THE NON-MINIMALITY OF INDUCED CENTRAL REPRESENTATIONS

D. Wright

Let G be a finite p-group and \mathscr{C} a minimal faithful permutation representation of G possessing the minimal number of generators of the centre of G transitive constituents. One surmises that the induced representation, ©゚', of the centre of G, is minimal. The conjecture is validated subject to either of the hypotheses $|G| \leqq p^{5}$ except $G=Q_{8} \times Z_{4}$ or $Z(G) \cong n$ copies of the cyclic group of order p^{m} and is trivial when G is abelian. However, a group of order p^{6} shows the conjecture to be false for p odd, also. The converse problem of extending minimal representations of $Z(G)$ to minimal representations of G is also, in general, not possible.

Notation. G a finite group, $Z(G)$ is the centre of $G, d(Z(G))$ is the minimal number of generators of $Z(G)$. When G is a p-group $\Omega_{1}(G)=\left\langle g \in G \mid g^{p}=e\right\rangle . \quad Z p^{m}$ is the cyclic group of order $p^{m} . \mu(G)$ is the least natural number n such that G can be embedded in the symmetric group of degree n.

Let $\mathscr{E}=\left\{G_{1}, \cdots, G_{n}\right\}$ be a collection of subgroups of a finite group G and X_{i} be the set of distinct cosets of G_{i} in G. The transitive action of G on X_{i} defines a permutation representation of G on the set $X=\bigcup_{i=1}^{n} X_{i}$ with kernel core $\left(\bigcap_{i=1}^{n} G_{i}\right)$. A faithful representation is called minimal in case $|X|=\sum_{i=1}^{n}\left|G: G_{i}\right|$ is minimal over all faithful (S). Suppose now that G is a p-group and $d=$ $d(Z(G))$. Then by [1] Theorem $3 n=d$ for $p \neq 2$ whilst when $p=$ $21 / 2 d \leqq n \leqq d$, the upper bound being attained. It is assumed throughout that $n=d$ thereby imposing a restriction on (8) only when $p=2$.

The problem is approached by first classifying minimal representations © , say, of finite abelian p-groups (with a restriction on (5) if $p=2$) and then observing two elementary properties regarding the structure of $G_{i} \cap Z(G)$.

1. Minimal representations of abelian groups.

Theorem 1. Let G be a finite abelian p-group with $n \geqq 2$. Suppose $\mathbb{C B}=\left\{G_{1}, \cdots, G_{n}\right\}$ is a minimal faithful permutation representation of G and $K_{i}=\bigcap_{\substack{j=1 \\ j \neq i}}^{n} G_{j}$, then

Note. Any (5s of this form is a minimal representation of G, so this theorem characterizes minimal representations of abelian p groups, $p \neq 2$.

Proof. If $G=Z_{1} \times \cdots \times Z_{n}$ with Z_{i} cyclic then we know that the G_{i} can be reordered so that $G_{i} \cap Z_{i}=E$ (see [2], Lemma 2). Hence $\left|G: G_{i}\right| \geqq\left|Z_{i}\right|$. Suppose for some $k,\left|G: G_{k}\right|>\left|Z_{k}\right|$, then

$$
\mu(G)=\sum_{i=1}^{n}\left|G: G_{i}\right|>\sum_{i=1}^{n}\left|Z_{i}\right|=\mu(G)
$$

so that $\left|G: G_{i}\right|=\left|Z_{i}\right|$, for all $1 \leqq i \leqq n$. Now

$$
\begin{aligned}
\left|G: K_{i}\right| & =\left|G: \bigcap_{\substack{j=1 \\
j \neq i}}^{n} G_{j}\right| \leqq \prod_{\substack{j=1 \\
j \neq i}}^{n}\left|G: G_{j}\right|, \text { Pointcaré's theorem } \\
& =\prod_{\substack{j=1 \\
j \neq i}}^{n}\left|Z_{j}\right|=\left|G: Z_{i}\right| .
\end{aligned}
$$

It follows that $\left|K_{i}\right| \geqq\left|Z_{i}\right|$ and $\left|X_{i=1}^{n} K_{i}\right| \geqq \prod_{i=1}^{n}\left|Z_{i}\right|=|G|$ so that $G=\times_{i=1}^{n} K_{i}$ and $\left|K_{i}\right|=\left|Z_{i}\right|$ (see [3], Lemma 0). Also, $G_{i} \supseteq \prod_{\substack{i=1 \\ j=i}}^{n} K_{j}$ but $\left|G: \prod_{\substack{j=1 \\ j \neq i}}^{n} K_{j}\right|=\left|K_{i}\right|=\left|Z_{i}\right|=\left|G: G_{i}\right|$ and the lemma is now clear.

