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IRREDUCIBLE SUBGROUPS OF ORTHOGONAL
GROUPS GENERATED BY GROUPS
OF ROOT TYPE I

BETTY SALZBERG STARK

In this paper it is shown that the only irreducible sub-
groups of orthogonal groups over finite fields of odd charac-
teristic generated by groups of root type 1 are (1) unitary
groups, (2) groups of type G,, or (3) the commutator subgroups
of the orthogonal groups in question. This is a general-
ization of a previous result by the author.

In a previous paper [6], the author proved that the only subgroups
of orthogonal groups over finite fields of odd characteristic which are
generated by groups of root type 1 (defined below) and transitive on
one-dimensional singular subspaces are the groups (1), (2), and (3)
above.

The result of this paper is related to two current lines of research.
Firstly we note that the irreducible groups that we study, together
with the vector spaces they act on, form a quadratic pair in the sense
of Thompson [8] [see e.g., 4], since the elements of a group of root
type 1 have a minimal polynomial (x — 1)

Thus we have a classification of certain subgroups of orthogonal
groups which form a quadratic pair. However, our methods depend
on the orthogonal geometry and hence are unlike the methods of
Thompson. In addition, we include the case p = 3, not considered
by Thompson.

Secondly, the groups of root type 1 form a conjugacy class in
the orthogonal groups as well as in the groups (1), (2), and (3) above.
(This is not proved here, but is proved in [8] § 16, where Thompson
shows Y is a conjugacy class in G, and can also be proved directly.)
Furthermore, any two groups of root type 1 generate either an abelian
p-group or SL (2, q) (where ¢ is the number of elements in a group
of root type 1) or a group of order ¢* which is isomorphic to the
Sylow p-subgroup of SL (8, ¢). Thus our result is analogous to results
obtained by, for example, Aschbacker [2], or Fischer [3], who have
investigated the classification of groups generated by a conjugacy
class of p-elements such that any two p-elements generate a group
from a given class of groups.

1. Terminology and restatement of theorem. Let V be a finite
dimensional vector space over a finite field of characteristic not 2.
Let B be a symmetric bilinear form on V. B determines a quadratic
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form @ on V by B(z, x) = 2Q(x). In addition, suppose there is no
2 # 0 in V such that B(z,¥) = 0 for all ¥ in V. Then we say B is
nondegenerate on V. In this case, the group of linear transformations
on V preserving B is called the orthogonal group (with respect to
B), and is denoted 0(V). The commutator subgroup of 0(V) is denoted
2AV).

If for all xeS = {0}, SES V, B(z, ) =0, we say S is singular.
We remark that the condition S # {0} is not standard. Our “singular
vectors” and “singular subspaces” are always nonzero. If a vector
% is nonzero and not singular, it is nonsingular. This is standard.
Further, we use projective terminology. Thus, a one-dimensional
subspace is a point and o two-dimensional subspace is a line. Let
{ > denote “subspace generated by”. Thus {(z) is the point generated
by the vector z.

The set of vectors x such that B(x,y) =0 for all ye Y& V is
denoted Y*. If X< Y- we say X is perpendicular to Y. Since B
is bilinear, this is equivalent to saying (X ) is perpendicular to (Y ).
Since B is symmetric, X & Y* implies Y & X-.

Now let © be a singular vector (hence nonzero by definition),
and let w be in -. Define a linear transformation p,, by: For zecz-,
0. Sends z to z + B(z, w)x. This transformation preserves B on the
n — 1 dimensional space x-. (Note that in case ue<{x) 0., acts as
the identity on x+.) By Witt’s theorem (see, for example, Artin [1,
p. 121]), every linear transformation which preserves B on a subspace
of V can be extended to a member of 0(V). Tamagawa [7] shows
that the extension p of p,, to a member of 0(V) is unique. In fact,
if y is a singular vector such that B(y, ) = 0 and B(z, y) = 1 (when
u e (x), such vectors always exist) then p sends y to ¥y — Qu)x — u.
We abuse notation by allowing p,. to stand for its extension to a
member of 0(V); p,. is called a Siegel transformation.

Since, as a direct consequence of its definition,

( 1) loz.u(ox.v = px.u-@-

we see that the set Y = {0, .. 2 singular, uexz-, u¢{x); x, u fixed,
ke F'} is a group isomorphic to the additive group of F. If w is
singular we say Y is a group of root type 1. If u is nongingular
we say Y is a group of root type 2.

Let |F| = ¢ = p", where p is an odd prime. Let dim V =¢ and
index V=y. We remark that if Q(V) contains a group of root
type 1, v must be at last 2, and hence ¢ is at least 4. We restate the
main theorem of this paper:

MaAIN THEOREM. Let G be an irreducible subgroup of 2(V)
generated by groups of root type 1. Then
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(i) G=Gi(9
(ii) G = SU(/2, ¢°) and either
t=4dm+2,v=2m, m=1 or t=4m, v=2m, m>1
or

(ili) G = V).

