CONTINUOUS OPERATORS ON PARANORMED SPACES AND MATRIX TRANSFORMATIONS

Ivor J. Maddox and Michael A. L. Willey

Abstract

The concept of a paranormed β-space is defined and some theorems of Banach-Steinhaus type are proved for sequences of continuous linear functionals on such a space. For example, necessary and sufficient conditions are given for a sequence $\left(A_{n}(x)\right)$ of continuous linear functionals to be in the space of generalized entire sequences, for each x belonging to a paranormed β-space. The general theorems are then used to characterize matrix transformations between generalized l_{p} spaces and generalized entire sequences.

1. In § 2 we present theorems which generalize some results in [10]. These theorems are applied in § 3 to characterize some classes of matrix transformations. By N, R and C we denote respectively, the sets of natural numbers, real numbers, and complex numbers. By a sequence (x_{k}) we mean (x_{1}, x_{2}, \cdots), and by $\Sigma_{k} x_{k}$ we mean $\sum_{k=1}^{\infty} x_{k}$.
X will denote a nontrivial complex linear space of elements x, with zero element θ and with paranorm g, i.e. $g: X \rightarrow R$ satisfies $g(\theta)=0, g(x)=g(-x)$ on X, g is subadditive, and, for $\lambda \in C$ and $x \in X$, $\lambda \rightarrow \lambda_{0}$ and $g\left(x-x_{0}\right) \rightarrow 0$ imply $g\left(\lambda x-\lambda_{0} x_{0}\right) \rightarrow 0$, where $\lambda_{0} \in C$ and $x_{0} \in X$.

Extending the definitions of Sargent in [8], we can define a paranormed β-space as follows. Let $\left(X_{n}\right)$ be a sequence of subsets of X such that $\theta \in X_{1}$ and such that if $x, y \in X_{n}$ then $x \pm y \in X_{n+1}$ for $n \in N$; then $\left(X_{n}\right)$ is called an α-sequence in X. If we can write $X=\bigcup_{n=1}^{\infty} X_{n}$, where $\left(X_{n}\right)$ is an α-sequence in X and each X_{n} is nowhere dense in X, then X is called an α-space; otherwise X is a β-space. Clearly, every α-space is of the first category, whence we see that any complete paranormed space is a β-space.

If $Y \subset X$ then we denote the closure of Y in X by \bar{Y}. We write, for any $a \in X$ and $\delta>0, S(a, \delta)=\{x: x \in X$ and $g(x-a)<\delta\}$. A subset G of X is called a fundamental set in X if l. hull (G), the set of all finite linear combinations of elements of G, is dense in X. A sequence $\left(b_{k}\right)$ of elements of X is said to be a basis in X if for each $x \in X$ there is a unique complex sequence $\left(\lambda_{k}\right)$ such that $g\left(x-\sum_{k=1}^{n} \lambda_{k} b_{k}\right) \rightarrow 0(n \rightarrow \infty)$. Thus any basis in X is also a fundamental set in X.

We denote the set of continuous linear functionals on X by X^{*}. A linear functional A on X is an element of X^{*} if and only if

$$
\|A\|_{M} \equiv \sup \left\{|A(x)|: g(x) \leqq \frac{1}{M}\right\}<\infty \text { for some } M>1
$$

If X is a space of complex sequences $x=\left(x_{k}\right)$, then we denote the generalized Köthe-Toeplitz dual of X by X^{\dagger}, i.e.

$$
X^{\dagger}=\left\{\left(\alpha_{k}\right): \Sigma_{k} \alpha_{k} x_{k} \text { converges for every } x \in X\right\} .
$$

We now list some sets of complex sequences due to Maddox [4]. If $p=\left(p_{k}\right)$ is a sequence of strictly positive real numbers, then

$$
\begin{gathered}
l_{\infty}(p)=\left\{x: \sup _{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}, \\
c_{0}(p)=\left\{x: \lim _{k}\left|x_{k}\right|^{p_{k}}=0\right\}, \\
c(p)=\left\{x: \lim _{k}\left|x_{k}-l\right|^{p_{k}}=0 \text { for some } l \in C\right\}, \\
l(p)=\left\{x: \Sigma_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\} .
\end{gathered}
$$

We write $e^{(k)}=(0,0, \cdots, 1,0,0, \cdots)$, the 1 occurring in the $k^{\text {th }}$ place, for each $k \in N$, and $e=(1,1,1, \cdots)$, and we write $l_{\infty}=l_{\infty}(e), c_{0}=c_{0}(e)$, $c=c(e)$, and $l_{1}=l(e)$.

The case $p=(1 / k)$ of $c_{0}(p)$ is of particular interest, since the function defined by $\sum_{k=0}^{\infty} \alpha_{k} z^{k}, z \in C$, is an entire function if and only if $\left(\alpha_{k}\right) \in c_{0}(1 / k)$. Work on the space of entire functions has been carried out, by V. Ganapathy Iyer in [2] and in other papers, and by other authors, using this correspondence with $c_{0}(1 / k)$. It is shown in [2] that $c_{0}(1 / k)^{\dagger}=l_{\infty}(1 / k)$.

Now we collect some known results which will be useful in what follows.

Lemma 1. $l(p)$ is a linear space if and only if p is bounded. (See [4], Theorem 1, and [7], Theorem 1.)

Lemma 2. If p is bounded with $H=\max \left(\sup p_{k}, 1\right)$, then $g(x)=\left(\Sigma_{k}\left|x_{k}\right|^{p}\right)^{2 / l /}$ defines a paranorm on $l(p), l(p)$ is complete under g, and ($e^{(k)}$) is a basis in $l(p)$. (See [5], Theorem 1 and Corollary 1, and [7].)

