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THE EXTENDED CENTRALIZER OF AN S-SET

C. V. HINKLE, JR.

Let S be a semigroup with zero. The extended central-
izer Q(MS) of a right S-set Ms is defined. Necessary and
sufficient conditions are given for Q(MS) to be a regular semi-
group. In particular, Q(SS) is shown to be a regular semigroup
when S is regular. We also show that whenever the singular
congruence on S is the identity, then Q(SS) is the injective
hull of Ss and is right self injective.

1* Introduction* In [3], R. E. Johnson developed the extended
centralizer Q{MR) of an ϋί-module M and noted that Q(MB) is always
a (Von Neumann) regular ring. In this paper, we analogously define
the extended centralizer Q(MS) of a right S-set Ms. McMorris [4]
gave an example which illustrated the fact that Q(SS) is not always
a regular semigroup. We give a necessary and sufficient condition
for Q(MS) to be regular and show that when S is regular, Q(SS) is
also regular.

Johnson showed that the ring R is embedded in Q(RR) when the
singular ideal is zero. Analogously we define the singular con-
gruence on an S-set and show that when the singular congruence
is the identity, S is embedded in Q(SS). In this case we also note that
Q(SS) is the injective hull of S considered as a S-set and that, more-
over, Q(SS) is self injective.

2* Preliminaries* Throughout this paper each semigroup will
contain a zero (0) unless otherwise specified. Let S be a semigroup.
A (centered right) Sset Ms is a set M, with an associative scalar
operation on M by elements of S, which contains an element (neces-
sarily unique) θ such that θ — θs = mO for all me M and for all
s 6 S. The symbol θ will be called the zero of M. Since the distinc-
tion between the zero of M and the zero of S is clear from the
context, we shall denote both by the same symbol 0. Note that if
R is a right ideal of S then R becomes an S-set Rs under ordinary
multiplication. A sub S-set Ns of an S-set Ms is a subset N of M
such that NS £ N. If m, n e Ms and if E £ S we shall say that
mE is pointwise equal to nE when ms = ns for each se E. This
will be denoted as mE == nE.

Let Ms and Ns be S-sets. A function / : Ms —* Ns is an S-homo-
morphίsm if for each meM and seS, f{ms) = f(m)s. The collec-
tion of all such S-homomorphisms will be denoted by Hom^ (M, N).
If there exists / e Hom5 (Λf, N) which is 1 — 1 and onto, we say Ms
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is S-isomorphic to Ns and write MS~NS.
If / is an S-homomorphism the domain of / will be denoted by

Df and the range of / by Rf. The zero map from Ms will be
denoted by 0M and the identity map on M by 1M. If f:Ms—>Ns

and if As s Ns then f~\A) = {meM: f{m) e A}.
An S-congruence τ on Ms is an equivalence relation on M such

that whenever (m, n)e τ, then (ms, ns)e τ for all seS. The identity
S-congruence on Ms will be denoted by cM.

If S has an identity 1 the S-set Ms is said to be unίtal when
ml = m for each meM. For each semigroup S we shall define S1

by S1 = S U {1} where 1 is a symbol not in S and where multiplication
on S is extended to S1 by defining Ix — xl = α; for each &e S1. With
the operation so defined, Sι is a semigroup. Note that this definition
for S1 differs from the standard one. However, with the definition
given here each S-set Ms becomes a unital S'-set by defining ml = m
for each meM.

The following definitions and theorem are due to Berthiaume
[1]. A sub S-set Ns of Ms is said to be large (essential) in Ms if
for each / e Hom^M, K) such that / \N is 1 - 1 then / is 1 -- 1. In
this case Ms is called an essential extension of Ns. The following
lemma characterizes large sub S-sets in terms of S-congruences.

L E M M A 2.1. Ns is large in Ms iff for every S-congruence p on

Ms such that p Φ cM we have p\N Φ cN.

An S-set Ms is injective if for each As £ Bs and for each / 6
Hom5(A, M) there exists / r GHom s (β, M) such that f'\A = / . If
Ms £ Ns and if Ns is injective then Ns is called an injective extension
of Ms. The following theorem due to Berthiaume [1] guarantees the
existence of a minimal injective extension which is unique up to S~
isomorphism.

THEOREM 2.2. The S-set Ms is a maximal essential extension of
Ns iff Ms is a minimal injective extension of Ns. Every S-set Ns

has such an extension which is unique up to S-isomorphism over Ns.

The minimal injective extension of Ns given in the above theorem
is called the injective hull of Ns. Note that Ms is the injective hull
of Ns iff Ns is essential in Ms and Ms is injective.