From the proof of [1], Proposition 2 we conclude that whenever G and H have coprime orders any stabilizer in a minimal representation of $G \times H$ has the form $G_{1} \times H$ or $G \times H_{1}, G_{1} \leqq G, H_{1} \leqq H$. By decomposing an abelian group A into the direct product of its Sylow p-subgroups we easily generalize Theorem 1 to classify minimal representations of abelian groups (of odd order).
2. Induced central representation. Throughout this section whenever $(\mathbb{S})=\left\{G_{1}, \cdots, G_{n}\right\}, n=d(Z(G))$.

Lemma 2. No generator of $G_{i} \cap Z(G)$ is a p-power of any element in $Z(G)$ provided $\mathbb{\$}$ is minimal.

Proof. Let $H_{i}=\left(\bigcap_{\substack{j=1 \\ j \neq i}}^{n} G_{j}\right) \cap Z(G)$. \quad Since $G_{i} \supseteqq H_{1} \times \cdots \times H_{i-1} \times$ $H_{i+1} \times \cdots \times H_{n}$, see [3] lemma, it follows that $d\left(G_{i} \cap Z(G)\right)=n-1$. Suppose $G_{i} \cap Z(G)=\left\langle x_{k} \mid k \in I\right\rangle$ and $x_{j}=y^{p}$, for some j. Then $|I| \geqq$ $n-1$. Define $Y=\left\langle x_{k}, y \mid k \in I \backslash\{j\}\right\rangle \supseteqq G_{i} \cap Z(G)$. Clearly, $\Omega_{1}(Y)=$ $\Omega_{1}\left(G_{i} \cap Z(G)\right)$ and $Y G_{i} \cap Z(G)=Y$. Thus, the representation $\left\{G_{1}, \cdots\right.$, $\left.G_{i-1}, Y G_{i}, G_{i+1}, \cdots, G_{n}\right\}$ is faithful. The minimality of $\mathbb{C S}$ yields $Y G_{i}=$ G_{i} so that $Y=G_{i} \cap Z(G)$. It follows that $x_{j} \in\left\langle x_{k} \mid k \in I \backslash\{j\}\right\rangle$, contradicting that x_{i} is a generator of G.

The next lemma is easy to verify.

Lemma 3. Let $A=X_{i=1}^{n}\left\langle a_{i}\right\rangle$ be an abelian p-group with $d(A)=$ n. If $B \leqq A$ with $d(B)=n-1$ such that no generator of B is a p-power of any element of A then
(i) $B=\left\langle a_{j}\right| j \in N \backslash\{s\}$, some $\left.s\right\rangle$, where $N=\{k \mid 1 \leqq k \leqq n\}$
or
(ii) $B=\left\langle a_{r} a_{s}^{\gamma}, a_{k}\right| r \in J, k \in K, J \cup K=N \backslash\{s\}$, some $\left.s, J \cap K=\Phi\right\rangle$.

Corollary. If $Z(G)=Z_{1} \times \cdots \times Z_{n}$ with $Z_{i}=\left\langle z_{i}\right\rangle$ cyclic then

$$
G_{i} \cap Z(G)=\left\langle z_{j} \mid j \in N \backslash\{s\}\right\rangle
$$

or

$$
G_{i} \cap Z(G)=\left\langle z_{r} z_{s}^{\gamma}, z_{k} \mid r \in J, k \in K, J \cup K=N \backslash\{s\}, J \cap K=\Phi\right\rangle .
$$

Proof. By Lemma $2 G_{i} \cap Z(G)$ and $Z(G)$ satisfy the conditions of Lemma 3.