Lemma 3. (i) If $1<p_{k} \leqq H$ and $p_{k}^{-1}+s_{k}^{-1}=1$ for each $k \in N$, then

$$
l(p)^{\dagger}=\left\{\left(\alpha_{k}\right): \Sigma_{k}\left|\alpha_{k}\right|^{s_{k}} \cdot M^{-s_{k}}<\infty \text { for some } M>1\right\} .
$$

(ii) If $0<p_{k} \leqq 1$ for all $k \in N$ then $l(p)^{\dagger}=l_{\infty}(p)$.
(See [6], Theorem 1, and [9], Theorem 7.)
Lemma 4. If either $1<p_{k} \leqq H$ for all k, or $0<p_{k} \leqq 1$ for all
k, then every $A \in l(p)^{*}$ may be written as $A(x) \equiv \Sigma_{k} \alpha_{k} x_{k}$ on $l(p)$ for some $\left(\alpha_{k}\right) \in l(p)^{\dagger}$, and conversely $A(x) \equiv \Sigma_{k} \alpha_{k} x_{k}$ defines an element of $l(p)^{*}$ for each $\left(\alpha_{k}\right) \in l(p)^{\dagger}$. (See [6], Theorem 2, and [9], Theorem 7.)

Given sets Y and Z of sequences and a matrix $A=\left(a_{n, k}\right)$ of complex numbers ($n, k=1,2, \cdots$) we say that $A \in(Y, Z)$ if and only if $\Sigma_{k} a_{n, k} y_{k}$ converges for every $y=\left(y_{k}\right) \in Y$ and $n \in N$, and $\left(\Sigma_{k} a_{n, k} y_{k}\right) \in Z$ for every $y \in Y$.

We shall frequently use the following inequalities. Take $x, y \in C$; if $0<p \leqq 1$ then

$$
|x|^{p}-|y|^{p} \leqq|x+y|^{p} \leqq|x|^{p}+|y|^{p},
$$

and if $p>1$ and $p^{-1}+s^{-1}=1$ then

$$
|x y| \leqq|x|^{p}+|y|^{s} .
$$

2. For the remainder of this paper, $q=\left(q_{n}\right)$ will denote a sequence of strictly positive real numbers. If q is bounded with $H=\max \left(\sup q_{n}, 1\right)$ then it follows by Lemma 1 of [4] that $c_{0}(q)=$ $c_{0}\left(H^{-1} q\right)$; similarly $l_{\infty}(q)=l_{\infty}\left(H^{-1} q\right)$ and $c(q)=c\left(H^{-1} q\right)$.

Theorem 1. Let X be a paranormed space and let $\left(A_{n}\right)$ be a sequence of elements of X^{*}, and suppose q is bounded. Then

$$
\begin{equation*}
\sup _{n}\left(\left\|A_{n}\right\|_{M}\right)^{q_{n}}<\infty \text { for some } M>1 \tag{1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left(A_{n}(x)\right) \in l_{\infty}(q) \text { for every } x \in X, \tag{2}
\end{equation*}
$$

and the converse is true if X is a β-space.
Proof. In view of the remarks at the beginning of this section, we may without loss of generality assume that $q_{n} \leqq 1$ fore all $n \in N$. First let (1) hold, and choose any $x \in X$. By the continuity of scalar multiplication in a paranormed space, there is a $K \geqq 1$ such that $g\left(K^{-1} x\right) \leqq 1 / M$, where the M is that of (1). Then we have for any n, since $q_{n} \leqq 1$,

$$
\begin{aligned}
\left|A_{n}(x)\right|^{q_{n}} & =\left|K A_{n}\left(K^{-1} x\right)\right|^{q_{n}} \leqq K^{q_{n}}\left(\left\|A_{n}\right\|_{M}\right)^{q_{n}} \\
& \leqq K \sup _{n}\left(\left\|A_{n}\right\|_{M}\right)^{q_{n}},
\end{aligned}
$$

so that (2) holds.
Now let (2) hold, with X a β-space, and define for any $m \in N$,

$$
X_{m}=\left\{x: x \in X \text { and }\left|A_{n}(x)\right|^{q_{n}} \leqq 2^{m} \text { for all } n \in N\right\} .
$$

Then (X_{m}) is an α-sequence in X, for obviously $\theta \in X_{1}$, and if for
some $m \geqq 1, x, y \in X_{m}$ then, since $q_{n} \leqq 1$ for every n,

$$
\left|A_{n}(x \pm y)\right|^{q_{n}} \leqq\left|A_{n}(x)\right|^{q_{n}}+\left|A_{n}(y)\right|^{q_{n}} \leqq 2^{m+1}
$$

for any $n \in N$. Also $X=\bigcup_{m=1}^{\infty} X_{m}$, so since X is a β-space there exists a $B \in N$ such that X_{B} is not nowhere dense. Using the continuity of the A_{n}, it is not difficult to show that $\bar{X}_{m}=X_{m}$ for every m, whence there is a sphere $S(a, \delta) \subset X_{B}$. Thus if $g(x-\alpha)<\delta$ we have $\left|A_{n}(x)\right|^{q_{n}} \leqq 2^{B}$ for all n, so if $g(x)<\delta$ we have

$$
\left|A_{n}(x)\right|^{q_{n}} \leqq\left|A_{n}(x+a)\right|^{q_{n}}+\left|A_{n}(\alpha)\right|^{q_{n}} \leqq 2^{B+1} \text { for all } n
$$

Taking $M>\delta^{-1}$ we obtain (1).
Theorem 2. Let X be a paranormed space and let $\left(A_{n}\right)$ be a sequence of elements of X^{*}.
(i) If X has fundamental set G and if q is bounded, then the following propositions

$$
\begin{equation*}
\left(A_{n}(b)\right) \in c_{0}(q) \text { for every } b \in G, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{M} \lim \sup _{n}\left(\left\|A_{n}\right\|_{M}\right)^{q_{n}}=0 \tag{4}
\end{equation*}
$$

together imply

$$
\begin{equation*}
\left(A_{n}(x)\right) \in c_{0}(q) \text { for every } x \in X \tag{5}
\end{equation*}
$$

(ii) If $q_{n} \rightarrow 0(n \rightarrow \infty)$ then (4) implies (5).
(iii) Let X be a β-space; then (5) implies (4) even if q is unbounded.

