then {p}- --- - {p,} = M. Therefore,
M= M{p, -+, 0.)) =U{M:i=n}. I U{M;:isn}= DM then
Py -+ D = (M) = 0.

(c) Suppose 0 <p,+--p,=p. Then {p}-----{p,} = {p} and
{p.}+ -+ - {p,} #+ M. Therefore, p = p;, for some <.

(d) Since P generates A, every element of A is a product of
elements of P. Therefore, any meet irreducible element of 4 is in
P. Conversely if pe P, and p == 0 then p is meet irreducible by (c)
and the fact that P generates A. If 0c P then 0c M because M, = M
for pe P — M, thus P = {0} and A = {0} and thus (d) is proved.

LEMMA 4.2. Let A be a finite semi-lattice, P be the set of meet
irreducible elements of A, and M the set of maximal elements of
pP. If

(a) If p,, -, pa€ P then p, -+ p, =0 if U{M,;:i1=n}=M.

(b) Ifp,p, -, p.€Pand0<p, - p, = p then p, < p some 1.
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Then for each pe P — M, M, + M and A is freely generated by P
with defining relation II(M) = 0.

Proof. If pe P— Mand M, = M, thenby (a) p=0. ButI(M)=0
by (a) hence p = II(M) which contradicts the fact that P is meet
irreducible. If xe€ A, x = 0, then « = II(S) for some S< P, and we
may assume the elements of S to be pairwise incomparable. If
xell(S), "< P and the elements of S’ incomparable, then by (b)
every member of S’ is greater than or equal to a member of S, and
vice-versa. Therefore S = S. Thus for 2 A there exists a unique
set S, of incomparable elements of P such that x = II(S,).

Suppose B is any semi-lattice with 0, and h: P— B is an order
preserving function such that I7(h(M)) = 0.

Define g: A— B by g(x) = II(h(S,)) for 2 + 0 and ¢g(0) =0. To
show g is a semi-lattice homomorphism, first note g(xy) = g(x)-g9(y) =0
if =0, or y=0. Suppose = 0 and y=+=0. If 2y =0 then §,, =
m(S, U S,), the set of minimal elements of S, U S,. Since ¢ is order
preserving we have g(x)-g(y) = II(h(S,)) - I(MS,)) = II(A(S, U S,)) =
1IK(S,,) = g(xy).

If 2y =0 then by () U{M,: pe S} UU{M,: pe S,} =M. There-
fore g(») - 9(y) = I (1(S, U S,)) < I(M(M)) = 0 = g(xy). Clearly g|P=h,
and the proof is complete.

LEMMA 4.3. Let A be a finite semi-lattice with 1 and suppose
A — {1} satisfies the hypothesis of Lemma 4.2. Then

(a) A is pseudo complemented and for each xe A — {1}, a* =
(M — M,) and x** = I[I(M,) where M, M as in Lemma 4.2.

(b) A* — {1} = {II(S): S M}.

(c¢) M is the set of dual atoms of A which is also the set of
dual atoms of A*.

(d) If Sg A*, then >,,(S) exists and equals > . (S).

Proof. Firstly we show that if S M, me M and II(S) < m,
then me S. We prove this as follows: If I7(S) = 0 then S =M by
hypothesis (a), and thus me S. If II(S) == 0 then by hypothesis (b)
m' £ m for some m’'e S, but then m = m’'e S, so me S.

(a) Let xe A — {1} and let y = [I(M — M,). Then

wy = A(M,)- II(M — M,) = I(M) = 0.

Now suppose 2z = 0 for some xc€ A. Using the notation of the proof
of Lemma 4.2 we have 7I(S, U S,) = 0. Therefore by hypothesis (b),
M=U{M,;peS,US,}). If meM— M, it follows that m = p for
some peS,US, If peS, then m = contradicting me M — M,.
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Therefore, pe S, and so m = p = 2. Therefore, y = II(M — M,) = 2
and this proves that y = x*.
Now

meM,—y =I(M~—- M,)=m
—meM — M, by hypothesis (a) .

Therefore, M, = M — M, and «** = y* = I(M — M,) = II(M,). This
proves (a).

(b) By (a), every element of A*is of the form II(S) for some
S& M. If meM, then m** = II(M,) = m, hence M < A*. This
proves (b).

(c) If meM and m<ax <1l xcA, then m < p <1 for some
pe P. This is a contradiction and so m is a dual atom of A. If z
is a dual atom of A4, then x is meet irreducible and hence ze M.
By (b), the dual atoms of A* are in M. Therefore, M is the set of
dual atoms of A*.

(d) By hypothesis (b) of Lemma 4.2, and (b) above, it is easy
to see that if aec A* xe 4, and 0 < a < then xe A*. This implies
(d) just as it did for a free PCSL, in the proof of Theorem 2.6.