2. The use of standard basis notation. Artin [1] shows that
V can always be represented in the following way:

V=L@, o) L& o) L oo K2p, 2> LW
where {x,, z_;,> is a “hyperbolic line”,
ie., B, x_;) =1 and Q(z,) =Qx_,) =0

and W is anisotropic (containing no singular points). The dimension
of Wis 1,2 or 0. The index of V is k.

By Witt’s theorem, if v, ---, v, are any vectors in V with the
same multiplication table B(v,, v;) as some subset of a standard basis,
they can be extended to a standard basis. Thus we use {u, %,), for
example, to stand for any singular line in V.

3. Preliminary results. We restate for the reader some of the
results from [6].

LEMMA 1. The groups of root type 1 are in one-to-one correspon-
dence with the singular lines of V.

The follows from elementary properties of Siegel transformations,
namely

(2) loz,u+kav = pz,u ke F
(3) Pz.en = Pex,u ce F*

and for singular #

(4) Pou = P—uyz »

Thus we may make the following definition:

Let 21 = {0, |1 = <&, ud} U {1}.

If I =@, say | is an axis line for G.

For the following lemmas let 3! and Xm be groups of root type 1
and let H be the group generated by X! and Sm. Let W =<, m)
and suppose [ N m = {0}.



614 BETTY SALZBERG STARK

LEMMA 2.
(1) Ifinm* =1, H is abelian.
(2) Iflnm* =P, (a point),
H s isomorphic to the p-Sylow subgroup of SLy(q) (@ = p").
(3) Ifinm* = {0}, H=SL{q).

LEmMA 8. Ifinm" = {0}, H is reducible on W, every singular
point in W is on exactly one axis line for H, and the orbits of
singular vectors under H form simgular lines.

To illustrate, if | = {x,, x,), m = {x_,, _,», then {x,, ©_,» is an orbit
of singular vectors under H, i.e., for any ¢, d € F, not both zero there
is a o€ H such that o(x_,) = cx, + dx_,.

LEmmA 4. If Ilnm*t = P, P 1s on two distinct axis lines in H.

To illustrate Lemma 4, let [ = {x,, 2,> m = <{a_,, 2;». Then P = {x,),
and {x,, x;» as well as {w,, x,> are axis lines for H.

LEMMA 5. If INnm*t = {0}, H is transitive on the nonsingular
vectors of a given length in W.

4, Baer’s theorem. In Lemma 2 we have remarked that two
groups of root type 1 either generate a p group or SL,(¢). In the
latter case, we say the two groups of root type 1 are opposites,
following Thompson [8]. Baer’s theorem allows us to assume that
each group of root type 1 in an irreducible subgroup of 2(V) has an
opposite. For the convenience of the reader we state the relevant
theorems:

LEmMMA 6 (Baer). (Theorem 3.8.2 [5]). Let K be a conjugacy
class of p-elements of the group G. If every pair of elements of K
generate a p-group then K lies in a mormal p-subgroup of G.

LEMMA 7 (Theorem 3.1.3 [5]). If G possesses a faithful irre-
ductble representation on a vector space over a field of characteristic
p, then G has no nontrivial normal p-subgroups.

5. No two axis lines intersect (Case 1). In §§5 and 6 we assume
that no two axis lines of G intersect. Suppose | = {x,, 2,) is an axis
line for G. By Baer’s theorem (Lemmas 6 and 7), we must have an
opposite, “m”. Without loss of generality, we may use standard basis
notation and let m = {x_,, x_,>. BEach singular point in W = I, m) is
on exactly one axis line for H, the group generated by X! and Im.
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We retain these definitions for H, W, 1, and m in §§5 and 6. Thus
if G is to be irreducible and have no two axis lines intersect, the
dimension of V must be greater than 4.

In order that {x,, z_,> = X not be fixed by G, some point in X
must be moved by an element of G out of X. Without loss of
generality (by Lemma 3) let us assume {x,> is moved out of X. Then
we must have an axis line of form n = {(x_, + y, 2). We may assume
zext since n N x¢ has dimension one. If ze {(x, x,)*, then <{z) is on
two axis lines, by Lemma 4. Thus

n =<{C_, + cx, + dx, + v, x_, + ax, + bx, + u)

where v, ue W+, a,b,¢c,de F.

Case 2. Suppose a = 0. Then since y = x_, + bx, + % is perpen-
dicular to <bx, — x_, x_, + bx,> = k, an axis line for H, we must have
x=x_, + cx, + dx, + v also in k', so that y is not on two axis lines
(Lemma 4). Hence ¢ =0 and d = —b and n = {w_, — bx, + v, z_, +
b, + w).