Proof. (i) Again, we may without loss of generality assume that $q_{n} \leqq 1$ for every $n \in N$. Let X have fundamental set G, and suppose (3) and (4) hold. Choose any $x \in X$ and any $\varepsilon>0$. There exist $M>1$ and n_{0} such that $\left(\left\|A_{n}\right\|_{M}\right)^{q_{n}}<\varepsilon / 2$ for all $n \geqq n_{0}$, by (4). Since $l \cdot$ hull (G) is dense in X there exist $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m} \in C$ and $b_{1}, b_{2}, \cdots, b_{m} \in G$ such that $g\left(x-\sum_{k=1}^{m} \lambda_{k} b_{k}\right)<1 / M$, and we write $L=$ $\max \left(\left|\lambda_{1}\right|, \cdots,\left|\lambda_{m}\right|, 1\right)$. Then by (3) there is an $n_{1} \geqq n_{0}$ such that $\left|A_{n}\left(b_{k}\right)\right|^{q_{n}}<\varepsilon /(2 L m), \quad k=1,2, \cdots, m$, if $n \geqq n_{1}$, whence if $n \geqq n_{1}$, we have

$$
\begin{aligned}
\left|A_{n}(x)\right|^{q_{n}} & =\left|A_{n}\left(x-\sum_{k=1}^{m} \lambda_{k} b_{k}\right)+\sum_{k=1}^{m} \lambda_{k} A_{n}\left(b_{k}\right)\right|^{q_{n}} \\
& \leqq \mid A_{n}\left(x-\left.\sum_{k=1}^{m} \lambda_{k} b_{k}\right|^{q_{n}}+L \sum_{k=1}^{m}\left|A_{n}\left(b_{k}\right)\right|^{q_{n}}\right. \\
& \leqq\left(\left\|A_{n}\right\|_{M}\right)^{q_{n}}+m L \cdot \varepsilon /(2 L m)<\varepsilon ;
\end{aligned}
$$

thus (5) holds.
(ii) Suppose (4) holds and $q \in c_{0}$, and choose any $x \in X$ and any $\varepsilon>0$. There is an $M>1$ and an n_{0} such that $\left(\left\|A_{n}\right\|_{X}\right)^{q_{n}}<\varepsilon / 2$ if $n \geqq n_{0}$, and since scalar multiplication is continuous on X there is a $K \geqq 1$ such that $g\left(K^{-1} x\right) \leqq 1 / M$. Then we can choose $n_{1} \geqq n_{0}$ such that $K^{q_{n}} \leqq 2$ if $n \geqq n_{1}$ whence if $n \geqq n_{1}$

$$
\left|A_{n}(x)\right|^{q_{n}}=K^{q_{n}}\left|A_{n}\left(K^{-1} x\right)\right|^{q_{n}}<\varepsilon,
$$

so that (5) is true.
(iii) Let X be a β-space and suppose (5) is true. We define sequences $\left(B_{n}\right),\left(C_{n}\right)$ of elements of X^{*} and sequences $r=\left(r_{n}\right), s=\left(s_{n}\right)$ of strictly positive real numbers as follows. If $q_{n} \geqq 1$ then define $B_{n}=A_{n}, C_{n}=0, r_{n}=q_{n}$, and $s_{n}=1$; if $q_{n}<1$ write $B_{n}=0, C_{n}=A_{n}$, $r_{n}=1$, and $s_{n}=q_{n}$. Then $\left(B_{n}(x)\right) \in c_{0}(r)$ and $\left(C_{n}(x)\right) \in c_{0}(s)$ on $X ;$ $\sup _{n} s_{n} \leqq 1$, and $r_{n} \geqq 1$ for all $n \in N$. Also, $\left(\left\|A_{n}\right\|_{n}\right)^{q_{n}}=\left(\left\|B_{n}\right\|_{n}\right)^{r_{n}}+$ $\left(\left\|C_{n}\right\|_{\mu}\right)^{s_{n}}$ for all large enough $M, n=1,2, \cdots$, whence

$$
\begin{aligned}
\lim _{M M} \lim \sup _{n}\left(\left\|A_{n}\right\|_{M}\right)^{q_{n}} \leqq & \lim _{M M} \lim \sup _{n}\left(\left\|B_{n}\right\|_{M}\right)^{r_{n}} \\
& +\lim _{M} \lim \sup _{n}\left(\left\|C_{n}\right\|_{M}\right)^{\varepsilon_{n}} .
\end{aligned}
$$

Choose any $\varepsilon>0$, and define for each $m \in N$

$$
X_{m}=\left\{x: x \in X \text { and }\left|2^{-m} C_{n}(x)\right|^{s_{n}} \leqq \frac{\varepsilon}{2} \text { for all } n \geqq m\right\} .
$$

Clearly $\theta \in X_{1}$, and if for some $m \in N$ we have $x, y \in X_{m}$ then for $n \geqq m+1$

$$
\begin{aligned}
\left|2^{-(m+1)} C_{n}(x \pm y)\right|^{s_{n}} & \leqq\left(\left|2^{-(m+1)} C_{n}(x)\right|+\left|2^{-(m+1)} C_{n}(y)\right|\right)^{s_{n}} \\
& \leqq\left(2 \max \left(\left|2^{-(m+1)} C_{n}(x)\right|,\left|2^{-(m+1)} C_{n}(y)\right|\right)\right)^{s_{n}} \\
& =\max \left(\left|2^{-m} C_{n}(x)\right|^{s_{n}},\left|2^{-m} C_{n}(y)\right|^{s_{n}}\right) \leqq \frac{\varepsilon}{2}
\end{aligned}
$$

