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GENERATORS FOR EVOLUTION SYSTEMS WITH
QUASI CONTINUOUS TRAJECTORIES

JAMES V. HEROD

With G a normed space, this paper provides conditions
on a nonlinear function A from R x G to G in order to
insure that if P is in G then there will be a (not necessarily
continuous) solution Y for

p+ [*dtA(t, Y(t)) .[
Jo

Early work in the study of the Stieltjes integral equation

M(x, z) = l + [ dFM(I, z)
J

was done by H. S. Wall [25] and T. H. Hildebrandt [8]. In Wall's
paper, F is a continuous matrix valued function which is of bounded
variation on each finite interval. Hildebrandt dropped the require-
ment of continuity and used a modified Stieltjes integral. J. S. Mac
Nerney carefully analysed these ideas in a series of papers which
led to the fundamental relationships found in [15], [16], and [17].

The papers [15] and [17] establish two classes OA and OM of
functions and a one-to-one pairing of the classes made possible
through a continuously continued sum, a continuously continued
product, and a Stieltjes integral equation. In [17], if V is in OA, M
is in OM, S is a linearly ordered set, and P is contained in a com-
plete, normed, Abelian group, then Fand M are related by M(x, y)P~

*IP [1+ V]P, V(x, y)P=*Σy [M-1]P, and M(x, y)P=P+ Γ VM(I, y)P.
xj

The results in [15] may be identified with analogous results in
ordinary differential equations associated with nonautonomous, con-
tinuous, linear systems and [17] may be identified with Lipschitz
systems. An indication of the nature of the generality obtained in
the Stieltjes integral equation theory is found in [16], or in David
L. Lovelady's discussion of interface problems [11, p. 184], or in a
recent paper by Robert H. Martin [20] which investigates a linear
operator equation and which identifies the linearly ordered set as
the positive integers. Additional results related to [15] were found
by B. W. Helton and Davis-Chatfield (see [2] or [3]). Also, this
author determines a characterization of subsets of the two classes
OA and OM which give rise to invertible evolution operators M in
[4], for the linear case, and in [7] for the nonlinear (but Lipschitz)
case.
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In [9] Don Hinton and in [1] Carl Bitzer develop a theory for
Stieltjes-Volterra equations. Reneke shows in [21] and [23] that
much of the classical Volterra theory is contained in [15] or [17].

Questions concerning bounds for solutions of Stieltjes equations,
as well as perturbations of these solutions have been investigated
by Schamedeke and Sell [24], Herod [5], Martin [19], Reneke [22],
and Lovelady [10], [11], and [12]. Also, Marrah and Proctor [18]
have found results concerning periodic solutions.

In [6], this author extends the classes OA and OM by using
some of the ideas of analytic semi-group theory. In that investi-
gation, similar to Mac Nerney's, two classes OA and OM are paired
by a continuously continued sum, a continuously continued product,
and a Riemann-Stieltjes equation. (In this setting, also, Lovelady
[14] has generalized earlier results of his involving perturbations of
the systems.) The Lipschitz condition of [17] was dropped in [6] at
the expense of requiring that Λf( , y)P, in addition to being of
bounded variation on each finite interval, be continuous and that S
should be the real line. The results which follow relax these
requirements.

We suppose that S is a nondegenerate set with a linear ordering
and that {S, ^} has the least upper bound property. Also, {G, +, | |}
denotes a complete, normed Abelian group with zero element 0.
Further, suppose that D is a closed subset of G and that V is a
function such that if each of x and y is in S and x ̂  y then V(x, y)
is a function from D into G having the following properties:

( i ) If x ̂  y ̂  z and P is in D then V(x, y)P + V(y, z)P = V(x, z)P,
(ii) If a > b then there is a nondecreasing, numerical valued

function β defined on S such that if e > 0 and P is in D then there
is a positive number δ having the property that if Q is in D such
t h a t \Q - P\<8 and a ^ x ^ y ^ b t h e n | V(x, y)P - V(x, y)Q | ^

[β(x) - β(y)]e,

(iii) If a > b then D is contained in the range of [1 — V(a, b)]
and if P and Q are in D then | [1 - V(a, b)]P - [1 - V(a, b)]Q \ ^
| P - Q | , and

(iv) If a > b and P is in D then there is a nondecreasing,
numerical function a such that if {sp}% is a nonincreasing sequence
with values in [6, a] and a ̂ x ;> y ^ & then | V(x, y) Πp=i [1 —
V(sP^sP)riP\^a(x)-a(y).

If / is a function from S with values in G and y is in S then
f(y~) is a member g of G having the property that if ε > 0 then
there is a member x of S such that x < y and if x ̂  t < y then
19 ~ /(ί) I < e. In a similar manner, f(y+) may be defined.

