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CONTINUOUS OPERATORS ON PARANORMED
SPACES AND MATRIX TRANSFORMATIONS

IVOR J. MADDOX AND MICHAEL A. L. WILLEY

The concept of a paranormed /3-space is defined and some
theorems of Banach-Steinhaus type are proved for sequences
of continuous linear f unctionals on such a space. For example,
necessary and sufficient conditions are given for a sequence
(An(x)) of continuous linear functionals to be in the space of
generalized entire sequences, for each x belonging to a
paranormed /3-space. The general theorems are then used to
characterize matrix transformations between generalized lp

spaces and generalized entire sequences.

1* In § 2 we present theorems which generalize some results in
[10], These theorems are applied in § 3 to characterize some classes
of matrix transformations. By N, R and C we denote respectively,
the sets of natural numbers, real numbers, and complex numbers.
By a sequence (xk) we mean (xί9 x2, •••)> a n ( i by Σkxk we mean

X will denote a nontrivial complex linear space of elements x,
with zero element Θ and with paranorm g9 i.e. g:X—*R satisfies
g{β) — 0, g(x) — g( — x) on X, g is subadditive, and, for Xe C and xe X,
X —* λ0 and g(x — x0) —• 0 imply g(Xx — Xoxo) —> 0, where XoeC and
xoe X.

Extending the definitions of Sargent in [8], we can define a
paranormed /3-space as follows. Let (Xn) be a sequence of subsets
of X such that θ e X1 and such that if x, y e Xn then x ± ye Xn+1

for n e N; then (Xn) is called an ^-sequence in X. If we can write
X= U»=i ̂ > where (Xn) is an ̂ -sequence in Xand each Xn is nowhere
dense in X, then X is called an α-space; otherwise X is a /S-space.
Clearly, every α-space is of the first category, whence we see that
any complete paranormed space is a /S-space.

If Yd X then we denote the closure of Yin X by F. We write,
for any ae X and δ > 0, S(a, 3) — {x: xe X and g(x — a) < δ). A
subset G of X is called a fundamental set in X if I. hull (G), the set
of all finite linear combinations of elements of G, is dense in X.
A sequence (bk) of elements of X is said to be a basis in X if for
each xe X there is a unique complex sequence (Xk) such that
9(® ~ Σfc=i λkf>k) "-* 0(n —> oo). Thus any basis in X is also a funda-
mental set in X.

We denote the set of continuous linear functionals on X by X*.
A linear functional A on X is an element of X* if and only if
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| | A \\M ~ sup 11 A(x) |: g(x) g — I < oo for some M > 1 .
^ M>

If X is a space of complex sequences x = (xk), then we denote the
generalized Kothe-Toeplitz dual of X by X\ i.e.

^ = {(̂ fc) Σjβb&k converges for every x e l } .

We now list some sets of complex sequences due to Maddox [4].
If p = (pk) is a sequence of strictly positive real numbers, then

IΛv) = {&: sup* I a* I** < ^} ,

co(p) = {a;: lim* | xk |** - 0} ,

c(p) — {$: Urn*. I xk — i \Pk = 0 for some Z e C} ,

We write eik) = (0, 0, , 1, 0, 0, •), the 1 occurring in the kth place,
for each k e N, and e = (1, 1,1, •)> a n ( i we write L = IJβ), c0 — co(β),
c = c(e), and ϊx = l(e).

The case p — (I/A;) of co(ί?) is of particular interest, since the
function defined by XΓ=o ockz

k, zeC, is an entire function if and only
if (ak) G cQ(l/k). Work on the space of entire functions has been
carried out, by V. Ganapathy Iyer in [2] and in other papers, and
by other authors, using this correspondence with cQ(l/k). It is shown
in [2] that c o ( W - IJXIk).

Now we collect some known results which will be useful in what
follows.

LEMMA 1. l(p) is a linear space if and only if p is bounded.
(See [4], Theorem 1, and [7], Theorem 1.)

