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THEOREMS OF KOROVKIN TYPE FOR ^-SPACES

S. J. BERNAU

Suppose (X, Σ, μ) is a measure space, 1 < p < oo, p Φ2,
and that (Tn) is a net of linear contractions on (real or
complex) LP(X, Σ, μ). Let M = {xeLp: Tnx->x] (M is the
convergence set for (Tn)). It is obvious that M is a closed
siabspace of Lp; indeed this would be true for an arbitrary
normed space. In this paper we shall show that M is the
range of a contractive projection on Lp and hence is itself
isometrically isomorphic to an Lp-space. If S c LP(X, Σ, μ)
we can define the shadow, <&*(S) of S to be the set of all x
in Lp such that Tnx —> x for every net of linear contractions
(Tn) such that Tny -> y for all yeS. We shall also give a
complete description of ^(S) (for p Φ 1, 2, oo).

Our results are new for finite p not equal to 1 or 2. In the
case p — 2 the assertions about Mare trivial and S^(S) is the closed
subspace spanned by S. The case p = 1 was first considered by
Wulbert [9] for Lebesgue measure on [0, 1], He showed that if S —
{1, x, x2} then S^{S) = LJO, 1]. (Actually he considered sequences
of contractions and required only Tnl —> 1 and Tnf weakly convergent
to / for / = x and / = x2.) Wulbert's results were inspired by and
generalized the classical theorem of Korovkin [7] which contains the
result that if S = {1, x, of) then the shadow of S in C[0, 1] is C[0, 1].
In [8] Lorentz considered separable Lλ spaces on finite measure spaces.
He showed that for sequences of contractions such that Tnl —* 1 the
convergence set is a closed sublattice of Lx. A corollary of this,
which he noted, is that for LJO, 1], S^(S) = L, if S = {1, x}. This
last result and some further discussion of LX{X, Σ, μ), with μ(X) = 1
is also contained in [1],

The methods we use are suggested by the methods used in [3]
in discussing contractive projections. I am very grateful to Professors
Lorentz and Berens for discussions of this material and for supplying
me with preprints of [1], [2], [8]. My first introduction to this circle
of ideas was a colloquium lecture by Professor Lorentz in which some
of the results from [2] and [8] were presented.

2» The convergence set* We shall fix notation as in the first
paragraph of the introduction. It does not seem to matter whether
our measure space is taken over a cr-ring, σ-algebra or δ-ring. For
definiteness we shall assume that Σ is a cr-ring and measurability is
as defined by Halmos [5]. We shall let q be the conjugate index
to p, defined by 1/p + 1/q = 1. Since p Φ 1, 2, <>o, the same is true
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for q and Lq(X, Σ, μ) is the topological dual of LP(X, Σ, μ) with the
usual identifications. We shall consider the complex case; i.e., Lp

(and Lq) are (equivalence classes of) complex valued functions. The
real case is a little easier, but the methods are the same. If T is
a bounded linear operator on Lp, the conjugate operator T* is defined
on Lq by the identity

x (T*y)dμ = j (Γa?) ydμ (x eLP,ye Lq) .

DEFINITION. The conjugate convergence set M* for the net of
contractions (Tn) is defined by M* = {yeLq: T*y~>y}.

LEMMA 2.1. (Compare [3, Lemma 2.2].) Let xeLp, then xeM
if and only if | x \v~ι sgn x e M*.

Proof. Suppose xe M and write u — | x I2'"1 sgn x. Then \\u\\q ~
\\x\\p

q and (T*u) is a bounded net in Lq. Let w be a weak-* limit
point of this net. We have

I x-(w — T*u)dμ = \ x-wdμ — \ (Tnx)-udμ > \ x wdμ — \x udμ

= \x (w — u)dμ .

