# AN EMBEDDING OF SEMIPRIME P.I.-RINGS 

Joe W. Fisher and Louis Halle Rowen

Let us say an extension $R^{\prime}$ of a ring $R$ is a quotient ring of $R$ if every regular element of $R$ is invertible in $R^{\prime}$. In this note we construct a class of quotient rings of semiprime P.I.-rings and use this construction to find rapid proofs of several facts about semiprime P.I.-rings.

1. Preliminaries. Throughout this paper $R$ will denote a semiprime P.I.-ring with unity and center $C$, i.e., $R$ has no nonzero nilpotent ideals and the standard polynomial

$$
S_{2 n}\left(X_{1}, \cdots, X_{2 n}\right)=\Sigma_{\pi}(\operatorname{sgn} \pi) X_{\pi(1)} \cdots X_{\pi(2 n)}
$$

the sum taken over all permutations $\pi$ of ( $1, \cdots, 2 n$ ), is an identity of $R$ for suitable $n$ (the minimal such $n$ is the degree of $R$ ). Formanek [5] has constructed a polynomial $g_{n}\left(X_{1}, \cdots, X_{n+1}\right)$ which is central for all semiprime P.I.-rings of degree $n$, and Rowen [11] has used these central polynomials to prove

Theorem A. Any nonzero ideal of $R$ intersects $C$ nontrivially.
Let $S=\{c \in C: c r \neq 0$ for all nonzero $r$ in $R\}$. Define an equivalence relation on $R \times S$ by saying $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ if $r_{1} s_{z}=r_{2} s_{1}$, and let $r s^{-1}$ denote the equivalence class of $(r, s)$. Then $R_{s}=\left\{r s^{-1}\right.$ : $(r, s) \in R \times S\}$ is a ring when endowed with the (well-defined) operations $r_{1} s_{1}^{-1}+r_{2} s_{2}^{-1}=\left(r_{1} s_{2}+r_{2} s_{1}\right)\left(s_{1} s_{2}\right)^{-1}$, called the ring of central quotients of $R$. The following theorem is a direct consequence of Theorem A (cf., Rowen [11, §2]):

Theorem B. If $R$ is a prime P.I.-ring of degree $n$, then $R_{s}$ is simple Artinian of dimension $n^{2}$ over its center $C_{S}, C_{S}$ is the quotient field of $C$, and $R_{s}$ satisfies the identities of $R$.

Theorem B often enables us to study $R$ by examining $R_{s}$. If $R$ is a semiprime P.I.-ring of degree $n$ and satisfies the ascending chain condition on annihilators of two-sided ideals, then $R_{s}$ is the classical semisimple Artinian ring of left and right quotients of $R$ (cf., [12]). Unfortunately, this situation fails for semiprime P.I.rings in general, so one is led to study other extensions of $R$. The purpose of this paper is to introduce a straightforward type of extension of $R$ and to deduce from it properties of semiprime P.I.rings and their classical quotient rings (if these exist). This paper
subsumes Fisher [4]. First we shall derive some easy known properties of $R$.

For a subset $A$ of $R$, let $\operatorname{Ann}_{R}(A)$ denote $\{r \in R \mid A r=0\}$. Also we say an ideal $A$ of $R$ is essential if for every nonzero ideal $B$ of $R, A \cap B \neq 0$. Since $R$ is semiprime, $A \cap B=0$ if and only if $A B=$ 0 . The following lemma is known by Martindale [9].

Lemma 1. (i) If $E$ is an essential ideal of $C$, then $E R$ is an essential ideal of $R$.
(ii) If $J$ is a left ideal of $R$ with $\operatorname{Ann}_{R}(J)=0$, then $J \cap C$ is essential in $C$, so $J$ contains an essential ideal of $R$.