LEMMA 2. If p is bounded with H = max (sup pk, 1), then
g(x) — (Σk I xk \pkytH defines a paranorm on l(p), l(p) is complete under
g, and (e{k)) is a basis in l(p), (See [5], Theorem 1 and Corollary 1,
and [7].)

LEMMA 3. ( i ) If l<pk^ H and p^1 + s^1 = 1 for each keN,
then

l(PΪ = {(ctkY Σk I oίk I
s*. M-s* < oo for some M > 1} .

( i i) If 0 < pk ^ 1 for all ke N then l{pj - Lip).
(See [6], Theorem 1, and [9], Theorem 7.)

LEMMA 4. If either 1 < pk <Ξ H for all k, or 0 < pk ^ 1 for all



CONTINUOUS OPERATORS ON PARANORMED SPACE 219

k, then every A e l(p)* may be written as A(x) = Σkakxk on l(p) for
some (ak) G l(p)\ and conversely A(x) = Σkakxk defines an element of
l{vY for each (ak)el(p)\ (See [6], Theorem 2, and [9], Theorem 7.)

Given sets Y and Z of sequences and a matrix A = (an,k) of
complex numbers (n, k = 1, 2, ) we say that Ae(Y, Z) if and only
if Σkan>kyk converges for every y = (yk) e Γand n e N, and (Σkan,kyk) e Z
for every yeY.

We shall frequently use the following inequalities. Take x, yeC;
if 0 < p ^ 1 then

\ χ \ p - \ y \ p ^ \ χ + y \ p ^ \ % \ p + \ y \ p ,

and if p > 1 and p~: + s"1 = 1 then

\ x y \ ^ \x\* + \ y \ s .

2. For the remainder of this paper, q = (qn) will denote a
sequence of strictly positive real numbers. If q is bounded with
H — max (sup qn, 1) then it follows by Lemma 1 of [4] that co(q) =

); similarly L(ί) - U ^ ί ) and c(q) - cίH"1?).

THEOREM 1. Let X be a paranormed space and let (An) be a
sequence of elements of X*, and suppose q is bounded. Then

(1) supw (|| An \\My» < oo for some M > 1

implies

( 2 ) (An (a?)) e Utf) /or even/ α? e X ,

and the converse is true if X is a β-space.

Proof. In view of the remarks at the beginning of this section,
we may without loss of generality assume that qn ^ 1 fore all neN.
First let (1) hold, and choose any xe X. By the continuity of scalar
multiplication in a paranormed space, there is a K ^ 1 such that
giK^x) <̂  IIM, where the M is that of (1). Then we have for any
nf since qn ^ 1,

so that (2) holds.
Now let (2) hold, with X a /3-space, and define for any me N,

Xm = {x:xeX and | A%(x)|?- ^ 2m for all

Then (Xm) is an α:-sequence in X, for obviously # 6 Xl9 and if for
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some m ^ 1, x, y e Xm then, since qn fg 1 for every n,

I An(x ± y) |< ^ I An(x) \<» + I An(y) h ^ 2™+1

for any n e N. Also X = U»=i -̂ »> s o since X is a /3-space there
exists a Be N such that X 5 is not nowhere dense. Using the conti-
nuity of the Anf it is not difficult to show that Xm = Xm for every
m, whence there is a sphere 5>(α, 8) czXB. Thus if #(& — a) < <S we
have I An(x) | ? κ g 2 δ for all n, so if g(x) < δ we have

I AΛ(α?) I7- ^ I ̂ ( α ; + a) \q- + I AΛ(α) \q- ̂  2S + 1 for all n.

Taking M> δ'1 we obtain (1).

THEOREM 2. Lei X be a paranormed space and let (An) he a
sequence of elements of X*.

( i ) If X has fundamental set G and if q is bounded, then the
following propositions

( 3 ) (An(b)) 6 cQ(q) for every b e G ,

( 4 ) l i m 3 / l i m s u p % ( i | A J U ) ^ - 0 ,

together imply

( 5 ) (An(x)) 6 co(q) for every xeX .