REMARK. By Lemmas 4.2 and 4.3, the free finite PCSL F with
% generators may be described as follows. Let P be the set

{zri=njU{z:S={,2 -, n}},

and suppose %, < 2, iff 1€ S. Then F is the semi-lattice with 0 which
is freely generated by P with defining relation 7{z,: S&{1, ---, n}} =0.

THEOREM 4.1. Let A be a finite projective PCSL, let P be the
set of meet irreducible elements of A — {1}, and M be the set of
maximal elements of P. Then

(a) If SE€P,pecP, and 0 < II(S)=< p, then s<p for some
seS.

(b) If SS P, then II(S) =0 iff U{M,:se S} =M.

(¢) N{M,:peP— M}+ @.

Proof. As in the proof of Lemma 4.3, it is easy to see that M
is the set of dual atoms of A. M is also the set of dual atoms of
A*. It follows that (P — M)n A* = @.

(a) Let F be a PCSL freely generated by a set X such that
|X|=|P|. Let h: X— P be 1 —1 and onto. Then there exists a
homomorphism f: F— A such that f| X = k. Since P generates A,
fis onto. Since A is projective, there exists a homomorphism g: A—F'
such that fg =1,. Letpe P— Mand 2 = h™'(p). Now g(p)=1I(T)-r
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for some TS X, re F*. Hence p = fg(p) = I(f(T))- f(r). Since p
is meet irreducible and p¢ A*, it follows that p = f(y) for some
yeT. But p = f(z) and f| X is 1 — 1, therefore 2 = ye T and so
g(p) £ II(T) £ x. We have therefore shown that for any pc P — M,
9(p) = h™'(p).

Now suppose SE P, pe P~ M and 0 < II(S) < p. Since g is
1—-1, 0<I(9(S)) = g(p) £ h™(p), so by Theorem 2.4, g(s) < 7 (p)
for some seS. Hence s = fy(s) < fh(p) = p. This proves (a) for
the case when p¢ M. If pe M and II(S) < p for some SE P, then
II(S**) < p** = p. Since p is super-meet irreducible in A*, it follows
that for some s€ S, s < s** < p, and so (a) holds.

(b) If S€ P and II(S) = 0, then for any me M, II(S) < m and
so m e M, for some s¢ S, by the preceding paragraph. This proves (b).

(¢) We have shown that A satisfies the hypothesis of Lemmas
4.2 and 4.3. Therefore, for each v A — {1}, * = I[I(M — M,). Suppose
N{M,:peP— M} = @. Then

I{p*:pe P— M} = II{lI(M — M,): pc P — M}
=IU{M— M,:pe P — M})
=1IM-N{M,:pcP—-M})=0.

Therefore,
0 =yg(0) =gUl{p*:pe P — M})
= Il{g(p)*:pe P — M}
= I (p)*:pe P — M}
since g(p) = h~'(p) for all pe P — M.

But this is impossible, because if T is any finite subset of X, then
I(T*) + 0 by Lemma 2.1.

LeMMA 4.4. Suppese a PCSL A satisfied the hypotheses of Lemma
4.3. Let B be PCSL and g: A— B is a semi-lattice homomorphism
such that g(0) = 0, g(p**) = g(p)** for all pe P, P the set of meet
wrreducible elements of A, and g(u*) = g(u)* for all we A*. Then ¢
18 @ PCSL homomorphism.

Proof. Let « by any element of A. We first prove that g(z**) =
g(@)**. We have z = I[I{p,: i < n} for some {p, -+, p,} & P. Hence

9@**) = 9(T{p.: i < n}™) = gUI P22 i < n))
by (23) of §1

= {g(p*): 1 = n} = H{g(p.)**: 1 = n}
= (Hg(p): 7 = w})** = g(Il{p;: T = n})** = g(x)** .
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Let ze€ A and let w = 2**, we have
g(x*) = g(@***) = g(u*) = g(u)* = g(x**)* = g(x)*** = g(x)* .

Hence ¢ is a * homomorphism.

THEOREM 4.2. Let A be a finite semi-lattice with 1, and let P
be the meet irreducible element of A — {1} and M the maximal ele-
ments of P. If

(a) If p, -+, D€ P then p, -+ p, =0 iff U{M;:1=n}=DM.

(b) If p,py, -, PP and 0 <p -+ p,=p, then p, <p for
some 1.

(¢) N{M,:peP - M}= Q.

Then A is a projective PCSL.