Thus % and v are both singular, u € v*, and {u, v)€ W*. Thus
the dimension of V must be at least 8. We return to this case later.

Case 1. Suppose a = 0. By Lemma 5 we may send z_, + ax, +
b, + u to 2 =2_, + ax, + © by an element of H.

Hence we get an axis line for G, n = {w, z). Choose w on 7 in
u*. Then w = ex, + fx_, + g%, + hx_, + x where x € (W, u)*. Hence
g+ ah=0o0r g = —ah. At this point, we need more information.
We thus note:

LEMMA 8 [6]. Using standard basis mnotation, if 1= {x, x.),
m = Ty, T_yy, N =<X_y + A%, + U, ht_, — ahx, + ex, + fx_, + ) where
e, uy € I, m)*+ and {x,u) is anisotropic, then Xl, Xm, and En generate
a group G isomorphic to SUiq). In addition, G is transitive on
the singular vectors in V = (I, m, n) and ts transitive on the non-
singular vectors of a given length, and every singular point of V s
on an axis line for G.

By Lemma 8, if {(u, ) is anisotropic, the group generated by H
and Yn is isomorphic to SUy(g).

Now suppose <u, x) contains one singular point, {y). Then
{t+ y>en for some tc W. But since y is singular, ¢ is singular
and hence ¢ belongs to some axis line s of H. Thus {¢t + y)es’.
But # N st % n since {m, W) does not contain a 4-dimensional singular
space. Thus by Lemma 4, <{t + ¥)> must be on two axis lines for G,
contradicting the hypothesis of this section.
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LEMMA 9. Let m and | be axis lines for G such that m NI+ = 4.
Let En move some point of {m, > outside of {m, ). If we assume
that for the group T generated by Xm, 31, and Xn, no two lines
intersect, then either (a) {m,l, n) contains a 4-dimensional singular
space (Case 2 above) or else (b) T = SUyq) and {m,l, n) is non-
degenerate with dimension 6 and indexr 2.

As a consequence of Lemma 9, we now prove

LemMMA 10. Suppose mo two awis lines of G intersect. If
T = SULq) 1s a subgroup of G fixing a 2k-dimensional subspace U
of V, then either

(1) U=V,

(2) there 1s a Case 1 axis line moving U and G 2 SU,,.(q), or
(3) there is mo Case 1 axis line moving U; awxis lines moving U are
Case 2 axis lines.

Proof. If U= V, T is reducible on V and there must be another
axis line h. Thus Xk is a subgroup of G which does not fix U and
for some pair of opposites 3, Sm in T, Sh does not fix (I, m). If
h is a “Case 1” line, <k, U) N U* has dimension 2 and is anisotropic.
By work in [6], Zh corresponds to a unitary transvection with center
{x + ¥) where 2 is in U and y is nonisotropic in U'. (We have
abused notation by identifying the orthogonal geometry of U and
the corresponding unitary geometry of U.) One wishes to know that
SU,.(g) and such a unitary transvection generate SU,,.(q). But one
need only remark that SU,(q) is transitive on nonisotropic vectors of
a given length, to see that if {x + ¥) is a center of a transvection
for G, then so is (z + ) for any 2z in U of the same length. Thus
T and Xh generate a group isomorphic to SU,,,, since such unitary
groups are generated by the set of all unitary transvections.

6. No two axis lines of G intersect (Case 2). We now assume
that Case 1 does not occur in G. We have in G, the subgroup H,
generated by the opposites 2! and Xm. In addition, by Lemma 3,
we have for each ¢ and d not both zero the axis line

nle, d) = {ex_, + da, + X3, cx_, — d2, + 2 .

But H and Xn(e, d) fix (@, 2,>. In order that G be irreducible we
need still another axis line k¥ such that Yk moves {(z; z,). (Hence
2k is opposite to Zn(c, d) for some ¢, d.)

First assume %k is in W*. Then let {x_,) = kN <{x;)* and let
gy = kN<xeyt. Thus k = {x_; x_o).
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If k£ is not in W*, there are two possibilities

(1) bk=1Ulc, d) =<ex, + duwy + 25, ¢, — dx_, — 2_p)

(2) k=opl,d) =<ex, + de_, + x_y, cx, — dx, + T_3).

Since the group generated by JIi(c, d), Xn(c, d), and H is iso-
morphic to the group generated by I{x_, z_», Zn(c, d), and H, we
may identify possibility (1) with &k = {(x_;, x_o.