( i i ) // qn—>0(n—> ©o) then (4) implies (5).

(iii) Lei X be a β-space; then (5) implies (4) e?;e% i/ g is

Proof. ( i ) Again, we may without loss of generality assume
that qn <£ 1 for every neN. Let X have fundamental set (?, and
suppose (3) and (4) hold. Choose any xe X and any ε > 0. There
exist M > 1 and n0 such that (|| An \\M)q^ < e/2 for all w ̂  %0, by (4).
Since I hull (G) is dense in X there exist λ1? λ2, , λm e C and
K K -",bmeG such that g(x — Σ?=i λfcδfc) < 1/ Λ/i and we write L =
m a x d λ j , •••, | λ m | , 1). Then by (3) there is an nY^n^ such that
i An(bk) \Qn < ε/(2Lm), k = 1, 2, , m, if w ^ wlf whence if n ^ ^x,
we have

m

2LJ '

m

)

1,

mL

TO

• ε/(2Lm)1 <

( A

ε

thus (5) holds.
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(ii) Suppose (4) holds and qe c0, and choose any xe X and any
ε > 0. There is an M> 1 and an n0 such that (|| AJI*)** < e/2 if
n ^ n0, and since scalar multiplication is continuous on X there is a
K >̂ 1 such that g{K~ιx) <£ l/j|f Then we can choose ^ *> w0 such
that K9n ^ 2 if n ^ ^ whence if w ^ ?v

I An(x) |« - IF I AΛΐΓ-1*) h < e ,

so that (5) is true.
(iii) Let X be a /3-space and suppose (5) is true. We define

sequences (Bn), (C.) of elements of X* and sequences r — (rn), s — (s.)
of strictly positive real numbers as follows. If qn ^ 1 then define
Bn = An, C. = 0,rn = qn, and sn = 1; if qn < 1 write 5 % = 0, CΛ = Aw,
r» = 1, and sn = qn. Then (Bn(x)) e co(r) and (C%(α;)) e cQ(s) on X;
sup. sn ^ 1, and r . ^ 1 for all w e N. Also, (|| Aw \\My* = (|| £ w |U) r- +
(IICft IW for all large enough M, n = 1, 2, , whence

lim* lim sup. (|| An \\M)q- ^ lim* lim sup. (|| Bn \\M)r-

Choose any ε > 0, and define for each me N

Xm = {x: x e X and 12~mCn(x) |β ^ — for all n ^ m] .

Clearly θe Xlt and if for some me N we have ίc, y e XM then for
w S: TO + 1

^ (2 max (12~ ίm+ί)Cn(x) \, 12.-{mW

= max (12-mCJx) \\ | 2-C.(») |s") ^ | -

thus (Xm) is an α:-sequence in X. Also X = (Jm=i Xm and Xm = Xm

for all me N whence, since Xis a /S-space, some XB contains a sphere
S(a, δ). Then if g(x) < δ we deduce that | 2"sC.(α;) |β» ^e ίoτ n^B.
Write |0 = 2"5δ and choose M > p~u, then by the subadditivity of g
we have g(2Bx) < δ if #(#) < ô. Hence if #(α;) ̂  1/Λf we have

I Cn(x) Is- - I 2~BCn(2Bx) Is- ^ ε if n ^ £ ,

and since ε > 0 was arbitrary we obtain lim^ lim sup. (|| Cn \\M)Sn = 0.
Now (Bn(x)) e co(r) on X implies (#„(#)) G c0 on X. For suppose

if possible that for some sequence (n(ί)) of integers and some xe X
inf I BnU)(x) I = a > 0; then | ^.^(ar1^) |r^> ^ 1 for all i, contrary to
hypothesis. By the argument used above we deduce that

HSnlU = 0 ,
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whence since rΛ ^ 1 for all n, lim^ limsupn(||JBΛ | |J f)
r» = 0. By our

earlier remarks, (4) now follows.

THEOREM 3. Let X be a paranormed space and let (An) be a
sequence of element of X* and suppose q is bounded.