thus $\left(X_{m}\right)$ is an α-sequence in X. Also $X=\bigcup_{m=1}^{\infty} X_{m}$ and $X_{m}=\bar{X}_{m}$ for all $m \in N$ whence, since X is a β-space, some X_{B} contains a sphere $S(a, \delta)$. Then if $g(x)<\delta$ we deduce that $\left|2^{-B} C_{n}(x)\right|^{s_{n}} \leqq \varepsilon$ for $n \geqq B$. Write $\rho=2^{-B} \delta$ and choose $M>\rho^{-1}$; then by the subadditivity of g we have $g\left(2^{B} x\right)<\delta$ if $g(x)<\rho$. Hence if $g(x) \leqq 1 / M$ we have

$$
\left|C_{n}(x)\right|^{s_{n}}=\left|2^{-B} C_{n}\left(2^{B} x\right)\right|^{s_{n}} \leqq \varepsilon \text { if } n \geqq B,
$$

and since $\varepsilon>0$ was arbitrary we obtain $\lim _{\mu H} \lim \sup _{n}\left(\left\|C_{n}\right\|_{n}\right)^{s_{n}}=0$.
Now $\left(B_{n}(x)\right) \in c_{0}(r)$ on X implies $\left(B_{n}(x)\right) \in c_{0}$ on X. For suppose if possible that for some sequence $(n(i))$ of integers and some $x \in X$ $\inf \left|B_{n(i)}(x)\right|=\alpha>0$; then $\left|B_{n(i)}\left(\alpha^{-1} x\right)\right|^{r_{n(i)}} \geqq 1$ for all i, contrary to hypothesis. By the argument used above we deduce that

$$
\lim _{M} \lim \sup _{n}\left\|B_{n}\right\|_{M}=0,
$$

whence since $r_{n} \geqq 1$ for all $n, \lim _{M} \lim \sup _{n}\left(\left\|B_{n}\right\|_{M}\right)^{r_{n}}=0$. By our earlier remarks, (4) now follows.

Theorem 3. Let X be a paranormed space and let $\left(A_{n}\right)$ be a sequence of element of X^{*} and suppose q is bounded.
(i) If X has fundamental set G, and if there is an $l \in X^{*}$ such that $\left(A_{n}(b)-l(b)\right) \in c_{0}(q)$ for all $b \in G$ and

$$
\begin{equation*}
\lim _{M} \lim \sup _{n}\left(\left\|A_{n}-l\right\|_{M}\right)^{q_{n}}=0 \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(A_{n}(x)\right) \in c(q) \text { on } X \tag{7}
\end{equation*}
$$

(ii) If $q_{n} \rightarrow 0(n \rightarrow \infty)$ and if there is an $l \in X^{*}$ such that (6) holds, then (7) is true.
(iii) If X is a β-space and if (7) is true, then there is an $l \in X^{*}$ such that (6) holds.

Proof. (i) If the hypotheses hold, then $A_{n}-l \in X^{*}$ for every $n \in N$ whence by part (i) of Theorem $2\left(\left(A_{n}-l\right)(x)\right) \in c_{0}(q)$ on X; thus (7) is true.
(ii) Follows similarly from Theorem 2(ii).
(iii) Suppose (7) holds; then for some l we have $\mid A_{n}(x)$ $\left.l(x)\right|^{q_{n}} \rightarrow 0(n \rightarrow \infty)$ on X. We deduce that $l(x)=\lim _{n} A_{n}(x)$ on X and $\sup _{n}\left|A_{n}(x)\right|<\infty$ on X. Then by Theorem 1 we have $\sup _{n}\left\|A_{n}\right\|_{M}<\infty$ for some $M>1$, whence $\|l\|_{M}<\infty$. Clearly l must be linear, so that $l \in X^{*}$. Thus $A_{n}-l \in X^{*}$ for each $n \in N$, and by hypothesis $\left(\left(A_{n}-l\right)(x)\right) \in c_{0}(q)$ on X, so by Theorem 2(iii), (6) must be true.
3. We now apply the theorems above in characterizing the classes $\left(l(p), l_{\infty}(q)\right),\left(l(p), c_{0}(q)\right)$, and $(l(p), c(q))$ in the case when both p and q are bounded. Throughout, $A=\left(a_{n, k}\right)$ will denote an infinite matrix of complex numbers. As a preliminary, we state Theorem 1 of [3]:

THEOREM 4. (i) Let $1<p_{k} \leqq H<\infty$ and $p_{k}^{-1}+s_{k}^{-1}=1$ for every k. Then $A \in\left(l(p), l_{\infty}\right)$ if and only if there exists an integer $B>1$ such that $\sup _{n} \Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k}}<\infty$.
(ii) Let $0<p_{k} \leqq 1$ for every k. Then $A \in\left(l(p), l_{\infty}\right)$ if and only if $\sup _{n, k}\left|a_{n, k}\right|^{p_{k}}<\infty$.

In the proofs of the following results, as in earlier ones, we may without loss of generality assume that $q_{n} \leqq 1$ for all $n \in N$, and we shall do so when convenient.

We first consider the case when $0<p_{k} \leqq 1$ for all $k \in N$.

THEOREM 5. Suppose $0<p_{k} \leqq 1$ for all $k \in N$, and $q=\left(q_{n}\right)$ is bounded. Then,
(i) $A \in\left(l(p), l_{\infty}(q)\right)$ if and only if

$$
\begin{equation*}
\sup _{n}\left(\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}\right)^{q_{n}}<\infty \text { for some } M>1 \tag{8}
\end{equation*}
$$

(ii) $A \in\left(l(p), c_{0}(q)\right)$ if and only if

$$
\begin{equation*}
\left|a_{n, k}\right|^{q_{n}} \rightarrow 0(n \rightarrow \infty) \text { for every } k \in N \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{M} \lim \sup _{n}\left(\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}\right)^{q_{n}}=0 \tag{10}
\end{equation*}
$$

(iii) $A \in(l(p), c(q))$ if and only if $\sup _{n} \sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}<\infty$ for some $M>1$ and there exist $\alpha_{1}, \alpha_{2}, \cdots$ such that

$$
\begin{equation*}
\left|a_{n, k}-\alpha_{k}\right|^{q_{n}} \rightarrow 0(n \rightarrow \infty) \text { for each } k \in N \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim \lim _{M} \sup p_{n}\left(\sup _{k}\left|a_{n, k}-\alpha_{k}\right| M^{-1 / p_{k}}\right)^{q_{n}}=0 \tag{12}
\end{equation*}
$$