Further, a line of type (2) in addition to a line of type n(c, d)
produces a Case 1 configuration in G: X{x, + x_, x, + ©_;» sends
Xy + oy Ty + 24 10 By + Ty + Ty + Xy — Xy, — Ty + v e

Thus, we may choose ke W:. We remark that the group T
generated by Yk, Yn(c, d), and H fixes the space {x_,, ¥, %5 T_o)-

We generalize this process:

LEMMA 11. Suppose G has no Case 1 configuration and G con-
tains a subgroup T(n)(n = 2) generated by groups of root type 1 with
the following axis lines: {x,, ., {T_,, sy, *++, Ty + Lan_yy Ty + T2n)»
{B_gneryy Tsnp. Then (1) T(n) is transitive on the (singular) vectors
i the space X = {&_y, Xy Ty, Ty, ***y Tons, Tgwy and T(n) fives X.

(2) Ifkis a singular line in U, the space spanned by axis lines
of T(n), and 3k is mot an axis line for T(n), then Xk is not an axis
line for G.

(8) G contains T(n + 1).

We remark that as a consequence of this lemma, since V is finite
dimensional, there can be no group G without a Case 1 configuration.

The proof of (1) is tedious but straightforward. One shows all
vectors in {@_, @, @y, T_o;» 2 < j < m are in the same orbit by
applying in sequence various transformations in H, 3{x_;_y, €,y and
Z{x_, + Ty, Ty + ®5;». Then one remarks that xz_, can be sent to
an arbitrary vector of X, a,2_, + a,x, + -+ + ay,%_;, by sending x_,
to x_, + ax; + ax_,, then fixing a2, + ax_, and sending x_, to x_, +
a5%5 + as%_g, repeating until in the last place where a,;,_, and a,; are
not both zero, one sends x_, to @, X_, + @25 + Goj_iXoj_; + Goj%_sje

By part (1) every point in X is on (exactly) one axis line for
T(n). A new axis line ¥ in U must have no point in X. Since
Un Xt = X, k must not be on X*. Without loss of generality, say
E=<x, +y,2)andlet 2z =kN<x_,>*. Then 2z =2, + w, since Ik is
an opposite to X{x_, x_,>. But 2¢ X. Thus weg X. Thus there is
a component of z in Y =<, ®_,, X s Xy, ++-, Lonp. Say bx,; is a
component, then S{x_, + 2_,;, _, + Z_pj_yy (= T(n)) moves z to z +
(x_y + 2_s5) — b(w_y + 2_;_,). But then we have a Case 1 configuration
(if bx_y;_,, is a component, use X{x_, + Xy;_,, €_, + &,;»). This proves
2).

Thus we must have a line » moving X and lying outside of U.
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Without loss of generality, say r moves ®_,, r = {x + ¥, 2 + w) where
xz,2€ U and y, w¢ U. Say z has an x, component. Say <z + y) &
{e_ytNr. Then & = 2, + ags + bZ_s + +++ + Aoz + Do 5. Since
T(n) is transitive on vectors in X, and fixes X, some element in
T(n) sends  to Y = @, + s + C&s + *++ + Cony®_pp-1) + C2n®s,.  Some
0€ 3X_y + Xojyy Ty + ;) SENAS Y t0 Y + o5y (— 2y — Xo5) + Ty + Ty,
But since there are no Case 1 configurations, ¢,;_, =0 for all j.
Further, some 7€ 3{®_,;, ®_uj_yy sends ¥y to ¥ + C;(®_—y). Thus
¢,; = 0 as well, since the coefficient of x_,;_,, must be zero. Thus
we may choose x = x,, or without loss of generality « can be chosen
to be any vector in X, say x = x_,. The hypothesis of no two axis
lines intersecting yields » = {x_, + v, x_, + w) with y, we U*. With-
out loss of generality » = {&_, + ®sps1, Tz + Tpzp. In addition, we
have shown that an axis line of form {x + %, z + w) with =, 2¢ U
and y, we U* can be written with x€ X. Hence, if we are to have
a line which does not fix {%s,.1, %ensrep, We must have lines of form
Tzt T_ni2))s OF {X_y + ®_uin, T2 + T_p,) as before. But the
latter produces a Case 1 configuration. This proves part (3).
We now prove:

THEOREM 1. If mo two awxis lines of G intersect, G = SU,(q),
k=3. (In this case dim V =2k. If k is even, index V==Fk. If k
is odd, tndex V =k — 1.)

Proof. We have shown that if G is a group satisfying the
hypothesis of this paper, such that no two axis lines intersect, then
G must contain SUy(q). Let » be the largest number such that
T=SU,q) S G and let U be the 2n-dimensional space fixed by T.
If U=V, we are done. If not, there must be an axis line » for G
such that X» does not fix U. Since T is transitive on the singular
vectors of U (for this we need % = 3) and since no two axis lines of
G intersect, we may write r = <&_, + Xupy, s + Loy, I 7 were
Case 1, we would contradict the maximality of %.) In addition we
must have {&_(,.1), T_m+zy. But T is transitive on the singular vectors
of U. So we then also have as axis line {x, + %,.;, %» + ...y, and
X tpi1)y Ttnrryy SENAS Xy + Lpuy, To + Tpro) tO

k=<0 + ®ps + Ty o F Ty — Tuin))

and Yk sends 7 t0 {¥_, + X + Turo — Totury) + Tuss + L+ Tusy + Taiay,
.+.>, a Case 1 configuration.