Taking a subnet such that T*u —> w (weak — *), we conclude that

Since the T* are contractions, || T * ^ | | g ^ \\u\\q = | |^ | |p / ? and hence
II w||? ^ ll^l!?/9 Holders' inequality now gives

11 χ 11 v _ [ x . wdμ < 11 α; 11 ll^li ^ l l ^ l l llα l ^ ^ ^ l l α ll27.

This gives equality throughout so [6, § 13.5] we have

ιv = j x l^"1 sgn x = u .

Thus u is the unique weak-* limit point of the net (T*u).
Since every subnet of (T*u) has a convergent subnet (by weak-*

compactness of the unit ball in Lq), we see that T*u is weak-*
convergent to u. Hence

|| u \\q S lim inf || T^u \\q ̂  lim sup || T%u \\q £ \\ u \\q,

because the T* are contractions; and we also have \\u\\ = lim || T*u | |.
Because Lq is uniformly convex [4; 6, § 15.17] it follows that T%u—>u
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in the norm of Lq, which gives | x \p~ι sgn x e M* as required.
The same argument applied to Lq shows that if

u = I x \p~ι sgn x e M* , x = \ u \q'x sgn ΰ e M** = M,

so we are done.
We now apply differentiation arguments like those in [3, Lemma

2.3]. Recall that if z, w are complex, X is real and h(X) — \z + Xw\
then, if z + Xw Φ 0, h is differentiable at λ with

h'(X) = Re [w sgn (z + λw)] .

LEMMA 2.2. (Compare [3, Lemma 2.3(i)].) // x,yeM, then
I x I sgn yeM.

Proof. Assume first that p > 2 and define, for λ e iϋ, and
0 < λ < 1,

Zx = λ-χ[| a? + Xy \p-' sgn (a; + Xy) - \ x I*"1 sgn ^]

- λ-χ[(| x + Xy \v~2 - I a? \p~2)(x + λ»)] + | a? |p-2^ .

Now, make a fixed choice of functions from the equivalence classes
determined by x, y and observe that, except for the null-set where
x or y is infinite, our differentiation result quoted above shows that
as λ—>0,

tλ —• (p - 2) I a; p"3 Re [T/ sgn ^] x + | a; |p"2^

at all points where x Φ 0. Also, since #> > 2, ^-->0(λ—>0) at points
where x = 0. Let ^ denote this (almost everywhere) pointwise limit
of ^ as λ->0.

At points where 2 | Xy \ < |α?|, the mean value theorem gives a
θ, 0 < 0 < 1 such that

s* = (p - 2) I a? + θXy \p~3 Re fo sgn (x + 0λi/)](a? + λy) + | a? l

Since | x |/2 < | a? + 0λi/1 < 2 | a? |, we have

\zx\ ^ (p - 2)2l2?~31 |a?|p-8 |2/| 2 | a ? | + \x\*-ι\v\

^(2p(p-2) + l)\xr2\y\eLq.

At points where | x | ^ 2 | Xy |, we have

= (321-1 + 231"1) I y p"11 λ Γ 2

^(S*-1 + 2p-1)\y\p-1eLq.
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Thus the pointwise convergence of zλ to

Zl = (p — 2) I x \p~~3x Re (y sgn x) + | x \p~2y

is dominated by an element of Lq. The dominated convergence
theorem then shows that \\zλ — z11| —•> 0. Now, by Lemma 2.1, ^ e M*
and ilf* is closed. Hence zιeM*.

Apply this result to a; and — ί?/ to see that

z2 — (p — 2) |a?|p"3^Re ( — ίy sgnx) + i \x\p~2yeM* .

Thus ^ — iz2 e M* and

zλ — iz2 — (p — 2) j x \p~3x [Re y sgn x — ίlmy sgnx]

+ 2 I # p~2i/ — p j α; \p~2y .

Use Lemma 2.1 again to conclude t h a t

11 x \v~2y \q~ι sgn (I x \p~2y) - | x l1"^-^ 12/ Γ 1 sgn y e M .