Proof. (i) Suppose that $A \cap E=0$ for some ideal $A$ of $R$. Then $(A \cap C) \cap E=A \cap(C \cap E)=A \cap E=0$, implying $A \cap C=0$. Hence $A=0$ by Theorem A and thus $E R$ is essential.
(ii) Viewed as a ring (without 1), $J$ is clearly a P.I.-ring and can easily be shown to be semiprime. We claim that $J \cap C=$ cent $J$. Indeed $J \cap C \cong \operatorname{cent} J$ and if $a \in \operatorname{cent} J$, then for all $r$ in $R$ and for all $x$ in $J$, $(r a-a r) x=r a x-a(r x)=r a x-r(x a)=r a x-r a x=0$. Hence ( $r a-a r$ ) $\in \operatorname{Ann}_{R}(J)=0$ and so $a \in C$.

Now let $B$ be an ideal of $C$ such that $(J \cap C) \cap B=0$. Then $(J \cap C \cap B R)^{2} \cong(J \cap C) B R=B(J \cap C) R \cong(B \cap(J \cap C)) R=0$ and so $(J \cap C \cap B R)^{2}=0$. Since $J \cap C$ has no nonzero nilpotent elements, we have $J \cap C \cap B R=0$, i.e., $(J \cap C) \cap(J \cap B R)=0$. But by Theorem A applied to the semiprime ring $J$ (with center $J \cap C$ ), $J \cap B R=0$. This implies $R J B=B R J \cong J \cap B R=0$, so $B \cong \operatorname{Ann}_{R}(R J)=\operatorname{Ann} J=$ 0 . Hence $J \cap C$ is essential in $C$. The rest of the lemma follows from (i).
2. Definition and elementary properties of $T(R)$. For the remainder of this paper, we assume that the semiprime P.I.-ring $R$ has degree $n$. This implies that every prime factor ring of $R$ has degree equal to or less than $n$. The degree of a prime ideal $P$ of $R$ is defined as the degree of $R / P$.

Let $\mathscr{P}$ be a collection (indexed by $\Lambda$ ) of prime ideals $P_{\lambda}$ of $R$ such that $\cap\left\{P_{i}: \lambda \in \Lambda\right\}=0$. For each $\lambda$ in $\Lambda$, set $R_{2}=R / P_{2}$, let $Q_{\lambda}$ equal the simple Artinian ring of central quotients of $R_{2}$, and let $Q$ be the complete direct product $\Pi\left\{Q_{\lambda}: \lambda \in \Lambda\right\}$. There is a natural embedding $R \rightarrow \Pi R_{\lambda} \rightarrow Q$ and we shall often view $R$ as a subring of $Q$ under this embedding. Hence $R$ satisfies the identities of $Q$. On the other hand, any identity $f$ of $R$ is an identity of each $R_{2}$, and is an identity of each $Q_{2}$ by Theorem B; hence $f$ is an identity of $Q=\Pi Q_{2}$. Consequently, $R$ and $Q$ satisfy the same identities.

Clearly $Q$ is von Neumann regular, i.e., for any $x \in Q$, there is some $y$ in $Q$ such that $x y x=x$.

As remarked above, each $Q_{\lambda}$ has degree $\leqq n$. Let $\Lambda_{j}=\left\{\lambda \in \Lambda: Q_{\lambda}\right.$ has degree $j\}$ and let $\bar{Q}_{j}=\Pi\left\{Q_{\lambda}: \lambda \in \Lambda_{j}\right\}$. Then $\bar{Q}_{j}$ is a semiprimitive ring of degree $j$ with the property that every nonzero homomorphic image of $\bar{Q}_{j}$ has degree $j$. This is equivalent to saying, by the Artin [2]-Procesi [10] theorem, that $\bar{Q}_{j}$ is an Azumaya algebra of rank $j$. Hence $Q$ is a finite direct sum of the Azumaya algebras $\bar{Q}_{j}$ of finite rank $j$.

Lemma 2. Any nonzero homomorphic image $\psi(Q)$ of $Q$ is von Neumann regular. Moreover, $\psi(Q)$ is the finite direct sum of the Azumaya algebras $\psi\left(\bar{Q}_{j}\right)$ of finite rank $j$, and each identity of $R$ is an identity of $\psi(Q)$.

Proof. Every homomorphic image of a von Neumann ring is von Neumann regular. Also, every homomorphic image of $\psi\left(\bar{Q}_{j}\right)$ is a homomorphic image of $\bar{Q}_{j}$, thereby having rank $j$; hence $\psi\left(\bar{Q}_{j}\right)$ is Azumaya of rank $j$, and clearly $\psi(Q)$ is the direct sum of $\psi\left(\bar{Q}_{j}\right)$ for $j=1, \cdots, n$. The last assertion is immediate.