The following theorems are established:
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THEOREM I. If a > δ, β is as in (ii), P is in D, and e > 0 then
there is a subdivision s of {α, b) such that if t is a refinement of s
then

IIL [1 - VΓP - IL [1 - V]~Ψ\ < {4 + 2[β(a) - β(b)]}e .

Let M be a function defined as follows: If x ^ y and P is in D then
M(x, y)P = »IΓ [1 - V]~ιP.

THEOREM II. If a > b then M(a, b) is a function from D to D
and

(1) If each of P and Q is in D then \ M(a, b)P - M(a, b)Q\^
\P-Q\,

( 2 ) If x^y^z and P is in D then M(x, y)M(y, z)P = M(x, z)P,
( 3 ) If Pis in Df and a^x^y^b then \ M(x, b)P-M(y, b)P\ £

a(x) - a(y),
(4) // a ^ b, ε > 0, and P is in D then there is a positive

number δ having the property that if Q is in D such that \Q — P\ < δ
and a^x^y ^b then \ [M(x, y) - 1]P - [M(x, y) - 1]Q \ ̂  [β(x) -

THEOREM III. // P is in D and b is a member of S then the
only function g which is of bounded variation on each finite interval

S b

V[g]

for e a c h x ^ b is given b y g(x) — M(x, b)P for x ^ b .

Proof of Theorem I.

LEMMA 1. If a > b9 P is in D, and a is as in (iv), then

(1) l i m ^ α i - V(x, b)]~ιP) exists and is [1 - F(6+, ό)]"^ and
(2) If t is a subdivision of {a, b} then | Πί [1 ~ V]~ιP —

[1 - F(6+, 6]-\P| ^ a(a) - a(b+),
(3) limβίβ([l - V(a, x)]~ιP) exists and is [1 - Via, a~)]~Ψ and
(4) If t is a subdivision of {α, 6} then | Π< [1 ~ V\~ιP —

[1 - V(a, a-)]~ιP\ S a(a~) - a(b).
Indication of proof. Suppose that x ^> y > b. Then

| [ 1 - V(x,b)ΓP-[l- V(y,b)ΓP\

£ \V(x, b)[l - V(y, 6)]-ιP - V(y, 6)[1 - V(y, b)]~Ψ\

^ a(x) — a(y) .

The existence of limxίba(x), together with the fact that D is closed,
implies the existence of \im.xih([l — V(x, δ)]"1^) in D. Let Q be this
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limit. Then | [1 - V(x, b)]Q - P | ^ | Q - [1 - V(x, b)]~Ψ | + | V(x, b)Q -
V(x, b)[l - V(x, δ)]-'P|. Consequently, P = lim,,, [1 - V(x, b)]Q =
[1 - V(b\ b)]Q. That is, Q = [1 - V(b+, bψψ so that (1) is estab-
lished. In order to establish (2), suppose that {£„}? is a subdivision
of {a, b). With Q as above,

Π [1 - F(ί,_,, t,)]-ψ - Q

Π [1 - V(tr.u tP)]-ψ - [1 - F(ί_ l f ί»)
p = l

< V IFΓ/ /• ̂ Π — V(t t \λ~ιP\ 4- Λvί'f

In a similar manner, one can establish (3) and (4).

LEMMA 2. Suppose that a > b, β is as in (ii), ε is a positive
number, and P is in D. There is a subdivision {sv}™ of {α, b) such
that if {tp}o is a refinement of s and k is a sequence such that
t(kp) = sp, p — 0, 1, , m, then

Σ _tΣ ^(^-i, U Π

- V(t,_u Q^n

<[4 + 2(/9(α)-

"1 Π [1 -

Proof. With the supposition of the lemma, let a be as in (iv).
Define functions Δ, δ, and d as follows:

If R is in D then zί(i?) is the largest number e not exceeding 1
and having the property that if Q is in D, \Q — R\ < e, and a ^
x^y^b then | Ffe y)Q - V(x, y)R \ ̂  [β(x) - β(y)]ε,

If b ^ 2 < α, R is in A and Q = limxiβ [1 - V(x, z)]~ιR then o(«, Λ)
is defined as follows: If there is no point y such that z < y < a
then δ(z, R) = a and, otherwise, δ(z, R) is the least upper bound of
all x such that z < x ^ a and such that if z ^ y < x and ί is a
subdivision of {y, z] then | Π^ [1 ~ V]~ιR - Q \ < Δ(Q), and

If b ^ z < y S Ob and c is a positive number then let x be the
greatest lower-bound of all w such that z ^ w and such that if
w ^ u < y then cc(y~) ~ a(u) < c. If there is no point of S between
x and y let d(y, z, c) be x. If there is, let d(y, z, c) be such a point.
Note that if u is in S and d(y, z, c) ^ u< y then α(τ/~) — a(u) < c.