L e t kn = \x\ι-{q-1)n\y\{q-1)n$gny. Observe t h a t for each n,
kn+1 = |α;|1~ ( 9"1 ) [ kn I9"1 sgn kn. The argument we have just provided
shows inductively that kne M for all n. Since 0 < q — 1 < 1,
kn—*\x\ sgn 2/, //-almost everywhere, and clearly

I kn I ^ max (| x [, 12/1) e LP .

By dominated convergence again, \\kn — | x \ sgny \\p —>0 and hence,
[ x I sgn /̂ G M as required.

If 1 < p < 2, then by Lemma 2.1, x1 = {x^sgnx and yι =
|^/|p~1sgn^ are in Λί*. Since g > 2, our proof above shows that
x11 sgny^ = \χ Y'1 sgn y e M*. Apply Lemma 2.1 again to get

I x I sgn y = \\χ p" 1 sgn y\q~ι sgn (|a; j^^sgn y) e M.
For our next result we need some terminology from [3]. A

subspace N of LP(X, Σ, μ) is a vector suhlattice if for each xe N,
(Re x)+ G N; this means that N is closed under taking real (or imagi-
nary) parts and that the set of real functions in N is a real subspace
and a sublattice of Lp. For a nonempty subset K of L ,̂ the polar
K- = {xe Lp: \x\ Λ\y\ = 0(̂ / e K)}. A δα^d in L^ is a subset JSΓ such
that K = K11 (a band is necessarily a solid vector sublattice). If K
is a band in Lp there is a natural direct sum decomposition Lv =
K@KL and the associated projections are positive and contractive.
We write Jκ for the band projection on K. If K — y11 (the only case
we need) we write Jy for the band projection and note that Jy is
multiplication by the characteristic function of the set on which y
is nonzero.
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LEMMA 2.3. If yeM and Jy is the associated hand projection,
then JyMdM.

Proof. Let x e M, then Jyx = 11 x | sgn y | sgn x and this element
is in M by two applications of Lemma 2.2.

LEMMA 2.4. If x,ye M, then (Re (x sgn y))+ sgn yeM.

Proof. Suppose λ e R, λ Φ 0, then by Lemma 2.2, vλ =
λ-1(| ?/ + Xx I — I y I) sgn yeM. Since ^ = 0 at points where y — 0
we see that as λ —» 0, vλ converges pointwise (/̂ -almost everywhere)
to (Re (x sgn y)) sgn y. Since

I vλ I ^ I λ I"1 j I y + Xx I - 12/11 ^ I λ I' 1 1 y + λ α - y | = | x | ,

dominated convergence shows t h a t [| vλ — (Re (x sgn 7̂)) sgn y \\p —> 0;
so t h a t (Re (# sgn y)) sgn yeM. Another application of Lemma 2.2
gives I Re (x sgn y) \ sgn yeM and our resul t s follows.

THEOREM 2.5. The convergence set M is the range of a contrac-
tive projection on Lp.

P9Proof. For yeM, Lemma 2.4 shows that the map Uy: LP—>L
defined by Uyx — x sgn y, is norm decreasing, linear, and maps M onto
a closed vector sublattice of Lp. Such a map was called a unitary
multiplication operator in [3]. Choose, by Zorn's lemma, a maximal
subset Y of M such that | y1 \ Λ | y21 = 0 if 2/i, 2/2 ̂  Y a n (^ 2/i ̂  2/2 (a
maximal pairwise disjoint subset of M). If f e Lp the set
(ίGZ:/(ί) ^ 0} is cr-finite so the set {ye Y: Uyf ψ 0} is countable.
Thus we can define the direct sum U of the unitary multiplications
Uy(yeY) by Uf = Σver Uyf, and the defining sum has at most
countably many nonzero terms and is convergent in Lp norm. Clearly
UM is a closed vector sublattice of Lp. We show that U is iso-
metric on M.