Proof. Write, for each $x \in l(p)$ and each $n \in N$

$$
\begin{equation*}
A_{n}(x) \equiv \Sigma_{k} a_{n, k} x_{k} \tag{13}
\end{equation*}
$$

(i) Let $A \in\left(l(p), l_{\infty}(q)\right)$; then for each $n,\left(a_{n, 1}, a_{n, 2}, \cdots\right) \in l(p)^{\dagger}=$ $l_{\infty}(p)$, by Lemma 3(ii). Also, by Lemma $4, A_{n} \in l(p)^{*}$ for each $n \in N$. We show that for each $n,\left\|A_{n}\right\|_{M}=\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}$ for all M such that $\left\|A_{n}\right\|_{M}$ is defined. Choose any $n \in N$. First, if M is such that, for some sequence $(k(i))$ of integers, $\left|a_{n, k(i)}\right| M^{-1 / p_{k(i)}} \geqq i$ for each $i \in N$, then by defining $x^{(k(i))}=\left(M^{-1 / p_{k(i)}} \operatorname{sgn} a_{n, k(i)}\right) e^{(k(i))}, i=1,2, \cdots$, we see that $\left\|A_{n}\right\|_{M}$ is undefined. Since $\left(a_{n, 1}, a_{n, 2}, \cdots\right) \in l_{\infty}(p)$ there is an $M_{n} \geqq 1$ such that $\left|a_{n, k}\right|^{p_{k}} \leqq M_{n}$ for all k. Choose $M \geqq M_{n}$. We have if $g(x)=\Sigma_{k}\left|x_{k}\right|^{p_{k}} \leqq 1 / M$, since $M^{1 / p_{k}}\left|x_{k}\right| \leqq 1$ for all k and since $\sup _{k} p_{k} \leqq 1$,

$$
\begin{aligned}
\left|A_{n}(x)\right| & \leqq \Sigma_{k}\left|a_{n, k}\right| M^{-1 / p_{k}} \cdot M^{1 / p_{k}}\left|x_{k}\right| \\
& \leqq \Sigma_{k}\left|a_{n, k}\right| M^{-1 / p_{k}} \cdot M\left|x_{k}\right|^{p_{k}} \\
& \leqq M g(x) \sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}
\end{aligned}
$$

whence $\left\|A_{n}\right\|_{M} \leqq \sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}$. Given $\varepsilon>0$ we can choose an m such that $\left|a_{n, m}\right| M^{-1 / p_{k}}>\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}-\varepsilon$. Defining $x=$ $\left(M^{-1 / p_{k}} \operatorname{sgn} a_{n, m}\right) e^{(m)}$ we have $g(x) \leqq 1 / M$ and $A_{n}(x)>\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}-\varepsilon$, whence $\left\|A_{n}\right\|_{M}=\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}$ as required. By Lemma $2, l(p)$ is complete, so it is a β-space; thus by Theorem 1 we must have (8).

Conversely let (8) hold. Then as above it follows that for each $n, A_{n} \in l(p)^{*}$ with $\left\|A_{n}\right\|_{M}=\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}$ for all M such that
$\left\|A_{n}\right\|_{M}$ is defined. Then using Theorem 1 we obtain $\left(A_{n}(x)\right) \in l_{\infty}(q)$ on $l(p)$, i.e. $A \in\left(l(p), l_{\infty}(q)\right)$.

We remark that (8) reduces to $\sup _{n, k}\left|a_{n, k}\right|^{p_{k}}<\infty$ if $0<\inf q_{n} \leqq$ $\sup q_{n}<\infty$, corresponding to the condition given for $A \in\left(l(p), l_{\infty}\right)$ in Theorem 4(ii).
(ii) If $A \in\left(l(p), c_{0}(q)\right) \subset\left(l(p), l_{\infty}(q)\right)$ then as above we have $A_{n} \in X^{*}$ and $\left\|A_{n}\right\|_{M}=\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}$ whenever $\left\|A_{n}\right\|_{M}$ is defined, for each $n \in N$. Then, by Theorem 2(iii), (10) must hold. Also taking $x=$ $e^{(k)} \in l(p)(k=1,2, \cdots)$ we obtain (9). Conversely if (9) and (10) hold we can show that $A_{n} \in l(p)^{*}$ with $\left\|A_{n}\right\|_{M}=\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}$ whenever $\left\|A_{n}\right\|_{M}$ is defined, for each $n \in N$; also $\left(e^{(k)}\right)$ is a basis in $l(p)$ by Lemma 2. Then by Theorem $2(i)$ we can deduce that $A \in\left(l(p), c_{0}(q)\right)$.
(iii) Let $A \in(l(p), c(q))$; then as in (i) and (ii) above we have for each n that $A_{n} \in X^{*}$. By Theorem 3(iii) there is an $l \in X^{*}$ such that $\lim _{M} \lim \sup _{n}\left(\left\|A_{n}-l\right\|_{M}\right)^{q_{n}}=0$, and by Lemmas 3(ii) and 4 we can write $l(x)=\Sigma_{k} \alpha_{k} x_{k}$ on $l(p)$ for some $\left(\alpha_{k}\right) \in l_{\infty}(p)$. We deduce that $\left\|A_{n}-l\right\|_{M}=\sup _{k}\left|a_{n, k}-\alpha_{k}\right| M^{-1 / p_{k}}$ for large enough $M, n=1,2 \cdots$, whence (12) is true, and (11) must hold since $\left(A_{n}-l\right)\left(e^{(k)}\right)=a_{n, k}-\alpha_{k}$ for each n and k. Also $c(q) \subset l_{\infty}$ whence $\left(l(p),(c(q)) \subset\left(l(p), l_{\infty}\right)\right.$; thus by (i) we must have $\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}<\infty$ for some $M>1$.