For any $x$ in $Q$, let $x_{\lambda}$ denote the component of $x$ in $Q_{\lambda}$ and let $W_{x}=\left\{\lambda \in \Lambda: x_{\lambda} \neq 0\right\}$. Set $V=\left\{x \in Q: \bigcap\left\{P_{\lambda}: \lambda \in W_{x}\right\}\right.$ is an essential ideal of $R\}$. Now $V$ is an ideal of $Q$ because, taking $x, y$ in $V$ and $q$ in $Q, W_{x \pm y} \subseteq W_{x} \cup W_{y} ; W_{q x} \subseteq W_{x} ; W_{x q} \subseteq W_{x}$. Let us define $T(R, \mathscr{P})=$ $Q / V$. From Lemma 2 we have that $T(R, \mathscr{P})$ is a finite direct sum of Azumaya algebras of finite rank and is von Neumann regular.

Theorem 1. (i) There is a canonical imbedding $R \rightarrow T(R, \mathscr{P})$ given by $R \rightarrow Q \rightarrow Q / V$.
(ii) Half regular elements of $R$ are both left and right invertible in $T(R, \mathscr{P})$.
(iii) $T(R, \mathscr{P})$ satisfies precisely the same identities as $R$.

Proof. (i) We need show only that $R \cap V=0$. If $r \in R \cap V$, then $\bigcap\left\{P_{\lambda}: \lambda \in W_{r}\right\}$ is essential in $R$ and so $\bigcap\left\{P_{\lambda}: r \in P_{\lambda}\right\}=0$. Hence $r=0$.
(ii) Let $r$ in $R$ have right annihilator zero. Then $\operatorname{Ann}_{R}(R r)=$ 0 and $R r$ contains an essential ideal $E$ of $C$ by Lemma 1(ii). Let $W_{r}^{\prime}=\left\{\lambda: P_{\lambda} \equiv E\right\}$. Clearly $W_{r}^{\prime} \cong W_{r}$. Moreover, for any $\lambda$ in $W_{r}^{\prime}$ there is an $x_{\lambda}$ in $Q_{\lambda}$ such that $0 \neq x_{\lambda} r_{\lambda} \in \operatorname{cent} Q_{\lambda}$. Since cent $Q_{\lambda}$ is a field, there is $d_{\lambda}$ in cent $Q_{\lambda}$ such that $d_{\lambda} x_{\lambda} r_{\lambda}=1_{\lambda}$. Furthermore, $r_{\lambda} d_{\lambda} x_{\lambda}=1_{\lambda}$ because $Q_{\lambda}$ is simple Artinian. Define $y$ in $Q$ as follows: $y_{\lambda}=0$ for $\lambda \notin W_{r}^{\prime}$ and $y_{\lambda}=d_{\lambda} x_{\lambda}$ for $\lambda \in W_{r}^{\prime}$. Then $(y r-1)_{\lambda}=0$ and $(r y-1)_{\lambda}=0$ for all $\lambda$ in $W_{r}^{\prime}$. Thus $\bigcap\left\{P_{\lambda}: \lambda \in W_{y r-1}\right\} \supseteqq \bigcap\left\{P_{\lambda}: \lambda \notin W_{r}^{\prime}\right\} \supseteq$
E. It follows from Lemma 1(i) that $y r-1 \in V$; likewise $r y-1 \in V$. Hence, for $\bar{y}$ the image of $y$ in $T(R, \mathscr{P})$, we have $\bar{y} r=1$ and $r \bar{y}=$ 1 in $T(R, \mathscr{P})$.
(iii) $T(R, \mathscr{P})$ satisfies each identity of $R$ by Lemma 2 ; conversely, by (i), each identity of $T(R, \mathscr{P})$ is an identity of $R$.

The following theorem of Herstein-Small [8] is a consequence of Theorem 1.