A semigroup S will be called self injective if Ss is injective.
The S-set Ms is weakly injective if for each right ideal R of S

and for each / e Hom^ (R, M) there exists meM such that f(s) =
ms for each se R. In ring theory it is well-known that the corres-
ponding concepts of "injective" and "weakly injective" are equivalent.
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However, for semigroups Berthiaume proved the following lemma and
gave a counterexample for the converse.

LEMMA 2.3. // the S-set Ms is injective then Ms is weakly
injective.

3* The singular congruence on an S-set* The following defini-
tion is a generalization of a corresponding concept in ring theory.
A sub S-set Ns of Ms is intersection large in Ms if for each 0 Φ
me M there exists se S1 such that 0 Φ mse N. Note that Ns is
intersection large in Ms if and only if the intersection of N with
any nonzero sub S-set of Ms is always nonzero. Properties of
intersection large S-sets are given by the following lemmas which
are immediate from the definition.

LEMMA 3.1. If Xs §= Ys S Zs are S-sets then Xs is intersection
large in Zs if and only if Xs is intersection large in Ys and Ys is
intersection large in Zs.

LEMMA 3.2. Let Ms and Ns be S-sets and let φ e Homs (M, N).
If As is intersection large in Ns then Φ~\A) is intersection large in Ms.

Note that if Ns is intersection large in Ms then m~ιN — {se S:
mse N} is intersection large in Ss for all me M. In order to show
this, define φm:S—>M by φm(s) = ms. Then φm e Roms(S, M) and
Φm\N) = m~ιN is intersection large in Ss by the lemma.

The class of all intersection large sub S-sets of the S-set Ms

will be denoted by &(MS). This class is closed under finite inter-
sections since Af]B= V2\B) where A, Be &(MS).

Let & = &*(SS) and for each S-set define

ψ = ψ(Ms) = {(mlf m2)e M x M: m1D
:==m2D for some De^} .

It is easily seen from the properties noted above that ψ is an
S-congruence on Ms which is a two-sided congruence if M= S. The
S-congruence ψ is called the singular congruence or ^-torsion con-
gruence on Ms* When ψ = cM we say that Ms is ^-torsion free.

Feller and Gantos [2] showed that every large sub S-set of an
S-set Ms is intersection large in Ms. The converse is not generally
true. For, consider the semilattice S = {0, e, 1} which has 0 < e < 1
under the natural partial ordering. The right ideal eS is clearly

intersection large in S. Define f:S->S by f(x) = j j ff

 x

χ

eJe^\.
Then /eHom 5 (S, S) and f\eS is 1 - 1 . However, / is not 1 - 1 .
Therefore, eS is not large in S5.
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The following proposition gives a sufficient condition for the
converse to be true.

PROPOSITION 3.3. Let Ms be a right S-set such that Ms is &>-
torsion free. Then ^(Ms) is the set of large sub S-sets of Ms.

Proof. L e t A s e ^ ( M s ) a n d l e t feRoms(M, B) s u c h t h a t f \ A
is 1 — 1 where Bs is an S-set. Suppose f(xj) = f{x2). Let D =
XT1 A Π xT1 A = {se S: x^ e A and x2s e A}. Then De^(S) and since
f(xd = /(#2)> we have f(Xχβ) = f(x2s) for all se D. However, xι89

x2se A for all se D and / 1 A is 1 — 1. Thus xxD == x2D and it follows
that xx — x2 since Ms is ^-torsion free.

It was noted in §2 that an injective S-set Ms is always weakly
injective but that a weakly injective S-set is not necessarily injective.
In the following proposition we show that the two concepts are
equivalent whenever Ms is ^-torsion free.

PROPOSITION 3.4. Let Ms be a weakly injective S-set such that
Ms is ^-torsion free. Then Ms is injective.

Proof. Let As S Bs and let / e H o m s ( 4 , M). Let If* be the
injective hull of Ms. Then Ms is large in M* and hence is inter-
section large in Λf*. Also, by Lemma 2.1 we see that M£ is &r

torsion free since ψ(M*) \ Ms = ψ{Ms) — tM. Thus, since JlίJ is injective,
there exists / 'eHom s (B, ikί*) such that f'\A = / . We claim that
/ ' G Horn* (5, M). Let 6 e B and let /'(6) = n. By the note following
Lemma 3.2 we have D = r W e ^ ( S ) . Define ^: n^M-* M by ^(s) =
ns. Thus we have ^ G Homsί^'W, M) and since Ms is weakly injective
there exists me M such that 0(s) = ms for each βG ̂ "W. Therefore,
wi) == nD and since ψΣ{M£) = ^* it follows that n = me M.