Finally, if $\sup _{k}\left|a_{n, k}\right| M^{-1 / k_{k}}<\infty$ for some $M>1$ then $A_{n} \in l(p)^{*}$ for all n. If in addition (11) and (12) hold then for any k we have, if n and M are large enough,

$$
\begin{aligned}
\left|\alpha_{k}\right| M^{-1 / p_{k}} & \leqq\left|a_{k}-a_{n, k}\right| M^{-1 / p_{k}}+\left|a_{n, k}\right| M^{-1 / p_{k}} \\
& \leqq 1+\sup _{n}\left(\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}}\right)=B \text { say } ;
\end{aligned}
$$

hence $\left|\alpha_{k}\right|^{p_{k}} \leqq B^{p_{k}} \cdot M \leqq B M$ for all k, i.e. $\left(\alpha_{k}\right) \in l_{\infty}(p)=l(p)^{\dagger}$. By Lemma 4, $l(x) \equiv \Sigma_{k} \alpha_{k} x_{k}$ defines an element of $l(p)^{*}$, and the result now follows if we employ the methods used above together with Theorem 3(i).

Theorem 6. Suppose $0<p_{k} \leqq 1$ for all $k \in N$ and $q_{n} \rightarrow 0(n \rightarrow \infty)$. Then $\left.A \in l(p), c_{0}(q)\right)$ if and only if (12) is true.

Proof. This follows from Theorem 2, parts (ii) and (iii), on using the methods of Theorem 5.

Corollary. (i) $A \in\left(l_{1}, c_{0}(1 / n)\right)$ if and only if $\left|a_{n, k}\right|^{1 / n} \rightarrow 0$ uniformly in k as $n \rightarrow \infty$.
(ii) $A \in\left(l_{1}, l_{\infty}(1 / n)\right)$ if and only if $\sup _{n, k}\left|a_{n, k}\right|^{1 / n}<\infty$.

Proof. These characterizations were given in Theorems 1 and 2 of [1], and follow readily on taking $p=e$ and $q=(1 / n)$ in Theorems $5(\mathrm{i})$ and 6.

Now we consider the case when $1<p_{k} \leqq H<\infty$ for all k.
THEOREM 7. Let $1<p_{k} \leqq H$ and $p_{k}^{-1}+s_{k}^{-1}=1$ for each $k \in N$, and let q be bounded. Then $A \in\left(l(p), l_{\infty}(q)\right)$ if and only if

$$
\begin{equation*}
T(B) \equiv \sup _{n} \Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k} / q_{n}}<\infty \text { for some } B>1 \tag{14}
\end{equation*}
$$

Proof. Define A_{n} by (13) on $l(p)$, for each $n \in N$. For the sufficiency, let (14) hold. Then if $x \in l(p)$ we have for each n, assuming $q_{n} \leqq 1$ for all n,

$$
\begin{aligned}
\left|A_{n}(x)\right|^{q_{n}} & \leqq\left(\Sigma_{k}\left|a_{n, k} x_{k}\right|\right)^{q_{n}}=\left(\Sigma_{k}\left|a_{n, k}\right| B^{-1 / q_{n}} \cdot B^{1 / q_{n}}\left|x_{k}\right|\right)^{q_{n}} \\
& \leqq\left(\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k} / q_{n}}+\Sigma_{k} B^{p_{k} / q_{n}}\left|x_{k}\right|^{\left.p_{k}\right)^{q_{n}}}\right. \\
& \leqq(T(B))^{q_{n}}+B^{H}\left(g^{H}(x)\right)^{q_{n}} \\
& \leqq T(B)+1+B^{H}\left(g^{H}(x)+1\right)
\end{aligned}
$$

which implies $A \in\left(l(p), l_{\infty}(q)\right)$.
Now let $A \in\left(l(p), l_{\infty}(q)\right)$; then ($\left.a_{n .1}, a_{n, 2}, \cdots\right) \in l(p)^{\dagger}$ for each n and so, by Lemmas 3(i) and 4, $A_{n} \in l(p)$ for all n. By Theorem 1 there exist $M>1$ and $G \geqq 1$ such that $\left|A_{n}(x)\right|^{q_{n}} \leqq G$ for all n and all $x \in l(p)$ with $g(x) \leqq 1 / M$. Then $\left|\Sigma_{k} G^{-1 / q_{n}} \cdot a_{n, k} x_{k}\right| \leqq 1, n=1,2, \cdots$, if $g(x) \leqq 1 / M$. Write $\Gamma=\left(G^{-1 / q_{n}} a_{n, k}\right)$, and choose any $x \in l(p)$. By the continuity of scalar multiplication on $l(p)$ there is a $K \geqq 1$ such that $g\left(K^{-1} x\right) \leqq 1 / M$, whence $\left|\Sigma_{k} G^{-1 / q_{n}} \cdot a_{n, k} x_{k}\right| \leqq K$ for all n. Thus we see that $\Gamma \in\left(l(p), l_{\infty}\right)$ and so by Theorem 4(i) there is a $D>1$ such that $\sup _{n} \Sigma_{k}\left|G^{-1 / q_{n}} \cdot a_{n, k}\right|^{s_{k}} \cdot D^{-s_{k}}<\infty$. Writing $B=G D$ and using the fact that $D^{q_{n}} \leqq D$ for all n, we obtain (14).