Corollary 1. Half regular elements of $R$ are regular.
Proof. If $r$ in $R$ is, say, right regular, then for some $y \in T(R$, $\mathscr{P}$ ) we have $r y=1$. Hence $r$ is left regular.

Corollary 2. If $R$ has a classical left ring of quotients $R^{\prime}$, then $R^{\prime}$ satisfies the same polynomial identities as $R$.

Proof. In view of Theorem 1(ii) the canonical embedding of $R$ into $T(R, \mathscr{P})$ extends to an embedding of $R^{\prime}$ into $T(R, \mathscr{P})$. Hence $R^{\prime}$ satisfies the identities of $T(R, \mathscr{P})$ which are precisely the identities of $R$.

Note that this construction of $T(R, \mathscr{P})$ is related to constructions of Amitsur [1] and Goldie [7]. Also, those versed in logic may wish to regard $T(R, \mathscr{P})$ as the "reduced product" (cf., [6]) of the simple Artinian rings $\left\{Q_{\lambda}: \lambda \in \Lambda\right\}$ by the filter $\left\{\Lambda-W_{x}: x \in V\right\}$.
3. Definition and structure of $T(R)$. Now we consider an interesting special case of $T(R, \mathscr{P})$. Index the set of all the prime ideals of $R$ by a set $\bar{\Lambda}$ with $\bar{\Lambda}_{i}=\left\{\lambda \in \bar{\Lambda}: P_{\lambda}\right.$ has degree $\left.i\right\}$ for $i=1$, $\cdots, n$. Set $\bar{N}_{i}=\bigcap\left\{P_{\lambda}: \lambda \in \bar{\Lambda}_{i}\right\}$ (if $\bar{\Lambda}_{i}=\phi$ then $\bar{N}_{i}=R$ ), $\Lambda_{i}=\left\{\lambda \in \bar{\Lambda}_{i}\right.$ : $\left.P_{\lambda} \not \equiv \bigcap_{j=i+1}^{n} \bar{N}_{j}\right\}, \mathscr{P}_{i}=\left\{P_{\lambda}: \lambda \in \Lambda_{i}\right\}, \mathscr{P}=\mathscr{P}_{1} \cup \cdots \cup \mathscr{P}_{n}, \Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{n}$. Clearly $\cap\{P: P \in \mathscr{P})=\bar{N}_{1} \cap \cdots \cap \bar{N}_{n}=0$. We define $T(R)$ to be $T(R, \mathscr{P})$. Note that $\Lambda_{n}=\bar{\Lambda}_{n}$ and that $\Lambda=\Lambda_{n}$ if and only if $\bar{N}_{n}=0$.

Let $N_{i}=\bigcap\left\{P: P \in \mathscr{P}_{i}\right\}$ and let $R_{i}=R / N_{i}$. Note that $N_{n}=\bar{N}_{n}$. Clearly $R$ is a subdirect product of the $R_{i}$ and this subdirect decomposition is unique with respect to the properties that each of the nonzero subdirect factors has a degree different from each of the other subdirect factors and that for any subdirect factor of degree $j$, the intersection of its prime ideals of degree $j$ is zero. Our aim is to show how the structure of $T(R)$ is linked to this decomposition. As in Rowen [12], let a polynomial be called regular if it is linear in some indeterminant, and let the central kernel of a ring be the additive subgroup generated by the values taken (in the center) by regular central polynomials of the ring. The central kernel is an ideal of the center $C$. If the central kernel is essential in $C$, we
say that $R$ has essential central kernel. Let $I$ be the central of $R$, let $B=N_{1} \cap \cdots \cap N_{n-1}$, and let $R_{n}^{\prime}=R / B$. It is shown in Rowen [12] that for $\lambda \in \bar{\Lambda}, I \nsubseteq P_{\lambda}$ if and only if $\lambda \in \Lambda_{n}$.

Lemma 3. (i) $\left(R I+N_{n}\right) / N_{n}$ is an essential ideal of $R_{n}$.
(ii) $\quad\left(N_{n}+B\right) / B$ is an essential ideal of $R_{n}^{\prime}$.
(iii) $A$ semiprime ring $R$ of degree $j$ has essential central kernel if and only if the intersection of its prime ideals of degree $j$ is zero.