Write ©(') $^{\prime}=\left\{G_{1} \cap Z(G), \cdots, G_{n} \cap Z(G)\right\}$ then:
Lemma 4. (5' $^{\prime}$ is minimal whenever $Z(G) \cong n$ copies of Z_{p}^{m}.
Proof. $n=1$ is trivial. For $n \neq 1$, by the corollary to Lemma 3 we deduce $\left|Z: G_{i} \cap Z(G)\right|=p^{m}, 1 \leqq i \leqq n$, yielding deg $\mathcal{E S '}^{\prime}=n p^{m}$ and ${ }^{\prime \prime}$ ' is minimal.

Theorem 5. If $|G| \leqq p^{5}$ then (53' is minimal, except for the case $p=2, G=Q_{8} \times Z_{4}$, the direct product of the quaternionic group of order 8 and the cyclic group of order 4.

Proof. We already have the result if G is abelian or $Z(G)$ is isomorphic to n copies of Z_{p}^{m}. This leaves the case: $|G|=p^{5}$, $Z(G)=\left\langle z_{1}\right\rangle \times\left\langle z_{2}\right\rangle \cong Z_{p^{2}} \times Z_{p}$. If $G=H \times K$ and is non-abelian then $K \cong Z_{p}$ or $K \cong Z_{p 2}$. Let $\mathbb{G}=\left\{G_{1}, G_{2}\right\}$ be a minimal faithful representation of G. By [3], $\mu(G)=\mu(H)+\mu(K)$. When $K \cong Z_{p}$, $\left|G: G_{1}\right|=p$, say, and $G_{1} \cap Z(H) \neq E$. By the corollary to Lemma 3, $G_{1} \supseteq Z(H)$, so that (SH^{\prime} is minimal. If $K \cong Z_{p^{2}}$, then except for the case $p=2$ and $H \cong Q_{8}, \mu(H)=p^{2}$. Therefore, $\mu(G)=p^{2}+p^{2}$ and $\left|G_{1}\right|=\left|G_{2}\right|=p^{3}$. As above, (5'' not minimal implies $G_{1} \cap Z(H)=E=$ $G_{2} \cap Z(H)$. It follows that $G=G_{1} Z(H)=G_{2} Z(H)$ and G_{1}, G_{2} are normal subgroups of G. Hence, $G_{1} \cap G_{2}$ is a nontrivial normal subgroup of G, contradicting the faithfulness of © 8 . When $G=Q_{8} \times Z_{4}$, suppose $Q_{8}=\left\langle x, y \mid x^{2}=y^{2}, x^{y}=x^{-1}\right\rangle, \quad Z_{4}=\left\langle z \mid z^{4}=e\right\rangle$. Then $\mathbb{E S}=$ $\left\{Q_{8},\langle x z\rangle\right\}$ is minimal but $\mathcal{F S}^{\prime}=\left\{\left\langle x^{2}\right\rangle,\left\langle x^{2} z^{2}\right\rangle\right\}$ is not. Under the hypothesis $G \not \approx Q_{8} \times Z_{4}$, (a) any counterexample is not a nontrivial direct
product. We also have, (b) g^{p} is central for all $g \in G$, since $G / Z \cong$ $Z_{p} \times Z_{p}$. By Lemma 2, since $\left|G_{1} \cap Z(G)\right|=p=\left|G_{2} \cap Z(G)\right|$, we may assume without loss of generality that $G_{1} \cap Z(G)=\left\langle z_{2}\right\rangle, G_{2} \cap Z(G)=$ $\left\langle z_{1}^{p r} z_{2}\right\rangle$ where $(r, p)=1$ because $G_{i} \supseteq\left\langle z_{1}^{p}\right\rangle$ implies $G_{i} \supseteq\left\langle z_{1}\right\rangle$. Also, if $\left|G_{i}\right|=p^{3}$ then $G_{i} \cap Z_{p^{2}}=E$ yields $G=G_{i} Z_{p^{2}}$. Let $g \in G_{i}, h \in G$ then $h=g_{1} z, g_{1} \in G_{i}, z \in Z_{p^{2}}$ hence $g^{h}=g^{g_{12}}=g^{g_{2}} \in G_{i}$ so G_{i} is normal in G and $G=G_{i} \times Z_{p^{2}}$, contradicting (a). We deduce, (c) $\left|G_{i}\right| \leqq p^{2}, i=$ 1,2 and $\mu(G) \geqq 2 p^{3}$.