7. Two axis lines contain the same point and are perpen-
dicular to each other. If two axis lines [ and m for G contain the
same point P, then either [ is perpendicular to m (e.g., {x,, x,) and
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{®, x5) or else INm* = P (e.g., {x;, x,) and <z, ¥_,)). We suppose
in this section that the former case occurs, but the latter does not,
and in addition for no point @ is the space of axis lines containing
Q@ of dimension larger than 3.

Let P = (x,>. Using standard basis notation we assume <{z,, 2,)
is an axis line containing P. Let the space spanned by the axis lines
containing P be called S.

Not that the hypotheses of this section imply S is singular.

Let an opposite to {x,, z,> be denoted {(x_, z.,> as usual. Then
l=8SN<x_,>* has dimension 2 and includes z,. By the following
lemma, [ is an axis line for G.

LEMMA 12. If S is the space spanned by axis lines for G which
contain the singular point P, and P = m & S, where m is a line, then
m is an axis line for G.

Proof. Say I, = (P, z,>1 <1 <k are the axis lines spanning S.
Then m = (P, 3k cx;y. By the fact that p,.0., = Psur» We see
that m is an axis line for G. (If S is not singular, 3m may be a
group of root type 2.)

Thus using standard notation, we may name our [ above “{x,, ;)"
where x,e<x_,, x_, 2, >,

We remark that 3<x_, x_,> sends (=, z;) to {z, + ax_, ;). By
Lemma 12, {x_, x> is also an axis line for G. By Baer’s theorem
(Lemmas 6 and 7), we know that (x, x,> must have an opposite; call
it m.

Let m = {x + w, y) where w + xcx; and ye ¢, and we{x, 2,
Ty, ©_op*. Thus v = 2_, + ax, + b, + cx_, for some a, b, c€ F.

Case A. Assume w is singular or zero. Hence x is singular.
Let H be the group generated by X<z, x,» and ¥<{x_,, #_,). Since x
is singular we can find a o ¢ H which sends m to o(m) = {«, + d, +
w, o(y)> where de F. (Note that since the coefficient of x_, is nonzero
in 2, the coefficient of x, is nonzero in o(x). Further, note that o(y)
must contain an “x_,” component since y did, and o€ H.)

If o(y) is perpendicular to {w, 2,», then Yo(m) sends {w, ;) to
@y, @5+ x, + do, + wd. Thus we{wy. However we show we {xs;)
even if o(y) is not perpendicular to <{w, x.).

If o(y) is not perpendicular to {w,, x,), then by Lemma 4, {x, +
dx, + w) is on an axis line with some point P on {z,, x,y. Since d(y)
is not perpendicular to u;, {x, + dx, + w) is on an axis line with some
point @ in (=, ®,>. Thus (&, + dx, + w) is on axis lines with P, @,
and o(y). If P = Q, these three points are linearly independent and
{%, + da; + w) is on too many linearly independent axis lines for the
hypothesis of this section. Thus P = @ = <{z,>. But then (x> ison
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too many axis lines, unless w e {x;).

Therefore, we may suppose that d(m) = {x, + dx, + cxs, x_; + ax_,+
bx, + ex, + fx, + 2y where ze {x,, T, %5 X_y, Ty, T_op*, and there is
no «_, component since {x, + dx, + cx,, «,> is an axis line. In addition,
by Lemma 12, we may assume b = 0.

There is an element ¢ e X{%_,, x,» which sends g(m) to to(m) =
{®, + dw,, ©_; + hx_, + ex, + gx; + z). Since to(m) is singular, » = 0.
By Lemma 12 we may also assume e == 0, and we obtain to(m) =
(@, + dx,, *_; + gx; + z). Here d may be zero or not.

Let T be the group generated by H, Y{x, x,y, and Ym for Case
A. But T fixes the space U = {w, %_,, x_s + g2s + 2), so T is not
irreducible. Further, T is transitive on the vectors of U. Thus we
have an axis line for G which moves z,, say | = {x_, + ¥, w) where
we¢ U. Let w be in z. If wis alsoin x+, w is on an axis line with
some point in {x,, @,», not <{x,>. If w is also in x{, w is on an axis
line with still another point. Further, {w, ax, + 2, bz, + ;) must be
3-dimensional since no point in {(x,, #,, #;» can be on an axis line with
2_, + vy, these all being on axis lines with {(x,>. Hence {(w, ax, +
&, b, + @, ©._, + ¥)> (in the space of axis lines containg w) is 4-dimen-
sional. This implies w must either not be perpendicular to x, or else
not to x,.