Proof. (i) Suppose that $\left[\left(A+N_{n}\right) / N_{n}\right] \cap\left[\left(R I+N_{n}\right) / N_{n}\right]=0$ for some ideal $A$ of $R$. Then $A R I \subseteq N_{n} \subseteq P_{\lambda}$ for each $\lambda \in \Lambda_{n}$. Since $I \nsubseteq P_{\lambda}$ for $\lambda \in \Lambda_{n}$, we have $A \cong \bigcap\left\{P_{\lambda}: \lambda \in \Lambda_{n}\right\}=N_{n}$. So

$$
\left(A+N_{n}\right) / N_{n}=0 .
$$

(ii) Suppose that $[(A+B) / B] \cap\left[\left(N_{n}+B\right) / B\right]=0$ for some ideal $A$ of $R$. Then $A N_{n} \subseteq B=N_{1} \cap \cdots \cap N_{n-1} \subseteq P_{\lambda}$ for each $\lambda \in \Lambda-\Lambda_{n}$. By definition $P_{\lambda} \nsupseteq N_{n}$ for $\lambda \in \Lambda-\Lambda_{n}$, so $A \subseteq \bigcap\left\{P_{i}: \lambda \in \Lambda-\Lambda_{n}\right\}=B$. So $(A+B) / B=0$.
(iii) Let $\bar{N}_{j}$ be the intersection of the prime ideals of degree $j$. Since every prime ideal of degree $<j$ contains $I$, we have $I \cap \bar{N}_{j}=0$. Since $I$ is essential in $C$, we have $\bar{N}_{j} \cap C=0$, hence $N_{j}=0$ by Theorem A. The reverse implication is immediate from (i) and Lemma 1.

Lemma 3(iii) gives us a neater characterization of $R_{1}, \cdots, R_{n}$. Namely, the nonzero $R_{i}$ are uniquely determined if we are to express $R$ as a subdirect product of minimal length of rings with essential central kernel.

Lemma 4. (i) Suppose that $J$ is an ideal of $R$ and $N_{n} \subseteq J$. Then $J$ is essential in $R$ if and only if $J / N_{n}$ is essential in $R_{n}$.
(ii) Suppose $B \cong J$. Then $J$ is essential in $R$ if and only if $J / B$ is essential in $R_{n}^{\prime}$.

Proof. (i) $\Rightarrow$ Suppose that $J / N_{n} \cap\left[\left(A+N_{n}\right) / N_{n}\right]=0$ for some ideal $A$ of $R$. Then $J A \subseteq N_{n}$ and so $B \cap J A=0$. Now since $I \subseteq$ $P_{\lambda}$ for each $\lambda \in \Lambda-\Lambda_{n}$, we have $R I \cong \bigcap\left\{P_{\lambda}: \lambda \in \Lambda-\Lambda_{n}\right\} \subseteq B$ and $R I \cap J A=0$, or $I J A=0$. Hence $(J \cap A I)^{2} \subseteq(J A I)^{2}=0$ and $J \cap A I=$ 0 since $R$ is semiprime. By hypothesis, we then see $A I=0$, so $A \subseteq N_{n}$ by Lemma $3(\mathrm{i})$. Consequently $\left(A+N_{n}\right) / N_{n}=0$.

Conversely suppose that $J \cap A=0$ for some ideal $A$ of $R$. Then $J A=0 \cong N_{n}$, so $A \subseteq N_{n}$ by hypothesis. Thus $A^{2} \subseteq N_{n} A \subseteq J A=0$ and so $A=0$.
(ii) $(\Rightarrow)$ Suppose that $J / B \cap[(A+B) / B]=0$. Then $J A \subseteq B$, or
$J A N_{n} \subseteq B \cap N_{n}=0$ which implies $A N_{n}=0$. Hence $A \subseteq B$ by Lemma 3(ii) and so $(A+B) / B=0$. The proof of the converse is analogous to that in (i).

Theorem 2. $\quad T(R) \cong T\left(R_{1}\right) \oplus \cdots \oplus T\left(R_{n}\right)$.