Let M be a maximal subgroup of G containing $Z(G)$, then M is abelian and has one of the forms:
(i) $M=\langle a\rangle \times\langle b\rangle \times\langle c\rangle \cong Z_{p^{2}} \times Z_{p} \times Z_{p}$,
(ii) $M=\langle a\rangle \times\langle b\rangle \cong Z_{p^{3}} \times Z_{p}$,
(iii) $M=\langle a\rangle \times\langle b\rangle \cong Z_{p^{2}} \times Z_{p^{2}}$.

Case (i). We can choose a, b, c so that $Z(G)=\langle a\rangle \times\langle b\rangle$ and then $[\langle a, c\rangle \cap\langle b, c\rangle] \cap Z(G)=\langle c\rangle \cap Z(G)=E$ giving $\mu(G) \leqq p^{2}+p^{3}<2 p^{3}$, contradicting (c). Case (ii). $Z(G)=\left\langle a^{p}\right\rangle \times\langle b\rangle$. Suppose $G / M=\langle c M\rangle$. $c^{p}=e$ implies case (i) holds. $c^{p} \neq e$ then $c^{p}=a^{p r} b^{s}$ by (b). If $p \mid r$, let $c_{1}=c a^{-r} \notin M$ then $c_{1}^{p}=b^{s}$ and $\left\{\langle a\rangle,\left\langle c_{1}, b\right\rangle\right\}$ is faithful of degree less than $2 p^{3}$. Hence for all $c \in G \backslash M\langle c\rangle \cap\langle a\rangle \neq E$. Let $\mathbb{B}=\left\{G_{1}, G_{2}\right\}$ be minimal then by Lemma 2, $G_{\imath} \cap\langle a\rangle=E$ and it follows that $\left|G_{i}\right|=$ p, contradicting the minimality of \mathfrak{E}. Case (iii). Without loss of generality we may assume $Z(G)=\langle a\rangle \times\left\langle b^{p}\right\rangle$. Suppose $G / M=\langle c M\rangle$. $c^{p}=e$ implies case (i) holds. If $c^{p^{2}} \neq e$ then $\langle c\rangle \cap\langle a\rangle=E$ or $\langle c\rangle \cap$ $\langle b\rangle=E$ so that $|c|=p^{3}$ and $\{\langle c\rangle,\langle a\rangle\}$ or $\{\langle c\rangle,\langle b\rangle\}$ is faithful of degree less than $2 p^{3}$. This leaves the case $c^{p 2}=e . c^{p}$ is central, $c^{p}=a^{p r} b^{p s}$, say, but $\left(c a^{-r}\right)^{p}=b^{p s}$ and $c a^{-r} \notin M$. As above, $b^{p s}=e$ reduces to case (i). We may now assume that
$G=\left\langle a, b, c \mid a^{p^{2}}=b^{p 2}=c^{p^{2}}=e=[a, b]=[a, c], b^{p}=c^{p},[b, c]=a^{p u} b^{p p}\right\rangle$.
If $a^{p u}=e$ then G is a nontrivial direct product. If $b^{p v} \neq e$ we can choose a so that $[b, c]=\left(a^{p} b^{p}\right)^{v}$ then $[a b, a c]=[b, c]=(a b)^{p v}$ but $G=$ $\langle a, a b, a c\rangle$ and we proceed as above. By suitable choice of a it remains to eliminate the case $[b, c]=a^{p}$. Since $\left(b^{-1} c\right)^{p}=[b, c]^{-1 / 2 p(p+1)}$, when $p \neq 2\left(b^{-1} c\right)^{p}=e$ and when $p=2\left(a b^{-1} c\right)^{2}=e$. In either case G / M can be generated by an element of order p. This completes the argument.

While attacking groups of order p^{6} by identical methods to Theorem 5, one obtains the following counterexample.

Theorem 6. Let $G=\langle a, b, c| a^{p^{3}}=b^{p^{2}}=c^{p}=1=[a, b]=[a, c]$, $\left.[c, b]=a^{\left.p^{2}\right\rangle}\right\rangle$ then
(i) $|G|=p^{6}$ and $Z(G)=\langle a\rangle \times\left\langle b^{p}\right\rangle \cong Z_{p^{3}} \times Z_{p}$,
(ii) G is not a nontrivial direct product,
(iii) $\mu(G)=p^{2}+p^{4}$,
(iv) $\mathcal{B}=\{\langle a b, c\rangle,\langle b\rangle\}$ is a minimal representation of G, but $\mathcal{(8)}^{\prime}=\{\langle a b, c\rangle \cap Z(G),\langle b\rangle \cap Z(G)\}$ is not minimal.