Looking at Theorem 4, one might except the necessary and sufficient condition for $A \in\left(l(p), l_{\infty}(q)\right)$ to be

$$
\begin{equation*}
\sup _{n}\left(\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot M^{-s_{k}}\right)^{q_{n}}<\infty \text { for some } M>1 \tag{15}
\end{equation*}
$$

Using the method above we can show that (15) implies $A \in$ $\left(l(p), l_{\infty}(q)\right)$. In fact it can be shown that (15) implies (14) directly. For let (15) hold; then for some $B>1,\left(\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k}}\right)^{q_{n}} \leqq H$ for all n, and we may suppose that $H>1$. If $q_{n} \leqq Q$ for all n then

$$
\begin{equation*}
\left(\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k}} \cdot H^{-1 / q_{n}}\right)^{q_{n} / Q} \leqq 1 \text { for all } n \tag{16}
\end{equation*}
$$

Put $M=H B^{Q}$; then $M^{s_{k}}=H^{s_{k}} \cdot B^{\varepsilon_{s_{k}}} \geqq H \cdot B^{q_{n} s_{k}}$, whence $M^{s_{k} / q_{n}} \geqq H^{1 / q_{n}} \cdot B^{s_{k}}$ for all k and n. Thus by (16) we obtain

$$
\begin{aligned}
\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot M^{-s_{k} / q_{n}} & \leqq \Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k}} \cdot H^{-1 / q_{n}} \\
& \leqq\left(\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k}} \cdot H^{-1 / q_{n}}\right)^{q_{n} / Q} \leqq 1 \text { for all } n,
\end{aligned}
$$

whence $T(M) \leqq 1$, i.e. (14) holds.

Clearly, (14) implies (15) if $\inf _{n} q_{n}>0$ or if $\inf _{k} p_{k}>1$. However, (15) is not necessary for $A \in\left(l(p), l_{\infty}(q)\right)$ if $\inf _{n} q_{n}=0$ and $\inf _{k} p_{k}=1$. For choose bounded p and q, with $p_{k}>1$ for all k, and suppose there exist sequence $(n(i),(k(j))$ of integers such that $q_{n(i)} \leqq 1 / i, i=1,2 \cdots$, and $p_{k(j)} \leqq 1+1 / j, j=1,2, \cdots$; then $s_{k(j)} \geqq$ $j+1$ for each j. Define $a_{n(i), k(j)}=i, i, j=1,2, \cdots$, and $a_{n, k}=0$ for all other n and k. Then $A=\left(a_{n, k}\right) \in\left(l(p), l_{\infty}(q)\right)$ since for all $i \in N$.

$$
\Sigma_{j}\left|a_{n(i), k(j)}\right|^{s_{k(j)}} \cdot 2^{-s_{k(j)} / q_{n(i)}} \leqq \Sigma_{j}\left(i / 2^{i}\right)^{j+1} \leqq 1
$$

but for any $M>1$ we have if $i \geqq M$,

$$
\left(\Sigma_{j}\left|a_{n(i), k(j)}\right|^{s_{k}(j)} \cdot M^{-s_{k(j)}}\right)^{q_{n(i)}} \geqq\left(\Sigma_{j}|i / M|^{j+1}\right)^{q_{n(i)}},
$$

which diverges.
Theorem 8. Let q be bounded, and let $1<p_{k} \leqq H$ and $p_{k}^{-1}+$ $s_{k}^{-1}=1$ for all $k \in N$. Then $A \in\left(l(p), c_{0}(q)\right)$ if and only if (9) holds and, for every $D \geqq 1$,

$$
\begin{equation*}
\lim _{B} \lim \sup _{n}\left(\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot D^{s_{k} / q_{n}} \cdot B^{-s_{k}}\right)^{q_{n}}=0 . \tag{17}
\end{equation*}
$$

Proof. Again, define A_{n} on $l(p)$ by (13). First we prove the necessity: let $A \in\left(l(p), c_{0}(q)\right)$. Obviously we must have (9), and as in Theorem 7 we see that $A_{n} \in l(p)^{*}$ for all n. If $A \in\left(l(p), c_{0}(q)\right)$ then $\left(D^{1 / q_{n}} \cdot a_{n, k}\right) \in\left(l(p), c_{0}(q)\right)$ for all $D>1$, so it is enough to show that (17) holds for $D=1$. Since $c_{0}(q) \subset l_{\infty}$ and using Theorem 4(i) there is a $B>1$ such that $T_{n} \equiv \Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-H s_{k}} \leqq 1$ for every $n \in N$. Choose any n, and define $x_{k}^{(n)}=B^{-H s_{k}}\left|a_{n, k}\right|^{s_{k}{ }^{-1}} \operatorname{sgn} a_{n, k}$ for each k; then

$$
g^{H}\left(x^{(n)}\right)=\Sigma_{k} B^{-H s_{k}-H p_{k}}\left|a_{n . k}\right|^{s_{k}} \leqq B^{-H} T_{n} \leqq B^{-H}
$$

and $A_{n}\left(x^{(n)}\right)=T_{n}$, whence $\left\|A_{n}\right\|_{B} \geqq T_{n}$ for each n. By Theorem 2(iii) we must have $\lim _{B} \lim \sup _{n}\left(\left\|A_{n}\right\|_{B}\right)^{q_{n}}=0$, whence (17) holds with $D=1$.

For the sufficiency, let (9) be true and let (17) hold for all $D \geqq 1$. It follows that $A_{n} \in l(p)^{*}$ for all $n \in N$. Since ($e^{(k)}$) is a basis in $l(p)$ and using Theorem 2(i) it is enough to show that $\lim _{B} \lim \sup _{n}\left(\left\|A_{n}\right\|_{B}\right)^{q_{n}}=0$. Choose $\varepsilon, 0<\varepsilon \leqq 1$, and $D>2 / \varepsilon$. There exist $B>1$ and m such that $\left(\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot D^{s_{k} / q_{n}} . B^{-s_{k}}\right)^{q_{n}}<\varepsilon / 2$ if $n \geqq m$. Then if $g(x) \leqq 1 / B$ and if $n \geqq m$ we have

$$
\begin{aligned}
\left|A_{n}(x)\right|^{q_{n}} & \leqq\left(\Sigma_{k}\left|a_{n, k}\right| D^{1 / q_{n}} \cdot B^{-1} \cdot B D^{-1 / q_{n}}\left|x_{k}\right|\right)^{q_{n}} \\
& \leqq\left(\Sigma_{k}\left\{\left|a_{n, k}\right|^{s_{k}} D \cdot{ }^{s_{k} / q_{n}} \cdot B^{-s_{k}}+D^{-p_{k} / q_{n}} \cdot B^{p_{k}}\left|x_{k}\right|^{p_{k}}\right\}\right)^{q_{n}} \\
& <\varepsilon / 2+\left(D^{-1 / q_{n}} \cdot B^{H} g^{H}(x)\right)^{q_{n}}<\varepsilon,
\end{aligned}
$$

and this completes the proof.
One may show that if (9) is true and if (17) holds for $D=1$, and if either $\inf _{n} q_{n}>0$ or $\inf _{k} p_{k}>1$, then $A \in\left(l(p), c_{0}(q)\right)$, but that these conditions are not sufficient for $A \in\left(l(p), c_{0}(q)\right)$ if $\inf _{n} q_{n}=0$ and $\inf _{k} p_{k}=1$.