Proof. We use induction on $n=$ degree of $R$. The assertion is true for $n=2$. Since $R_{n}^{\prime}$ has degree $\leqq n-1$, we have by our induction hypothesis that $T\left(R_{n}^{\prime}\right) \cong T\left(R_{1}\right) \oplus \cdots \oplus T\left(R_{n-1}\right)$. Let $\bar{Q}_{n}=$ $\Pi\left\{Q_{i}: \lambda \in \Lambda_{n}\right\}, \bar{Q}_{n}^{\prime}=\Pi\left\{Q_{\lambda}: \lambda \in \Lambda-\Lambda_{n}\right\}, V_{n}=V \cap \bar{Q}_{n}$, and $V_{n}^{\prime}=V_{n} \cap \bar{Q}_{n}^{\prime}$. Clearly $\quad V=V_{n} \oplus V_{n}^{\prime}$ and $T(R)=Q / V \cong \bar{Q}_{n} \oplus \bar{Q}_{n}^{\prime} / V \cong \bar{Q}_{n}^{\prime} / V_{n} \oplus \bar{Q}_{n}^{\prime} / V_{n}^{\prime}$. But Lemma 4(i) shows $\bar{Q}_{n} / V_{n} \cong T\left(R_{n}\right)$ and Lemma 4(ii) shows $\bar{Q}_{n}^{\prime} / V_{n}^{\prime} \cong$ $T\left(R_{n}^{\prime}\right)$. Thus $T(R) \cong T\left(R_{n}\right) \oplus T\left(R_{n}^{\prime}\right) \cong T\left(R_{1}\right) \oplus \cdots \oplus T\left(R_{n-1}\right) \oplus T\left(R_{n}\right)$.

Theorem 2 enables us to reduce the study of $T(R)$ to rings with essential central kernel.

Theorem 3. Let $R$ be a semiprime P.I.-ring of degree $n$ with essential central kernel. Then $T(R)$ is an Azumaya algebra of rank $n^{2}$ and $T(C) \cong \operatorname{center}(T(R))$.

Proof. By Lemma 3(iii), $N_{n}=0$. Hence $T(R)$ is a homomorphic image of $\Pi\left\{Q_{2}: \lambda \in \Lambda_{n}\right\}$. Therefore, $T(R)$ is Azumaya of rank $n^{2}$. Write $C_{\lambda}=$ center $Q_{\lambda}$ for $\lambda \in \Lambda$. Since $\Pi\left\{Q_{\lambda}: \lambda \in \Lambda_{n}\right\}$ is an Azumaya algebra of rank $n^{2}$, we have the following fact which we will need later, cent $\left[\left(\Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right) /\left(V \cap \Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right)\right]=\left(\Pi_{\lambda \in 1_{n}} C_{\lambda}+V \cap \Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right) /(V \cap$ $\Pi_{2 \in \Lambda_{n}} Q_{z}$ ).

We claim that the homomorphism $\varphi:\left(\Pi_{\lambda \in \Lambda} Q_{\lambda}\right) / V \rightarrow\left(\Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right) /(V \cap$ $\Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}$ ), induced by the projection, $\Pi_{\lambda \in \Lambda} Q_{\lambda} \rightarrow \Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}$, is an isomorphism. Indeed, suppose that $0 \neq x+V$ for $x$ in $\Pi_{\lambda \in \Lambda} Q_{\lambda}$. Then $\bigcap\left\{P_{\lambda}: \lambda \in W_{x}\right\}$ is not essential. Since each prime of degree $<n$ contains $I$ and $I \subseteq \bigcap\left\{P_{\lambda}: \lambda \in W_{x} \cap\left(\Lambda-\Lambda_{n}\right)\right\}$ is essential, we conclude that $\bigcap\left\{P_{\lambda}: \lambda \in\right.$ $\left.W_{x} \cap A_{n}\right\}$ is not essential and $0 \neq x+\left(V \cap \Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right)$. Consequently $\varphi$ is an isomorphism.