( i ) If X has fundamental set G, and if there is an I e X* such
that (An(b) — l(b)) e co(q) for all beG and

( 6) lim* lim supπ (|| An - 1\\xy» - 0 ,

then

(7) (AJx))ec(q) on X.

(ii) // qn—>0(n—>oo) and if there is an leX* such that (6)
holds, then (7) is true.

(iii) If X is a β-space and if (7) is true, then there is an I e X*
such that (6) holds.

Proof. ( i ) If the hypotheses hold, then An — I e X* for every
n 6 N whence by part (i) of Theorem 2 ((An — l)(x)) e cQ(q) on X; thus
(7) is true.

(ii) Follows similarly from Theorem 2(ii).
(iii) Suppose (7) holds; then for some I we have | AJx) —

l(x)\9» —>0(n-+ co) on I , We deduce that l(x) = UmnAn(x) on X and
supπ I AJx) I < co on X. Then by Theorem 1 we have sup% || An \\M < oo
for some M> 1, whence \\l\\M < °°. Clearly I must be linear, so
that ϊ e X * . Thus An — ί e X * for each neN, and by hypothesis
((An — l)(x)) e co(q) on X, so by Theorem 2(iii), (6) must be true.

3* We now apply the theorems above in characterizing the
classes (l(p), ?«>(#)), (KP), CQ(Q))> and (l(p)f c(q)) in the case when both
p and q are bounded. Throughout, A = (an>k) will denote an infinite
matrix of complex numbers. As a preliminary, we state Theorem 1
of [3]:

THEOREM 4. ( i ) Let 1 < pk ^ H < oo and pzι + sk

ι = 1 /or

every k. Then A e (l(p), D i/ α^cί <mίτ/ i/ ί/^βre eα iβίs α^ integer
B > 1 s%cέ ίfeαί supw I7^ | αWfAί \

Sk 5~s/c < oo.
(ii) Lβέ 0 < pk ^ 1 /or every k. Then A e (l(p), IJ) if and only

if supΛ,Λ I αΛffc |p* < oo.

In the proofs of the following results, as in earlier ones, we
may without loss of generality assume that qn ^ 1 for all neN,
and we shall do so when convenient.

We first consider the case when 0 < pk ^ 1 for all k e N.
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THEOREM 5. Suppose 0 < pk ^ 1 for all ke N, and q = (qn) is
bounded. Then,

( i ) A e (l(p), Liq)) if and only if

( 8 ) sup % (sup*; I an>h \ M~ιjPk)q^ < oo for some M > 1 .

(ii) A e (l(p), co(q)) if and only if

(9) I an>k \Qn —»0(n —* oo) for every ke N

and

(10) l im* lim sup % (sup* \an>k\ M~llPk)q^ = 0 .

(iii) A e (l(p), c(q)) if and only if sup w sup fc \an>k\ M'llPk < oo for
some M > 1 and there exist au a2, such that

(11) I an>k — αfc |
g^ —> 0(^ —• oo) /or βαcfe fc e

(12) lim* lim supw (supfc | aΛffc - afc | Λf-1/P*)ff- = 0 .

Proof. Write, for each α eZ(p) and each neN

(13) A.(a?) = Σkan>kxk .

( i ) Let A e (l{p\ IJQ)); then for each n, (an>1, an,2, . •) e
L(p), by Lemma 3(ii). Also, by Lemma 4, Aw e l{p)* for each n e N.
We show that for each n, || An |U = supfc | αnfJfe | M~1/ί)fc for all M such
that HAJIJΓ is defined. Choose any neN. First, if M is such that,
for some sequence (k(i)) of integers, | anMi) | M~1/Pk^ ^ i for each
ieN, then by defining x{k{i)) = (Λf-1^*^) sgnαW ; M ί ))β ( f c ( i ) ), i = 1, 2, . . . ,
we see that | | A J | ^ is undefined. Since (anΛ, an>2, •• )eloo(p) there is
an Mn ^ 1 such that |α n, f c |** ^ Λίw for all k. Choose M ^ ikf,. We
have if g(x) = Σk\xk \Pk ̂  1/ikf, since M1/Pk \ xk | ^ 1 for all A; and since
sup* pfc ^ 1,