Suppose x eM.xΦ 0. Let yl9 - - -, yn— - be an enumeration of
the countable set of y e Y such that \y \ A \ x \ Φ 0. Let y0 =
Σu^~n WVnW^Vn' Then yoeM and, by Lemma 2.3, JVoxeM. Hence
x — Jyox e M and | x — JyQx \ A \ y \ = 0(2/ e Γ ) . By maximality of Y
x — JyQx. Hence

« = Σ ̂  and II .τ | p - Σ I I Λ * IP = Σ I! ̂  IΓ = II K8II'
yeY yeY yeY

It now follows by Theorem 4.1 of [3] that M is the range of a
contractive projection on Lp and, which is an equivalent condition,
that M is isometrically isomorphic to some LP(XO, Σo, μ0).
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3* The shadow of subset S. In a certain sense characteri-
zation of shadows is trivial. Call a subspace M of Lp an exchange
suhspace if \x\ sgn y e M for any x, y e M. Clearly an intersection
of (closed) exchange subspaces is again a (closed) exchange subspace.
Hence for a subset S of Lp we can determine the closed exchange
subspace of Lp generated by S as the intersection of all closed
exchange subspaces of Lp which contains S.

THEOREM 3.1. If SaLP then the shadoiv, S^(S), of S is the
closed exchange suhspace of Lp generated by S.

Proof. Lemma 2.2 shows that 6^{S) is a closed exchange
subspace of Lp which contains S. If M denotes the closed exchange
subspace of Lp generated by S a careful check of the proofs of
Lemmas 2.3 and 2.4 and Theorem 2.5 show that these are valid for
any closed exchange subspace of Lp. Hence M is the range of a
contractive projection, say P, on Lp. Define a sequence (Tn) of linear
contractions oΐ Lp by Tn = P(n = 1, 2 •)• Then M is the conver-
gence set for (Tn) and hence, y ( S ) c I . This proves our theorem.

As a corollary of the proof of Theorem 3.1 we digress to state
the following result.

THEOREM 3.2. Suppose l ^ p < ^ , pφ2, a subspace M of
LP(X9 Σ, μ) is the range of a contractive projection if and only if M
is a closed exchange subspace of LP(X, Σ, μ).

Proof. If M is a closed exchange subspace of Lp then just as in
Theorem 3.1, Theorem 2.5 is valid for M. (This is equally true for
p = 1 and p = 2 as can easily be checked.) By [3, Theorem 4.1J it
follows that M is the range of a contractive projection on Lp. The
converse result is the statement of [3? Lemma 2.3(i)] if p Φ 1 and
an easy consequence of [3, Lemma 3.3] if p = 1.

Returning to shadows we note that Theorem 3.1 is difficult to
apply in practice. The following alternative seems a little more
useful.

Let έ%? be the smallest sub σ-ring of Σ such that the functions
JyX/y are ^-measurable for all x, y e S. (To be precise here, we
consider all choices of functions x, y in equivalence classes in S. The
ratios are zero, by definition, wherever the denominators are zero.)
Choose, by Zorn's lemma, a subset 3ίΓ of ^ x S which is maximal
with respect to the properties: (i) if (A, y) e SΓ, then Aa{te
X:y(t)Φ0}; (ii) if (A, y) e SΓ, μA > 0; (iii) if (Au yj, (A2, y2) are
distinct elements of J?7 then μ{Aι Π A2) = 0. Define a measure λ on
& by
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AΠB
\y\'dμ.

Also define a map V: LP(X, ^ λ)-*LP(X, Σ, μ) by Vf = Σu,y)^f yχA

(/ G LP(X, &, λ)). We note that the sets in & all have σ-finite
^-measure; that the sum defining Vf has, therefore, only countably
many nonzero terms and is convergent in the norm of LP(X, Σ, μ).
Furthermore, V is an isometry of LP(X, &, λ).

THEOREM 3.3. The shadow £S(S) = VLP(X, &, λ).