Now by Rowen [12, Theorem 3] there exists a $1: 1$ correspondence of $\left\{P_{\lambda}: \lambda \in \Lambda_{n}\right\}$ and the set of prime ideals of $C$, not containing $I$, given by $P_{\lambda} \rightarrow P_{\lambda} \cap C$. We claim that $T(C) \cong\left(I I_{\lambda \in \Lambda_{n}} C_{\lambda}\right) /\left(V \cap \Pi_{\lambda \in A_{n}} C_{\lambda}\right)$. The proof of this is similar to the one in the preceding paragraph because every prime in $C$ which is not in $\left\{P_{2} \cap C: \lambda \in \Lambda_{n}\right\}$ contains $I$ which is essential in $C$.

Finally we have all the requisite pieces to obtain

$$
\begin{aligned}
T(C) & \cong\left(\Pi_{\lambda \in \Lambda_{n}} C_{\lambda}\right) /\left(V \cap \Pi_{\lambda \in \Lambda_{n}} C_{\lambda}\right) \\
& \cong\left(\Pi_{\lambda \in \Lambda_{n}} C_{\lambda}+V \cap \Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right) /\left(V \cap \Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right) \\
& \cong \operatorname{cent}\left[\left(\Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right) /\left(V \cap \Pi_{\lambda \in \Lambda_{n}} Q_{\lambda}\right)\right] \\
& \cong \operatorname{cent}\left(\left(\Pi_{\lambda \in \Lambda} Q_{\lambda}\right) / V\right)=\operatorname{cent}(T(R))
\end{aligned}
$$

Remark 1. Given $\mathscr{P}$ as in $\S 2$, let $\varphi: Q \rightarrow T(R, \mathscr{P})$ be the canonical homomorphism. Then there is a partial order on \{ideals $A$ of $Q: \operatorname{Ker} \varphi \subseteq A$ and $R \cap A=0\}$. So there exists a maximal such ideal $\bar{A}$. Then $Q / \bar{A} \cong T(R, \mathscr{P}) /(\bar{A} /(\operatorname{Ker} \varphi)$ is an extension of $R$ which has all the aforementioned properties of $T(R, \mathscr{P})$, and, moreover, any ideal of $Q / \bar{A}$ intersects $R$ (viewed as a subring) nontrivially.

Remark 2. Suppose that $R$ has an involution (*). Then, for any prime $P$ of degree $j$, there is a prime $P^{*}$ of degree $j$ and an isomorphism $R / P \rightarrow R / P^{*}$ given by $r+P \rightarrow r^{*}+P^{*}$. This isomorphism extends to the algebra of central quotients, and one can check that in the definition of $T(R)$, an involution is induced in $Q$. Moreover, $V$ is stable under this involution, so $T(R)$ inherits an involution which coincides with $\left(^{*}\right)$ on $R$. Hence the embedding $R \rightarrow T(R)$ is actually an embedding in the category of rings with involution.

## References

1. S. A. Amitsur, Prime rings having polynomial identities with arbitrary coefficients, Proc. London Math. Soc., (3), 17 (1967), 470-486.
2. M. Artin, On Azumaya algebras and finite dimensional representations of rings, J. Algebra, 11 (1969), 532-563.
3. J. W. Fisher, Structure of semiprime P.I.-rings, Proc. Amer. Math. Soc., 39 (1973), 465-467.
4. -, Structure of semiprime P.I.-rings, II, 1971, (unpublished).
5. E. Formanek, Central polynomials for matrix rings, J. Algebra, 23 (1972), 129132.
6. Frayne, Morel, and Scott, Reduced direct products, Fund. Math., 51, 214 ff .
7. A. W. Goldie, A note on prime rings with polynomial identities, J. London Math. Soc., (2), vol. 1 (1969), 606-608.
8. I. N. Herstein, and L. W. Small, Regular elements in P.I.-rings, Pacific J. Math., 36 (1971), 327-330.
9. W. S. Martindale, III, On semiprime P.I.-rings, Proc. Amer. Math. Soc., 40 (1973), 364-369.
10. C. Procesi, On a theorem of M. Artin, J. Algebra, 22 (1972), 309-316.
11. L. Rowen, Some results on the center of a ring with polynomial identity, Bull Amer. Math. Soc., 79 (1973), 219-222.
12. -, On rings with central polynomials, J. Algebra, (to appear).

Received July 3, 1973. Research of the first author supported in part by NSF contract GP-38770.

## University of Texas and Yale University