I An(x) \
n,k

?) s u p , I an>k |

whence || An\\M ^ supfc \an>k\ M~1/Pk. Given ε > 0 we can choose an
m such that | an>m | ikf~1/PA; > supfc | an>k | Mr1/Pk — ε. Defining x =
(M~llPk sgn αw,m)β(m) we have g(x) ̂  1/ikf and An(x) > supfc | αWjA: | M~llPk - ε,
whence || An\\M — supfc |α n , f c | M~~llPk as required. By Lemma 2, ί(p) is
complete, so it is a β-space; thus by Theorem 1 we must have (8).

Conversely let (8) hold. Then as above it follows that for each
n, Anel(p)* w i th || An\\M = sup, \an>k\ M~llPk for all M such t h a t
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li^LIL is defined. Then using Theorem 1 we obtain (An(x)) e IJ^q)
on l(p), i.e. Ae(l(p)JJg)).

We remark that (8) reduces to sup%;A; | an>k \Pk < °o if 0 < inf qn ^
sup qn < oo 9 corresponding to the condition given for A e (l(p), IJ) in
Theorem 4(ii).

(ii) If A e (l(p), co(q)) c (l(p), L(tf)) then as above we have An e X*
and 11^(1^ = supfc | an>k \ M~ίlPk whenever H-AJU is defined, for each
n e N. Then, by Theorem 2(iii), (10) must hold. Also taking x =
e{k) 6 l{p) (k = 1, 2, •) we obtain (9). Conversely if (9) and (10) hold
we can show that An e l(p)* with | | An \\M = sup^ | an>k | M~llPk whenever
H-A.lljf is defined, for each neN; also (e(k)) is a basis in l(p) by
Lemma 2. Then by Theorem 2(i) we can deduce that A e (l(p), co(q))

(in) Let A e {l{p), c(q)); then as in (i) and (ii) above we have for
each n that Ane Jf*. By Theorem 3(iii) there is an I e X* such that
lim^ limsupΛ( | | An — l\\MYn = 0, and by Lemmas 3(ii) and 4 we can
write l(x) = Σkakxk on l(p) for some (ak) e l^ip). We deduce that
\\AH-l \\M = supfc I an>k - ak \ Mrllv* for large enough M, n = 1, 2 ,
whence (12) is true, and (11) must hold since (An — l)(eik)) = an>k — ak

for each n and k. Also c(g)cί M whence (l(p), (c(q))c.(l(p), Ϊ J ; thus
by (i) we must have supfc \an>k\ M~lfPk < ρo for some M > 1.

Finally, if sup^ |α Λ , f c | Λf"17** < oo for some M> 1 then A%eJ(p)*
for all n. If in addition (11) and (12) hold then for any k we have,
if n and M are large enough,

I ak I M-ιι»k ^ I α4 - αw,fc | M"1/^ + | an,k \ M~ιl»k

^ 1 + supw (sup* I an>k I ikf-1/?)Λ) = 5 say

hence \ak\
Pk ^ BPk - M^ BM ίoτ all fc, i.e. fc)GUi)) = W . By

Lemma 4, Z(#) = Σkakxk defines an element of l(p)*, and the result
now follows if we employ the methods used above together with
Theorem 3(i).

T H E O R E M 6. Suppose 0 < pk ^ 1 for all keNand qn--»0(n-• oo).

jΓAβ^ A e l(p), co(q)) if and only if (12) is true.

Proof. This follows from Theorem 2, parts (ii) and (iii), on using
the methods of Theorem 5.

COROLLARY. ( i ) Ae (llf cQ(l/n)) if and only if \ an>k \
1/n —»0 uni-

formly in k as n-^ oo.
(ii) Ae (llf IJl/n)) if and only if supW ; f c |an > k |

1 / ί ι < oo.