Suppose w is not perpendicular to x,, but is perpendicular to x,.
Then w = ax, + bx, + x_, + ¢x; + © where x e {x,, X, T3, T_;, T_,, T_3 +
g%, + z>* and w is on an axis line with x, + dx,, d = 0. We may use
Lemma 12 with <z, + dx,, 2, and <z, + dx;, x,) to get the axis line
m =, + dw,, bx, + x_, +2>. If b=0, Zm sends {x_, 2_> to
{x_y, 2, + ©_, + xy. But then z_, is on too many axis lines (since z
is linearly independent of x_, and x;). Thus b = 0. But by [6], this
gives us a G, configuration in the 7-dimensional space {x,, @,, _,, Z_,,
X3, g + gx; + 2, T).

If w is not perpendicular to x;, we have another opposite to
{®,, ®;». If we are in Case B (which follows) we end up with a line
m (= {x, + dx,, ©_, + bz, + x)) and G,, as above. So we assume Case
A again occurs and we have a line of form I = {x_, + ax_,, _5 +
Sxs + x), where x_; + fa, + x € {x_; + gx, + 2) since w¢ U, and U is
fixed by 7. But z_; + fa, + x€{&, %, 2_, T_o»=* If 2 s+ frs+ €
{@_s + gx; + 2)* then x_, + fa, + « is on axis lines with z_, — dz_,
and x, + dx, as is x_; + gz, + 2. Whether or not d = a, z, + dx, ends
up on too many axis lines. Thus <{x_; + fr; + x> e {x_s + gx; + 2)>*
and again by [6], and Witt’s theorem, we get G,.

Case B. We recall that <{a,, x.,), {x_,, £_,>, {x,, %5, and {x_, x>
are axis lines for G. Further Ym is an opposite to X{(z, x,), and
m = <{x + w, ¥y, where {y> =mnN<x ', <{x + w) =mN{x:)*, and
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w e {x,, X, ©_y, £_op*. In Case B, w is nonsingular.

By Lemma 5, H, the group generated by X<z, #,> and X{x_,, ®_,)
is transitive on nonsingular vectors of a given length. Thus we may
assume for @ = 0, m = {x_, + ax, + w, ¥y where y has an z_, com-
ponent.

If w=bx,+ 2, where z¢€ {x, x_;>*, then apply e I{x_, %) to
obtain o(m) = (x_, + ax, + 2, ). We may choose z = a(m)N z*.
Again, x¢ x#, so we may use Lemma 4 to see *_, + a%, + 2 is on an
axis line with some point P in {x, ;). We obtain [ = {x_, + ax, +
2, &, + bx,> where b is not zero, for otherwise x, is on too many axis
lines. (Since x; is on an axis line with z_,, P == {x;).)

We recall that o(m) (= {x_, + ax, + 2, x)) is an axis line for G,
and x¢ x5, x€{x, + bxyyt N2*. Thus z=x_,— br_, +cx, +dx, + ex, +
fx_, + t where te{x, , X T_,, Ty, T_s, 2y*. By Lemma 12, there is
an axis line n = {(&_, + ax, + 2, x_y— bx_, + cx, + g2, + fx_, + t). Since
n is singular, f= —a'c. Look at the point P=nnNz=nN
(g, gt P={x_;—bx_,+fr_;+ 9%+t — altex_, — a'ez) =
{_y — bx_, — 207 '¢cx_y + g + ¢t — a”'¢cz). But P is on an axis line
with some point in {x_,, x_,», as well as with z_, + ax, + 2. Thus
P is on an axis line with {x_,>. Apply Lemma 12 to see r = (x_;, _s +
gxs +t — a~'cz) is an axis line. By [6], the group generated by
Xr, 31, H, and 3{x,, x;) is isomorphic to G, on the 7-dimensional space
{&yy Xyy X_yy gy X3y g + g%z + t — a™'¢cz, 2y. We remark for the con-
venience of the reader that in [6], we showed that G, is generated
by 3w, %), Xy, Bo), TL@ X, 2Ly, Tog), Xy, B_g), I{(T_y, %) and
{2, + das, bz, + 2_, + ) Where x € {x,, &5, X_,, Ty, Ty T_sp*. In Case
A, “x_;” was replaced with “x_; + gz, + 2”. (Witt’s theorem makes
this substitution legal.) In Case B, “x_;” was replaced by “x_; +
g%+t — a”lcz” and “a” by “z + kwx,” where k is chosen such that
2+ kxse{x_,+ gx; + t — a'cz)*. Then note we have the line {x_, +
ar, + z + kx,, ¢, + bx,y as an axis line for G by Lemma 12.

Thus we have seen we have (under the hypotheses of this section)
a G, formation, which by [6] is transitive on the singular points of the
7-dimensional space U spanned by the axis lines. Suppose then that
G contains G, and acts irreducibly on a space of dimension larger
than 7.