4* The extended centralizer of an S-set* The construction of
the extended centralizer Q of an S-set Ms is similar to that given
by Johnson [3] for rings over modules and is outlined as follows:

Let & — έ^(Ms) be the class of intersection large sub S-sets of
the S-set Ms. Let F = \JDe^Ή.oms(D, M) and define multiplication
on S by fg = h where h: Dg n g'\Df) -> M by h(x) = f(g(x)). Then
under this multiplication F is a semigroup. Define a binary relation
ω on the semigroup F by (/, g)eω if there exists ΰ e ^ such that
f\D = g\D. Then <# is a two-sided congruence on î 7. The semigroup
Q — Q(Ms) = Fjω is called the extended centralizer of Ms. The
elements of Q will be denoted by / where f eF.

In ring theory the extended centralizer is always (von Neumann)
regular. An example given by McMorris in [4] shows that this is not
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the case for semigroups. We can however give a necessary and
sufficient condition for Q to be regular in terms of splitting S-homo-
morphisms, which were studied by Feller and Gantos in [2]. Recall
that an S-homomorphism / which maps an S-set Ms onto an S-set Ns

is said to split if there exists g e Hom^ (N, M) such that fg = lN.

THEOREM 4.1. The semigroup Q(MS) is regular if and only if
each equivalence class f of Q(MS) — F/ω contains an element which
splits.

Proof. Assume first that Q(MS) = Q is regular and let feQ.
Then there exists geQ such that fgf = / . Hence if E = {xeDfgf:
fgf(x) = f(χ)} t h e n Ee^. L e t / ' = f \ E a n d g' = g\Rf,. LetyeDg,
and let x' = g(y). Since y is also an element of Rf,, there exists
xeE such that f(x) = y and we see that y = f(x) = fgf(x) = fg(y) =
f{x'). Furthermore, /(&') - f(x) = /#/(#) = /tf/V) and it follows
that a'e E. Therefore, y - /flr(i/) = f(x') = /'(«') - /V(y) and we
see that / ' splits.

Conversely, for fe Q there exists / ' e / such that / ' splits. Hence,
there exists g9: Rf, —> i)/, such that / V = ̂ y,. By Zorn's lemma there
is a maximal sub S-set iV5 of Λf5 such that Dg, Γi N = 0. It easily
follows that D = Dg,{JNeέ^ in this case. The S-homomorphism
gf can be extended to an S-homomorphism g e Hom^ (D, Λί) by defining
g(x) = 0 if #e2V and (̂α;) = g\x) if xeDg,. Hence we have geF.
Let^xepf:z Then fyf\x) = f'g'f'(x) = lBf,f'(x) = f'(x). Therefore,
fgf = fgf — f' = / and it follows that Q is regular.

In the case where M = S we have the following theorem.

THEOREM 4.2. If S is a regular semigroup then Q(S) is regular.

Proof. By the previous theorem it is sufficient to show that each
equivalence class / of Q(SS) contains an element which splits. Let
fe Q and let jF" = {(Da, ga): Da is a right ideal of S in Df such that
Λ -• f\Da splits on Da and βrα: i?α = fa(Da)~>Da such that /βflrβ = lΛ β.
The set J^~ is nonempty since ({0}, 0) e ̂  where the zero in the
second coordinate is the zero map. Define a partial order ^ on a?~
by (Da, ga) <£ (Dβ, gβ) iff Da S ^ and ^|i2« = ί)rα. By an application
of Zorn's lemma, &~ contains a maximal element (DM, gM). To complete
the proof it is sufficient to show that DMe^(Ss). Suppose this
is not true. Then DM is not intersection large in Df. Hence there
exists eeDf such that eS1 Φ 0 and eSι n DM = 0. Since S is regular,
we may assume that e2 = e. Let x = /(e) then α β = /(e)e = /(e2) =
f(e) = a?. We now consider two cases.
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Case 1. Suppose xeS f] RM Φ 0. Then there exists se Ssuch that
0 Φ xes e RM. Consider esS § eS. Let Dr = DM\J esS and let / ' =
f\D'. Then f'{D') = RM. If yeΛ* then / '^(y) = A M ϊ ί ) = y.
Hence (J7, ^ ) e ̂  and (Z^, ̂ ) < (D\ gM) which contradicts the
maximality of (DMy gM).

Case 2. Suppose xeS f] RM = 0. Let #' be an inverse of x and
define g'ι R'= RMΌ xeS-+D' = DM U eS by g\y) = { S ^ / e ^ } .
Note that #'eHom(i2', Z>') Now let f = f\D' and let yeΛ\ If
2/ e RM then /'#'(?/) = fMQm(y) = lΛjf(2/) = 2/. On the other hand, if
y e xeS, say 7/ = xes, then f'g'(y) — fg\xes) — f\exfxes) = α α '̂ es =
α es = y. Hence it follows that f'g' = 1B,. Thus, (D\ g')e^ and
clearly (DM, gM) < (D', g') which again contradicts the maximality of
{DM, gM).