Proof. These characterizations were given in Theorems 1 and
2 of [1], and follow readily on taking p = e and q = (1/w) in Theorems
5(i) and 6.
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Now we consider the case when 1 < pk ^ H < oo for all k.

THEOREM 7. Let 1 <pk^ H and pj1 + sk* = 1 for each keN,
and let q be bounded. Then A e (l(p), L(#)) if and only if

( 1 4 ) T(B) = s u p , Σk I an>k \*k B~**ίq* < oo for some B > 1 .

Proof. Define An by (13) on l(p), for each ne N. For the suf-
ficiency, let (14) hold. Then if x e l(p) we have for each n, assuming
qn ^ 1 for all n,

I An(x) I*. ̂  ( ^ I α w , Λ |)*» = (Σk I α,.41 B " 1 ^ B^ \ xk \Y*

^ T{B)

which implies A e (l(p), l
Now let A 6 (l(p), l^iq)); then (αn Λ, αΛ>2, •) e l(pY for each n and

so, by Lemmas 3(i) and 4, An e l(p) for all n. By Theorem 1 there
exist M > 1 and G ̂  1 such that | AΛ(a?) |ff« ^ G for all ti and all
a? G l(p) with ί/(a?) ^ 1/ikf. Then | Σk G~llq- an>kxk \ ̂  1, ̂  = 1, 2, . . . , if
ίr(α?) ^ 1/M. Write Γ = (G"1/ff αftffc), and choose any αeί(p). By the
continuity of scalar multiplication on l(p) there is a K ^ 1 such that
έKiΓ-^) ^ 1/ΛΓ, whence | Σk G~llq^ α . , ^ | ^ iΓ for all n. Thus we see
that Γ € (i(p), L) and so by Theorem 4(i) there is a D > 1 such that
supnΣk \G~llq"" anyk\

8* D~sk < oo. Writing B = GD and using the
fact that Z)ff» ^ JD for all n, we obtain (14).

Looking at Theorem 4, one might except the necessary and
sufficient condition for A e (l(p), loo(q)) to be

(15) s u p w (Σk I an>k \Sk M~Sk)Qn < oo f o r s o m e M > 1 .

Using the method above we can show that (15) implies Ae
(l(p), IJg)). In fact it can be shown that (15) implies (14) directly.
For let (15) hold; then for some B > 1, (Σk \ an,k \

Sk B"*)9* ^ H for all
n, and we may suppose that H > 1. If qn ^ Q for all n then

(16) (Σk I αΛ>fc | * B~Sk - H-^)q-IQ ^ 1 for all n .

Put J f = i ϊ 5 ρ ; then Ms^ =Hs*-BQsk ^ H-Bq-Sk, whence
for all A; and %. Thus by (16) we obtain

^ (-̂ * I α, f i \
Sk'B~8k H~ι^)q-iQ S 1 for all

whence T(M) ̂  1, i.e. (14) holds.
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Clearly, (14) implies (15) if infn qn > 0 or if infk pk > 1. How-
ever, (15) is not necessary for A e (l(p), l^iq)) if inf n qn = 0 and
infk pk = 1. For choose bounded p and q, with pk > 1 for all k, and
suppose there exist sequence (n(i), (k(j)) of integers such that
Qnu) ^ Vh i = 1, 2 , and p fc( i) ^ 1 + 1/i, i = 1, 2, then s*(i) :>
i + 1 for each j . Define anli)MJ) — i, i, j = 1, 2, , and αΛ>* = 0 for
all other ^ and k. Then A = (an>k) e (l(p), l^(q)) since for all i e N.

but for any JkΓ > 1 we have if i ^ ikf,

which diverges.

THEOREM 8. Let q be bounded, and let 1 < pk ^ H and pk

ι+
Sk1 = 1 for all ke N. Then A e (l(p), co(q)) if and only if (9) holds
and, for every D Ξ> 1,

(17) limB lim supw (Σk \ an>k\*k D */flΓ» £-•*)*• = 0 .