Thus, without loss of generality we have an axis line [ = {x_, +
%, vy where no point on ! is in U, since all the singular points in U
are already on the required number of axis lines. Let v be the point
on ! in xt. But ! must be opposite to all lines of form (z,, ax, + bxs),
a and b not both zero, or by Lemma 4 some point on one of these
lines will be on an axis line with v. This is impossible since v must



622 BETTY SALZBERG STARK
be perpendicular to some point on {(x,, x,». This establishes:

THEOREM 2. The irreducible subgroups G of 2AV) generated by
groups of root type 1 such that (1) two axtis lines I and m contain
the same point P and | & m*, but no two axis lines intersect which
are not perpendicular to each other and (2) for no point @ is the
space of axis lines of dimension larger than 3, are the groups Gy(q).
The dimension of V is T in this case.

8. The nondegenerate axis line space. Let S be a maximal
dimension space spanned by axis lines containing any one singular
point. If we name this point <{x,), then let | = {x,, x,) be one of the
axis lines in S(= S(x)).

Suppose one of the opposites to I is m = {x_,, _,). Then T =
Sn<x_)*. Suppose in this section that T is nondegenerate.

Let W= Tn<{x_,)*. We are going to work with W and {z_,, z_,).

Let we W. Then p, ., sends {w_,, _,> to {x_,, _, — Q(w)z, — w).
Let 2 = Qw)x, + w. Then p,_, . sends <{x,, 2,) to {x,, . — QR)x_. — 2).
If z (and hence w) is nonsingular, then one obtains <z, _,) as an
axis line. In both cases (w singular or nonsingular), applying Lemma
12 to <x_,, _, — Q(w)x, — w) and <{x_,, x_,» and (if w is nonsingular)
{x_,, ®,y, one obtains {x_, w) is an axis line for G.

If there are no nonsingular vectors in W, we may still obtain
{®_y, ¢,> a8 an axis line as follows: We know every point in W is
on an axis line with (x_,>. In addition, {x_,> is on an axis line with
{x_y, and W < {x, z_>*. If x_,¢ W, then the geometry of the space
of axis lines containing <{x_,) is different from the geometry of S(x,),
(i.e., S(z_,) has dimension equal to dim S(x,) but T(x_,) is degenerate,
since z_, & S(z_;) & z4,).

But the group generated by 3 {x,, z,) and 3{x_,, #_,) sends z, to
%_,, 8O this is impossible. Thus <%, z_,» is an axis line.

We have thus obtained:

LEMMA 13. If S(x) is the space of axis lines containing x, and
m 1s opposite to I, one of those axis lines (m and l both singular),
then SmNzt) 2 SE)Nm)YDm. If in addition T(x) is non-
degenerate, or if S(x) N m* contains a nonsingular point, then m N x*
is on an axis line with x, and {(m, S(x)) = I, S(m N x*)).

Let n=<x_,+ w, 2, +v) be an opposite for {x, x_,), Where
v, €, x_p*t. Let T(x) = (X, x_,, Uy where US (&, T_,, Ty, To)*.

Using Lemma 13, we obtain that {(x, + »> must be on an axis
line with x,, so that v = ax, + bx_, + w, we U(z,). A similar argu-
ment using S(x_,) (instead of S(x,)) shows that x_, + % must be on an
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axis line with z_,, so that in particular % € {(S(x_,)), (¥ = dx, + cx_, +
z, x€ Ux,)). Let Z= {(S(x), x_,). We have shown Z = {(S(x_, + ),
2,y = {(S(x, + v), 2_,) = {S(x_,), .. We show, as in [6], that 2(Z) & G.

Let I = (x, y)> be a singular line in Z. If {x, + v) or {x_,) are
on [, then [ is an axis line for G by Lemma 12. If not:

Case 1. (x,y)elx, + v, x_,»*. Here {(x, + v, ) and {x_,, y) are
axis lines, so by Lemma 4, so is <z, ¥).

Case 2. (x)elx,+ v, x_p*, {y)elx_*, (by symmetry, y € {x, +
)+ could be used instead). Then {(z, x_,> is an axis line and {x_,, ¥,
is an axis line where kx_, + y ¢ {x, + v)*. By Lemma 4, (z, kz_, + ¥)
is an axis line and by Lemma 12, {(x, ¥) is an axis line.

Case 3. {x, y) € {x_yy* (resp. {z, y) € (=, + v)*). Since some point
on the line ! will be perpendicular to <=, + v) (resp. {x_,>*) this reduces
to Case 2.

Case 4. (xyel{w_, x, + v)* but (y)elv_o*, ye {w, + vyt but
Yy = a(x, + v) + b(x_,) + w where we {x_,, x, + v)*. But by Case 1,
{x, w) is an axis line. Thus since {(x, w), {x, 2_,), and {x, x, + v) are
axis lines, Lemma 12 implies (x, y)> is an axis line.