Define the sequence u as follows: ^0 = b, u2- 8(u0y P), ^ =
d(u2, u0, ε), and, if n is a positive integer,
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^f Π [1 ~

and u2n+1 = d(u2n+2, u2n, ε/2n). Assume that u is an infinite sequence.

be lim up and, for each

q+lf u^q)\~ιP. lί m> n
Since u is nondecreasing and bounded, let
positive integer j , let Rό = Πί=i [1 — V(u^
then, as in [6, p. 250] | Rm — Rn | <̂  α(um) — c φ O Because
exists, {Rp}~=ι converges. For each integer n, let Qn =
V(#, Uτ)\~γRn. The sequence {©*>}?=! converges for suppose that 7 is
a positive number. Let R^ — lim Rp and let v be a member of S
such that if u^ > x :> v then a(x+) — a{x) < 7/2. Let JV be a positive
integer such that if n > JV then | i?^ — JK% | < 7/2 and u^ > un ^ v.
Then lim QP = ^ for | β , - Q J < a(ui) - a(un) + 7/2. By [6,
Lemma 2.1] there is a positive number ξ such that if n is a positive
integer then A(Qn) > <?. Again, using the fact that limβίWoβα(αj)
exists, there is an integer N such that if m > n > N then a(um) —
^(^%) < ί and, in this case, if t is a subdivision of {um, un) then
I Π e ί l - ^ l " 1 ^ - Q n \ < a ( u m ) - a(ui) <ξ^ A(Qn). Hence, δ(un, Rn) ^ u m .
Because this holds for each integer m > n, δ(un, Rn) ^ u^. This is
a contradiction to the assumption that u is an infinite sequence.

Let m be the least integer such that u2m — α, and define sP to
be u2m_p for p — 1, 2, , 2m. Let {ίff}J=0 be a refinement of s and k
be an increasing sequence such that kQ = 0, &2m = 7t, and ί(/bP) = sp

for >̂ = 0, 1, , 2m. If p is an integer in [1, m] and g is an integer
in [1 + Jc2P-.lf k2P] then u2(m_p)+2 = δ( 2̂(»-j»), -R2(m-̂ )). Hence

Π [i - v(tt.lt <

and

Π_lt ί.) Π [1 -

^ ) - /S(ίs)]e .

If p is an integer in [1, m] and <? is an integer in [1 + fc2P_2, ^ - J
then

g-1( tt) π " [i

- F(ί?_1; ί.)

.,, ί,)]-1 Π [i - Vίβy.,, β,)]-ιP

[1 - V ^ , ί,)]-1 Π [1 - V(βi-i, 8i)]-ιP

is zero if

1 + &2P-2 <

q — 1 + /b2P_2 and does not exceed 2[a(tq-ι) — oc(tq)]

^ ^ fo-i. Furthermore, a{tk2v_Γ) - a{tk2v__) = ^(s23,-2-)

î(«-P)+2) - Λ(^2(»-P+D) < ^/2m"5>. It follows that

if
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2m ( kp

Σ Σ
p = l U - 1 + fcp-i

t.u tq)

- V(tq.lt tq) Π

π
- V(t,_lt

k2p-l

Σ
k

[1

* 2
P

V(t
t
.

lt
 t

q
) Π [1 -

i = q

k
2v

,) Π [i - V(ί,

2m
1
 Π [1 -
j = P+l

2m

2m

U, ί,)]"
1
 Π

1
 Π [1 - V(

8i
.

lt
 s

3
)]-

ι
P

m~p)

{4 + 2[β(a) -

Indication of proof for Theorem I. The inequalities in the
proof of Theorem 2.1 on pages 251 and 252 of [6] carry over almost
without change by using the above Lemma 2.

The techniques above also provide the following

COROLLARY. If a > b, β is as in (ii), P is in D, and ε > 0 then
there is a subdivision s of {a, 6} such that if {tp}o is a refinement
of s and p is an integer in [0, n] then | M(tp, b)P — Π?=P H [1 ~

Proof of Theorem II. Parts (1) and (2) follow from the cor-
responding inequalities for the approximations to M; further details
are indicated in Theorem 2.2 of [6]. To establish part 3 of Theorem
II, suppose that a ;> x ^> y ^b and P is in D. Let a be as in (iv),
and t and s be a subdivision of {xf y) and {y, b) respectively. Then

[1 - VΓ IL [1 - V]~Ψ|I M{x, b)P - M(y, b)P\^\ M(x, b)P - I L [1 -

+1 in* [i - vr1 -1} π. [i - γyιp\
+ I Π. [1 - VYιP-M{ytb)P\.