Proof. (i) For $1 \leqq i \leqq p^{2}$ define $\alpha_{2}, \beta_{i}, \gamma_{i}$ by

$$
\begin{aligned}
& \alpha_{i}:(r, i, s) \mapsto(r, i, s+1) \\
& \beta_{i}:(r, i, s) \mapsto(r+s, i, s+2) \\
& \gamma_{i}:(r, i, s) \mapsto(r+1, i, s)
\end{aligned}
$$

$1 \leqq r, s \leqq p, \bmod p$ in the first and third components [i.e., $\alpha_{1}=$ $((1,1,1)(1,1,2) \cdots(1,1, p))((2,1,1)(2,1,2) \cdots(2,1, p)) \cdots((p, 1,1) \cdots$ $(p, 1, p))] . \quad \alpha_{i}, \beta_{i}, \gamma_{i}$ each have order p and $\left[\alpha_{i}, \beta_{i}\right]=\gamma_{i}$. Define λ, μ, ν as follows

$$
\begin{aligned}
\lambda:(r, i, s) & \mapsto\left\{\begin{array}{l}
(r, i+1, s), 1 \leqq i \leqq p^{2} \\
(r+1,1, s), i=p^{2}
\end{array}\right. \\
\mu & =\left(12 \cdots p^{2}\right) \prod_{i=1}^{p^{2}} \beta_{i} \\
\nu & =\prod_{i=1}^{p^{2}} \alpha_{\imath} .
\end{aligned}
$$

λ, μ, ν satisfy $\lambda^{p^{3}}=\mu^{p^{2}}=\nu^{p}=1=[\lambda, \mu]=[\lambda, \nu],[\nu, \mu]=\lambda^{p^{2}}$. Clearly any element of G has the form $a^{i} b^{j} c^{k}, 0 \leqq i<p^{3}, 0 \leqq j<p^{2}, 0 \leqq k<$ p and the representation shows that these are distinct and (i) follows.
(ii) Suppose $G=H \times K$, then $Z(G)=Z(H) \times Z(K)$. We may assume $Z(H) \cong Z_{p}$ and $Z(K)=\left\langle a b^{p s}\right\rangle \cong Z_{p^{3}} . \quad K \cap\langle b\rangle=E$ implies $|K| \leqq p^{4}$. If $|K|=p^{4} K$ and H are abelian and consequently G is abelian. It follows that $|K|=|H|=p^{3}$. Therefore, there exist $h \in H$ and $r, 0 \leqq r<p^{3}$ such that $c=\left(a b^{p s}\right)^{r} h$ then $[h, b]=\left[\left(a b^{p s}\right)^{r} h, b\right]$ (since $\left(a b^{p s}\right)^{r}$ is central) $=[c, b]=a^{p^{2}}$. But H is normal in G and so $a^{p^{2}}=[h, b] \in H \cap K$, a contradiction.
(iii) Let $\mathbb{G}=\left\{G_{1}, G_{2}\right\}$ be a minimal faithful representation of G. This always exists by [1], Theorem 3. If $\left|G: G_{i}\right|=p$ then G_{2} is normal in G and G is a nontrivial direct product. Therefore, $\left|G: G_{i}\right| \geqq p^{2}, i=1,2$. For some $i, G_{i} \cap\langle a\rangle=E$, since $(\mathbb{S}$ is faithful suppose, say, $G_{1} \cap\langle a\rangle=E$. If $\left|G_{1}\right|=p^{3}, G=G_{1} \times\langle a\rangle$ since a is central. Hence $\mu(G) \geqq p^{2}+p^{4}$ but (i) exhibits a faithful representation of degree $p^{2}+p^{4}$. The final part of the theorem is now easy.

The converse problem: Given $\mathcal{S S}^{\prime}=\left\{Z_{1}, \cdots, Z_{n}\right\}, \quad n=d(Z(G))$ a minimal representation of $Z(G)$, does there exist a minimal representation $\mathbb{B}=\left\{G_{1}, \cdots, G_{n}\right\}$ of G such that $G_{i} \cap Z(G)=Z_{i}$? The answer to this question is quickly found to be negative.