Therefore, DM must be intersection large in S and the theorem
follows.

An S-set Ms is intersection uniform if every nonzero sub S-set
of M is intersection large.

THEOREM 4.3. The semigroup Q = Q(MS) is a right cancellative
semigroup with zero if and only if Ms is intersection uniform.

Proof. Suppose that Q is a right cancellative semigroup with
zero and let Ns be a nonzero sub £-set of Ms. Using Zorn's lemma
to find a maximal sub S-set N' of M such that N Π Nr = 0, define a
function / on NUN' by f(x) = x if xeN and /(α;) = 0 if aeiNP.
Then / 2 = / and / e F. If / = 0 then there exists Z)e ̂ (ikί^) such
that DQDf and /(D) = 0 which implies that D S N'. Hence
i\Γr e ^{Ms). But this is impossible since Nf)N' = Q. Thus we have
/ Φ 6. Since ϊ ^ / = f = ff and since each nonzero element of Q is
right cancellable, it follows that ΪM = f. Therefore, there exists
De^> such that ί ) £ N and it follows that Ne^(Ms). The proof
of the converse is immediate.

5* The injective hull of a ^-torsion free semigroup* Through-
out this section we shall consider the semigroup S as an S-set over
itself. For seS define φs: S-+ S by φ8(t) = st. Then ψBeF and it
easily follows that the map φ: S—>Q by φ(s) = φ$ is a representation
of S in Q = Q(SS). Note also that we can regard Q as a centered
right S-set by defining fs = / ^ for each / e Q and for each seS.
The following lemmas are easy consequences of the above remarks.

LEMMA 5.1. ψ(Ss) = Φ'^φ.
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LEMMA 5.2. For each f eF and for each seDf, fφ8 = φf{s).
When ψ(Ss) — cs we shall assume that S is embedded in Q =

Qc?(S) under the identification s( — }φs. From Lemma 5.2 we see
that fs = f(s) for each fe Q^(S) and for each se Df under the iden-
tification described above. Thus we see that Ss is intersection large
in Qs. In addition, the next lemma shows that Qs is ^-torsion free.

LEMMA 5.3. If S is ^-torsion free then Qs is ^-torsion free.

Proof. Let (flf f2)eψ(Qs). Then there exists Ee^ such that
fJS = J2E. Let E'_ = Ef]Dfin Dfz e ̂ . Then for each s e E', we
have fλ(s) = fxs = f2s = f2(s) and it follows that f1 = /2.

The following lemma is immediate from Lemma 2.1 and the
remarks preceding the above lemma.

LEMMA 5.4. If S is ^-torsion free then Ss is large in Qs.

We now can show that Qs is the injective hull of S and fur-
thermore Q is injective as a Q-set.

THEOREM 5.5. If S is ^-torsion free then Qs = Q(SS) is the
injective hull of Ss.

Proof. Since Ss is large in Qs by Lemma 5.3, we need only show
that Qs is injective. By Lemma 5.3 and Proposition 3.4 it suffices
to verify that Qs is weakly injective. Let R be a right ideal of S
and let Φ e Homs (R, Q). Since S s is intersection large in QS9 R

r —
φ-'iS) e & and / = Φ\Rf e F. We claim that Φ(r) = fr for each r e
R. For each s e r~ιRr = {s: rs e R) we have Φ(r)s — Φ(rs) = f(rs) =
(fr)s. Thus, since r'ιR' e &*, it follows that (Φ(r), fr) e f(Qs) which
is the identity S-congruence on Qs. Therefore, Φ(r) = fr for each
reR and the result follows.

THEOREM 5.6. // S is ^-torsion free then Q = Q(SS) is self
injective.

Proof. Let AQ £ BQ be Q-sets and let Φ' e Homρ {A, B). Then
Φ' e Hoπis (A, Q). Since Qs is the injective hull of Ss, there exists
ΦeΈLoms(Bf Q) such that Φ\A = Φ'. We claim that Φ is a Q-homo-
morphism. Let be B and fe Q. Then for each s e Df we have Φ(bf)s —
φφfs) = Φ(bf(s)) = Φ(b)f{s) = Φ(b)fs. Thus {Φ{bf\ Φ{b)f) e f (Qs) which
is the identity congruence on Q. Therefore, it follows that Φ(bf) =
Φψ)f.
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