Proof. By Lemma 4.3 A is a PCSL. Let M = {a, -, a,} and
P—-—M={b,---,0b,). Let F be a PCSL freely generated by
(@, «++, 2} U{yy, +++, ¥n} and let f: F— A be a homomorphism such
that f(z;,) = a;, and f(y;) =b; for all ¢, 5. If 1 <4< n, let

6 =+ S {wiik =1+ S {yrti b < al
+ 2 {yf b Lad.
We observe that ¢; is a dual atom of F'*. Let D be the set of all
dual atoms of F'* which are not in {¢, ¢, -+, ¢,}. Since N{M,:pe

P — M} + @ we may assume that ¢, = b; forallj=1,2 ---, m. Let
h: P— F Dbe defined by

h(a,) = ¢, ZI(D)

ha,) = ¢, forl<iZn

h(b;) = I{y,: b; < b,}- [I(D) , forlsj=m.
To show h is order preserving we observe the following: If b;<a,
then

R(b;) £ y;- I(D) < y;* - II(D) < Z{yi*: b, < a;}- (D)
=c¢ -I(D) = a,) .
If b, < b, then h(b,;) < h(b,) since
{bk:b; = bi} 2 {0 b, < b} .
Also, i(a,) - -« h(a,) is the product of all the dual atoms of F*, which
is 0. By Lemma 4.2, there exists a semi-lattice homomorphism
g:A — {1} —F such that g|P=~h. Extend ¢ to A by defining

9(1) =1. By Lemma 4.3, 2* = [I(M — M,) for all ze A. Now f(c¢;) =
ar* + Zag k= ) + T{0r*:b; < a}.+ T{br:b; £ a;} = a, for all 7, since
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af*=a, af < a;, for k+ 1, b}* < a, if b; < a,, and b < a, if b; £ a,.
If de D, then either d = xi* + x* for some k = [, in which case
fd)y=a,+a,=1,ord=X{x}; k<n}in which case f(d)=X{a}: k<n}=
(Ha:k = n})* =0* =1, or d = a}* + y} for some ¢ and some j such
that b; < a,, in which case f(d) = a, + II{a;: b; < a;} = I{a, + a2 b; &
a} =1, or d = x}* + y}* for some 7 and some j such that b; £ a,
in which case f(d) = a, + T{a;: b; < @} = II{a, + a,: b; < a;} =1. Thus
f(d) =1 for all de D. Now

f9(a) = f(e) = a,, for 7 >1
f9(a,) = f(e)- I(f (D) = a,, and
fo(b;) = I{b,:b; = by} - I f(D) =b;, for all 5.

Since P generates A we have fg = I,. It remains to show that ¢ is
a * homomorphism.

For any k, yi* is the product of all dual atoms of F* which
are = yr*. Since F'* is a free Boolean algebra, the only such dual
atoms are the ones of the form ¥(S* U T**) where y,€ Tand SU T =
(@, <o, ®p Yy =, Yn}. Thus yi*= [I{c;: b, <a;}-II(D,) where D, < D.
Therefore for any j,

9(b;)** = I{yk*:b; < b} - II(D)
= IT{IT{e;: b, < a}: b; < by} - (D) = H{cs: b; < a,}- (D)
= I{g(a,): b; < a.} = g(Il{a,: b; < a;}) = g(b}*) .

Also g(a)** = g(ar*) since a,€ A* and g(a,)e F. We observe that
if R is the set of dual atoms of a finite Boolean algebra, then for
any TS R, II(T)* = I(R — T). Hence if ue A*, then u = [I(S), for
some S& M, and u* =II(M — S). If a,e S,

g(u)* = (I{c;:a;e S} - H(D))* = Il{e;: a,€ S}
= g(I(M — 8)) = g(u™) .

While if a, ¢ S, g(w)* = (II{c,: a,€ S})* = lI{c,: a; ¢ S} - [I(D) = g(II(M —
S)) = g(u*). We have now satisfied the hypothesis of Lemma 4.4, so
g is a * homomorphism. Since A has been shown to be a retract of
a free PCSL, then A is projective.

THEOREM 4.3. Let A be a finite semi-lattice with 1. Let P be
the set of meet irreducible elements of A — {1}, and M the set of
maximal elements of P. Then A is projective if and only if the
Sfollowing hold.

(a) If Q€ P, then II(Q) = 0 off for each me M, thereisa g€ @Q
such that m = q.
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(b) If Q< P,peP and 0< II(Q) < p, then q = p, for some
qeQ

(¢) There exists an m e M such that m = p for every pc P — M.
Proof of this follows from Theorems 4.1 and 4.2.

THEOREM 4.4. If P is a finite partially ordered set and M is
the set of mawximal elements of P. Suppose

(a) For every pe P, there exists an me M such that p < m.

(b) There exists a me M such that m = p, for every pe P — M.

Then the semi-lattice with 0 which is freely generated by P with the
defining relation (M) =0, is a projective PCSL, and every finite
projective PCSL can be so obtained. Proof of this follows from
Lemma 4.1 and Theorem 4.2.

REMARK. To the conditions of Theorem 4.2 and 4.3, we could add
the following, though redundent condition: If Q & M, then I71(Q) =0
iff @ =M.
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