Lemma 7. Let $G=H \times K$ where $H=\left\langle a, b \mid a^{p}=b^{p}=[a, b]\right\rangle$ and $K=\left\langle c \mid c^{p}=e\right\rangle$ then $\mathbb{C b}^{\prime}=\left\{\left\langle a^{p} c\right\rangle,\langle c\rangle\right\}$ is a minimal representation of $Z(G)$ which cannot be extended to a minimal representation of G.

Proof. When $p \neq 2 H$ is the non-abelian group of order p^{3} containing an element of order p^{2} and when $p=2 H$ is the quaternionic group of order 8. $Z(H)=\left\langle a^{p}\right\rangle$ and $\left(5^{\prime \prime}\right.$ is obviously minimal. Now

$$
\begin{aligned}
\left(a^{i} b^{j}\right)^{p} & =b^{j p}\left(b^{-j p} a^{i} b^{j p}\right)\left(b^{-j(p-1)} a^{i} b^{j(p-1)}\right) \cdots\left(b^{-j} a^{i} b^{j}\right), \quad j \neq 0 \\
& =a^{(i+j) p+i j^{p(1+\cdots+p)}}, \text { since } a^{b}=a^{p+1},\left(a^{i}\right)^{b^{m}}=a^{i(m p+1)} .
\end{aligned}
$$

Case I. $\quad p \neq 2$ then $p \mid(1+\cdots+p)=1 / 2 p(p+1)$ and

$$
\begin{equation*}
\left(a^{i} b^{j} c^{k}\right)^{p}=a^{(i+j)^{p}} \text { for all } i, j, k \tag{*}
\end{equation*}
$$

Every element of G has the form $a^{i} b^{j} c^{k}, 0 \leqq i<p^{2}, 0 \leqq j, k<p$. If $G_{1} \supseteq\left\langle a^{p} c\right\rangle$ then $a^{i} b^{j} c^{k} \in G_{1}$ implies that $i+j=0(\bmod p)$ i.e., $j=$ $r p-i$ consequently for each choice of i there is only one choice for j. It follows that $\left|G_{1}\right| \leqq p^{2}$ and $\left|G: G_{1}\right| \geqq p^{2}$ since $G_{1} \cap\langle c\rangle=E$. By (*), $\quad\left(a b^{p-1}\right)^{p}=a^{p 2}=e,\left\langle a b^{p-1}\right\rangle \cap Z(H)=E$ and trivially $\mu(H)=p^{2}$. By [3], $\mu(G)=\mu(H)+\mu(K)=p^{2}+p . \quad G_{2} \supseteq\langle c\rangle$ so $Z(H) \cap G_{2}=E$ and $\left\{H, G_{2}\right\}$ is faithful. Therefore, $|G: H|+\left|G: G_{2}\right| \geqq \mu(G)=p^{2}+p$ and $\left|G: G_{2}\right| \geqq p^{2}$. Hence deg $\left\{G_{1}, G_{2}\right\}=\left|G: G_{1}\right|+\left|G: G_{2}\right| \geqq 2 p^{2}>\mu(G)$ proving $\left\{G_{1}, G_{2}\right\}$ is not minimal.

Case II. $\quad p=2, \mu(H)=8$ and $\mu(G)=\mu(H)+\mu(K)=10$, by [3]. (*) becomes

$$
\left(a^{i} b^{j} c^{k}\right)^{2}=a^{(i+j) 2+i j 2}=\left\{\begin{array}{l}
e, i, j \text { both even } \\
a^{2}, \text { otherwise }
\end{array}\right.
$$

One easily checks that $G_{1}=\left\langle a^{2} c\right\rangle, G_{2}=\langle c\rangle$ and $\operatorname{deg}\left\{G_{1}, G_{2}\right\}=16>$ $\mu(G)$ which proves the lemma.

References

1. D. L. Johnson, Minimal permutation representations of finite groups, Amer. J. Math., 93 (1971), 857-866.
2. D. Wright, Degrees of minimal permutation representations of covering groups of abelian groups, Amer. J. Math., (to appear).
3. ——, Degrees of minimal embeddings for some direct products, Amer. J. Math., (to appear).

Received June 12, 1973. May I acknowledge the generous financial assistance of the Science Research Council and the first class advice of Dr. D. L. Johnson.

University of Nottingham
Present address: Australian National University