Proof. Let U be a direct sum of unitary multiplications such
that U is an isometry of &*(&) and US^(S) is a closed vector sub-
lattice of LP(X, Σ, μ). For f e Lp write T(f) = {t e X: f(t) Φ 0}, (we
allow the ambiguity of sets of measure zero here); and let &s —
{T(f):fe^(S)}. I claim that ^ is a sub σ-ring of Σ.

For this, observe that T(f) = T(Uf) so we may assume that
Sf(S) is a closed vector sublattice of Lp. Now T(f) = T(\ /1) =
Γ(| Re / I) U Γ(| Im /1) and I / I 6 <9*(S). Hence

0 T(fn) = τ ( ± 2 - || /. \r \fn\)e

so ^ s is closed under countable union. If f,ge S^(S)f J/\g\ =
l i m ^ \g\-n\f\e &>(S) so T(g) ~ T(f) = T(\ g | - / , | ^ [) e &B. This
proves our claim about <5$s.

If a?, y G S, {ί G X: Re J^/?/ > α > 0} = T((Re (Jyx - ay))+) e &s.
Hence, every Jyx/y (x, yeS) is ^-measurable and &s 3 &.

Suppose B e & then B = T(fB) for some fB e £f{β). If λ(J5) < oo,
then VχB = Έj(A,y)e.^y 'XBΠA- Since J5 is ^-finite we can enumerate
the countable set of pairs (A, y) in 3ίΓ such that μ(B Π A) ^ 0 as
(An, yn) and choose fn e S^{S) such that T(f%) = AnΓ\B. Then

= Σ ~ i ^/l/* Since the An are disjoint andΣ=-i

Vn\vdμ

w n
= XB

the series for VχB converges in LP(X, Σ9 μ). Since each yneS and
each f%e£S(S)9 each JfnyneS^(S) and F χ * G ^ ( S ) . Extending
linearly to simple functions in LP{X, ^ μ) and then taking closure
we conclude that VLP(X, ^ μ)a S*(S).

If x e S and {A, y) e ^Γ then χAxjy is ^-measurable and



18 S. J. BERNAU

Hence z = Σ u ^ e j r XAΦ e LP(X, &, λ) and x = Vze VLP(X, &, λ).
This shows that VLP(X, ^ λ) z> S.

If/, g e LP(X, ^ λ), then | f\ sgn g e LP(X, <^, λ) and | Vf\ sgn Vg =
F(| /1 sgn #). Thus VLP(X, ^ λ) is a closed exchange subspace of
LP{X, Σ, μ) which contains S. By Theorem 3.1 it follows that
SS(S) = VLP(X, ^ λ) as required.

For applications of this result we recall that a subset S of a
Banach space E is a Korovkin set for contractions if <S (̂S) = E.

In our closing results, μ is Lebesgue measure and Σ the tf-ring
of Lebesgue measurable subsets of R, or Rn as appropriate. Also,
remember that 1 < p < 0 0 , ^ ^ 2 .

THEOREM 3.4. // -1/p <a < β then [ta, tβ} is a Korovkin set
for Lp([0, 1], Σ, μ).

Proof. In the construction preceding Theorem 3.3, we see that
& is the tf-ring of Borel subsets of [0, 1]. Take J Γ = {([0, 1], tβ)}
and observe that V is an isometry of Lp([0, 1], Σ, μ) and Lp([0, 1], ̂  λ).

Observe that we could also use {cos t, sin t} on [0, π/2] or on
[0, π] or, of course, many other doubleton sets on many other finite
intervals.

THEOREM 3.5. Let X = [0, l]n c Rn and let S contain the constant
function 1 and the n coordinate projections, then S is a Korovkin set
for LP(X, Σ, μ).

One last result for a case when μ is not finite will now suffice.

THEOREM 3.6. Let S = {e~\ e~t2}, then S is a Korovkin set for
LP([0, co], Σ, μ).
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