Proo/. Again, define Aw on Z(̂ ) by (13). First we prove the
necessity: let Ae (l(p), co(q)). Obviously we must have (9), and as
in Theorem 7 we see that Ane l(p)* for all n. If Ae(l{p), co(q)) then
(Dιlq* ank)e (l(p), co(q)) for all D > 1, so it is enough to show that
(17) holds for D = 1. Since cQ(q) c L and using Theorem 4(i) there
is a B> 1 such that T . Ξ ^ I α ^ | * B'H'k ^ 1 for every ne N.
Choose any n, and define xk

n) = B~H8k\an>k\
8k~1sgnan>k for each k;

then

and An(x{n)) = ΓΛ, whence || Aw |U ^ Γw for each π. By Theorem 2(iii)
we must have limβlimsupΛ(|| An\\B)

qn = 0, whence (17) holds with
D = l.

For the sufficiency, let (9) be true and let (17) hold for all
D ^ l . It follows that Anel{p)* for all neN. Since (e{k)) is a
basis in l(p) and using Theorem 2(i) it is enough to show that
lim* lim sup, (|| An\\B)

q- = 0. Choose ε, 0 < ε ^ 1, and D > 2/e. There
exist ΰ > 1 and m such that (Jfc | an>k \

8k.D8kl^'B~8ή^ < ε/2 if n ^ m.
Then if #(#) ̂  1/J5 and if n ^ m we have

I An(x) h ^ (Σk I αw,fc I Z)1/9-. B~ι 5Z>-1/9- | xk \)qn

^ (J f c{| αΛ,fc | *D δ A / g w 5~S Λ + J D " ' * / ^ 5 ^ I xk \Pk}

< ε/2 + (D~^-' BHgH(x)y- < ε ,
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and this completes the proof.

One may show that if (9) is true and if (17) holds for D = 1,
and if either inf n qn > 0 or inf k pk > 1, then A e (l(p), eo(<?)), but that
these conditions are not sufficient for A e (l(p), co(q)) if infn qn = 0 and
inf k pk = 1.

THEOREM 9. Let q be bounded, and let 1 < pk ^ H and p^1 +
sϊ"1 = 1 for all ke N. Then A e (l(p), c(q)) if and only if supw Σk x
I a%ίk \SkB~*k < co for some B > 1 and there exist a19 a2, such that
(11) holds and lim* lim supw (Σk \anΛ- ak \°k DSklq* £-•*)'» = 0 for all

Proof. As usual, define An on l(p) by (13) for each ne N. F i r s t

l e t A e (l(p))> c(q) c (l(p), Z J ; t h e n s u p % Σk \ an>k \Sk B~Sk < oo for s o m e
B > 1. Also by Theorem 3 there is an le l{p)* such that | An{e{k)) -
l^k)) |ίn—>o(π—* oo) for each & and such that limBlimsupΛ( | | Aw—
ϊ||B) f f — 0. By Lemma 4 we can write l(x) = Σkakxk on l(p) for some
sequence (ak) e ί(p)r, and the necessity now follows using the method
of Theorem 8.

For the sufficiency, we show that the conditions of this theorem
imply Σk | ak \*k M~*k < oo for some M > 1; then Z(α ) = Σkakxk defines
an element of l{p)*. We have for suitably large B and n

^ Γ f e m a x (I an>k -ak\,\ an,k \)°k J B - »

^ J , I αΛiJb - α 4 | s ^ B~Sk + J , | an>k \*k.

J f c I αTO,fc |
s ^ B~Sk < oo .

Then by Theorem 8, (an>k - ak) e (l(p), co(q)) whence | An{x) - l(x) |ff»->0
(̂ —> oo) on l(p), and the proof is complete.

We note that (l(p), c) was characterized, for bounded p, in the
corollary to Theorem 1 of [3].

The conditions for A e (l(p), lj,q), (l(p), co(q)) or [(l(p), c(q)) in the
general case 0 < pk ^ sup pk < oo and # bounded may be obtained by
combining the separate cases 0 < pk ^ 1 and 1 < pk ^ H above.
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