Theorem 9. Let q be bounded, and let $1<p_{k} \leqq H$ and $p_{k}^{-1}+$ $s_{k}^{-1}=1$ for all $k \in N$. Then $A \in(l(p), c(q))$ if and only if $\sup _{n} \Sigma_{k} \times$ $\left|a_{n, k}\right|^{s_{k}} B^{-s_{k}}<\infty$ for some $B>1$ and there exist $\alpha_{1}, \alpha_{2}, \cdots$ such that (11) holds and $\lim _{B} \lim \sup _{n}\left(\Sigma_{k}\left|\alpha_{n, k}-\alpha_{k}\right|^{s_{k}} \cdot D^{s_{k} / q_{n}} \cdot B^{-s_{k}}\right)^{q_{n}}=0$ for all $D \geqq 1$.

Proof. As usual, define A_{n} on $l(p)$ by (13) for each $n \in N$. First let $A \in(l(p)), c(q) \subset\left(l(p), l_{\infty}\right)$; then $\sup _{n} \Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k}}<\infty$ for some $B>1$. Also by Theorem 3 there is an $l \in l(p)^{*}$ such that $\mid A_{n}\left(e^{(k)}\right)-$ $\left.l\left(e^{(k)}\right)\right|^{q_{n}} \rightarrow 0(n \rightarrow \infty)$ for each k and such that $\lim _{B} \lim \sup _{n}\left(\| A_{n}-\right.$ $\left.l \|_{B}\right)^{q_{n}}=0$. By Lemma 4 we can write $l(x)=\Sigma_{k} \alpha_{k} x_{k}$ on $l(p)$ for some sequence $\left(\alpha_{k}\right) \in l(p)^{\dagger}$, and the necessity now follows using the method of Theorem 8.

For the sufficiency, we show that the conditions of this theorem imply $\Sigma_{k}\left|\alpha_{k}\right|^{s_{k}} \cdot M^{-s_{k}}<\infty$ for some $M>1$; then $l(x) \equiv \Sigma_{k} \alpha_{k} x_{k}$ defines an element of $l(p)^{*}$. We have for suitably large B and n

$$
\begin{aligned}
\Sigma_{k}\left|\alpha_{k}\right|^{s_{k}}(2 B)^{-s_{k}} & =\Sigma_{k}\left|\alpha_{k}-a_{n, k}+a_{n, k}\right|^{s_{k}} \cdot(2 B)^{-s_{k}} \\
& \leqq \Sigma_{k} \max \left(\left|a_{n, k}-\alpha_{k}\right|,\left|a_{n, k}\right|\right)^{s_{k}} \cdot B^{-s_{k}} \\
& \leqq \Sigma_{k}\left|a_{n, k}-\alpha_{k}\right|^{s_{k}} \cdot B^{-s_{k}}+\Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k}} \\
& \leqq 1+\sup _{n} \Sigma_{k}\left|a_{n, k}\right|^{s_{k}} \cdot B^{-s_{k}}<\infty
\end{aligned}
$$

Then by Theorem $8,\left(a_{n, k}-\alpha_{k}\right) \in\left(l(p), c_{0}(q)\right)$ whence $\left|A_{n}(x)-l(x)\right|^{q_{n}} \rightarrow 0$ $(n \rightarrow \infty)$ on $l(p)$, and the proof is complete.

We note that $(l(p), c)$ was characterized, for bounded p, in the corollary to Theorem 1 of [3].

The conditions for $A \in\left(l(p), l_{\infty}(q),\left(l(p), c_{0}(q)\right)\right.$ or $\{(l(p), c(q))$ in the general case $0<p_{k} \leqq \sup p_{k}<\infty$ and q bounded may be obtained by combining the separate cases $0<p_{k} \leqq 1$ and $1<p_{k} \leqq H$ above.

References

1. K. Chandrasekhara, Rao, Matrix transformations of some sequence spaces-II, Glasgow Math. J., 11 (1970), 162-166.
2. V. Ganapathy Iyer, On the space of integral functions-I, J. Indian Math. Soc., (2) 12 (1948), 13-30.
3. C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68 (1970), 99-104.
4. I. J. Maddox, Spaces of strongly summable sequences, Quarterly J. Math. Oxford,
(2) 18 (1967), 345-355.
5. I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64 (1968) 335-340.

$$
6
$$

6. Camb. Phil. Soc., 65 (1969) 431-435.
7. -, Some properties of paranormed sequence spaces, J. London Math., Soc., (2) 1 (1969), 316-322.
8. W. L. C. Sargent, On some theorems of Hahn, Banach and Steinhaus, J. London Math. Soc., 28 (1953), 438-451.
9. S. Simons, The sequence spaces $l\left(p_{\nu}\right)$ and $m\left(p_{\nu}\right)$, Proc. London Math. Soc., (3) 15 1965), 422-436.
10. M. A. L. Willey, On sequences of bounded linear functionals with applications to matrix transformations, J. London Math. Soc., (2) 7 (1973), 19-30.

Received August 7, 1973. This paper was written while M. A. L. Willey held a Science Council Research Studentship, and the support of the Council is very greatefully acknowledged.

The Queen's University of Belfast