There are no more cases, because Z is nondegenerate, so if [ is
a singular line in Z and m is a hyperbolic line in Z it cannot happen
that ZN m* N1lis {0}. (If this were true Z=m* @, m* nondegenerate
and Z nondegenerate.) Thus 2(Z) & G. In addition, we have proved:

LEMMA 14. Let Z be nondegenerate. Then the group generated
by all groups of root type 1 {3{x,y)|yex*NZ} and {Z{z,w)|we
zt N Z} where {x, z) is some fixed hyperbolic line, is 2AZ).

Now we wish to show 2(Z) = G. Clearly, so far Z is fixed so
that if 2(Z) = G, G is reducible. Since the axis lines of 2(Z) con-
taining one point P in Z span a space which by hypothesis has maximal
dimension, there can be no axis lines with one point in Z and one point
outside Z.

Without loss of generality, assume [ = {x_, + u, v) is an axis line,
with no point on I in Z. Let v be the point on [ in at. If [ is
opposite some line in S(x,), use Lemma 13. If not, ve S(z,)*. Then
v is on axis lines with every point in S(z,) N {x_, + u)* yielding a
contradiction. Thus we have:

THEOREM 3. The irreducible groups generated by groups of root
type 1 with nmondegenerate axis line spaces are the groups (V).
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9. The elimination of other possibilities: I. Mixed axis line
spaces. We again suppose S(x,) is the space spanned by axis lines
containing x, and that S(z,) is of maximal dimension. Let S(x) =
{x,y @ T(x,) indicating only that x, is linearly independent of T(z,).
In the last section, we showed that if 7T(x,) were nondegenerate,
G = (V). In this section we assume T is neither singular nor non-
degenerate. Thus T = U@ W, where U is a maximal nondegenerate
subspace of T and W is singular and W< U+, and U and W are
both nonzero.

Some set of singular vectors spans T. They cannot all be pairwise
perpendicular, or U would be empty. Thus there are singular vectors
x, ¥ such that <z, ¥) is hyperbolic and {(z, y> & U. Say {(x) = x..
Then suppose <{x_,, x_,» is an opposite to <z, x,y. Choose T(x,) in
{w_>* as before. Then y = x_, + ax, + 2, where z¢€ {x,, X, T_;, T_,>*.

As in the previous section, since the group generated by Y<{x_,,z_,)
sends x, to x_,, the geometries of their axis line spaces must be the
same. But if we apply Lemma 13 to the lines containing x, which
are in T(x,) Nz, we get (T(x,) Nz, 2_,) S S(x_,). If z_.¢ T(x,) Nz,
the geometry of T'(x_,) is different from the geometry of 7'(x,). Thus
we may assume that {x,, x_,> is an axis line.

As in the previous section, if n = {x_; + u, «, + v) is an opposite
for {(w,, _y, then (S(x,), x_,) = (S(x_,), 2,) = {(S(x_; + w), ) = {S(z +
v), *_,y. Note that if x;€ W(x,), the singular part of the axis line
space, then <{(S(z,), z_,> & z+. Then we see that S(x_, + w) Nzs =
S(z_, + w). Now apply Lemma 4 to {zx, x;) and all the axis lines
containing x_, + % to see x, is on axis lines with all of the points in
S(x_, + %) and with 2,. Thus the space S(z:;) has larger dimension,
producing a contradiction.

10. The elimination of other possibilities: II. Singular axis
line spaces of large dimension. We again let {x,, z,) be an axis line.
We assume {x_, x_,> is an opposite, and we let S(z,) be maximal
dimension. In this section T'(z,) = S(x,) N «%, and T(x,) is singular of
dimension at least 3. We name the vectors spanning T'(x,) “wx,, .,

.., ,” according to standard basis notation. We obtain T(x_,) =
{x_y, T3 =+, X,y by repeated applications of Lemma 4 with {(x_,, x_,).
Let {(x_; + u,x_, + v) be an opposite to {x,, x;» with 2_; + w chosen
in o, x_, + v chosen in x¢. Then x_, + v is on axis lines with all
the points in S(z) N (z_, + v)* N (x_; + u)* as well as with x_; + .

Now apply Lemma 4 with {z,, x,> to see x, is on axis lines with
S_, +v)Nai Nad = S@)N (@, + )" N (@ + w)* since S(x) &
{x,, 25+, as well as with x,, and z_,. But R= <z, 2, 2y N<{x_, +v)* N
{x_s + uy* is nonempty. But az, + bx,¢ (@_, + v)* N {x_s + up* for
any a, b not both zero. Thus x, + cx, + dz;€ B. Thus S(z;) is not
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singular, but has maximal dimension. This reduces us to the case
of the previous section, providing a contradiction. This completes the
main theorem.
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