Also,

I {Π* [i — F Γ - i l Π J i - VΓP\
- I Σ -I v(tp_lf tp) π?, j i ~ v(t^, QΓ τis [i - VΓP\
S a(t0) - a(tn) .

For part (4) of Theorem II, suppose that a > 6, β is as in (iv),
ε > 0, and P is in Ώ. Since M(-, b)P is quasi continuous, M([b, α], b)P
is compact. Hence, there is a positive number d such that if Q is
in M([b, a], b)P, R is in D such that | Q - iί | < δ, and a^x^y ^b



GENERATORS FOR EVOLUTION SYSTEMS 159

then I V(x,y)Q - V(x, y)R\ ̂  [β{x) - β(y)]-e/3. Suppose that Q is in
D such that | Q - P | < δ, {tp}o is a subdivision of {x, y) such that
if R is P or Q and p is an integer in [1, n] then

Π I
i = p

Then

1 {IL [1 - V]-1 - 1}P - {ΓL[1 -

,_lf ί,)Π [1 -

.l9 b)R

" 1 - 1 } Q |

-'P-Vit^QU

Proof of Theorem III. This theorem established that the evolu-
tion operator M which was found in Theorem II provides a solution
to the initial value problem indicated in Theorem III. Note that
the integral used is the Cauchy-left integral: If / is a function

V[f] is approximated by
a

Σί=i V(tp_lf tp)f(tp_ι) where t is a subdivision of {α, b).

LEMMA 3. Suppose that a > b and f is a function from [6, a]

S b

V[f]
a

exists) in fact, if ε > 0 then there is a subdivision s of {a, b) such
that if {ίp}5=o is a refinement of s then

Σ
v=ι

^) - (L) V[f] <

LEMMA 4. Suppose that b is in S, P is in D, each of f and g

is of bounded variation, and, for each x^b, f(x) — P + L \ V[f] and
Jx

g(x) = P + ( L ) \ b V[g]. I t follows t h a t i f x ^ b t h e n f(x) = g(x).
Jx

Proof. With the supposition of the lemma, let x be in S such
that x ;> by e be a positive number, and {£„};=<> be a subdivision of
{x, b} such that

Σ
P=I

v[f] -

Then
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\f(χ)-g(χ)\£\f(χ)-g(χ)\+ϊ

- [1 - V(tp_u tP)]g(tP^) I -

= Σ{-l/(ί,)-0(ίj.)l + | [ i -
p=l

- [1 - V{tP_u tP)]g(tP^) \}^±\\ [*' V[f] - V(t,.u t,)/(t,-i)

+ —\ V]g] + V(tP_u tp)g(tp^.1)\y < ε .

Thus

f(x) = flr(a?) .

Indication of proof for Theorem III. Suppose that a > b, P is
in D, and s is a subdivision of {a, b}. Then

[J. K \Op ij *^P/j -*• -^ — 's i ' \&p It ®p/•*•*-*• \&p—11 UjJL
p=l p=ί

i n
~* T// Λ \ TT Γ1 T7"/ M—1 731/iQ Q I I I II 1/ I Q Q 11 K
_j r l o p }, dp) J.J. I -*- » \ i 1> ΐ/J

Using the fact that M([b, a]9 b)P is compact, together with the above
corollary, we get that M{ay b)P - P - (L) Γ VM( , b)P = 0. Lemma

4 shows that this is the only solution to the Stieltjes integral
equation.

EXAMPLE. Suppose that g is an increasing, number valued func-
tion, A is a function with values in a Banach space G, and that A
has the following properties: (Compare [6, p. 258].)

(a) If £ is a number then A(t, •) has domain all of G,
(b) If P is in G then A(-, P) is continuous,
( c ) If a > bt P is in G, and ε > 0 then there is a positive

number δ having the property that if a^u^b and Q is in G such
that I Q - P\ < δ then | A{μ, Q) - A{u, P) \ < ε,

(d ) If a > b and B is a bounded subset of G then A is bounded
on [6, α] x J5, and

( e ) If t is a number, P and Q are in G, and c > 0 then

I [ P - c A ( t f P ) ] - [Q - cA(t, Q)]\^\P-Q\.

Also, as in [6, p. 258] let V(x, y)P = (L)Γ dgA( , P) ίor x ̂  y and

P in G.
Then V is in OA and if c is a number and P is in G then the

preceeding provides the only function / such that

(x) = P-(L)[dgA( , f ) .
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