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EXISTENCE, UNIQUENESS AND LIMITING BEHAVIOR
OF SOLUTIONS OF A CLASS OF DIFFERENTIAL

EQUATIONS IN BANACH SPACE

JOHN LAGNESE

Let X be a Banach space (real or complex) and An and B
be linear operators in X with D{B) £ D(An), n~l, 2, •••.
The following note is concerned with existence and unique-
ness of solutions of the problem

(1.1) - | - [(I - An)u(t)] - Bu(t) = 0, (t > 0), u(0) = u0,at

and the limiting behavior of these solutions as the operators
An tend to zero in a sense to be specified. We will show
that for a large class of operators the problem (1.1) is well
posed and that its solutions tend to the solution of the problem

(1.2) -^j&- - Bu(t) = 0, (t > 0), u(Q) = u0 .
at

In particular, we obtain an extension to Banach spaces of a
result of R. E. Showalter [5] to the effect that (1.1) is well posed
when X is a Hubert space and An and B are maximal dissipative
operators in X which satisfy the algebraic condition

(1.3) Re ((/ - An)x, Bx) ^ 0 , x e D(B) £ D(An) .

In the next section we give sufficient conditions for (1.1) to be
well posed. We note that these conditions do not guarantee that
(1.2) is well posed. In §3 we show that if, in addition, {An} tends
to zero in a certain sense, then (1.2) is well posed and the solutions
un of (1.1) tend to the solution of (1.2). In particular, it will follow
that if A and B are densely defined maximal dissipative operators
in a Hubert space and if (1.3) is satisfied with An = n~γA> then

A [(/ - n-'A)un{t)} - Bun{t) = 0 , (ί > 0) , un(0) = un e D(B) ,
at

is well posed and as n —> oo, un converges strongly to the unique
solution of (1.2). Two examples are discussed in §4.

We emphasize that throughout this paper it is assumed that
D{B) § D(An). The question of limiting behavior of solutions of (1.1)
when X is a Hubert space, An = n~ιA and D(A) £ D(B) has been
considered previously [2], and it is interesting to compare the results
of [2] with those of the present note in the case D(A) — D(B). In
[2] it was assumed that A and B were maximal dissipative operators
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arising from certain densely defined, strongly coercive sesequilinear
forms and that A was self-ad joint. On the other hand the algebraic
condition (1.3) which is the most restrictive assumption of the present
note, was not assumed in [2] and the convergence results are some-
what stronger than those obtained here. Thus while the results of
[2] do not apply to perturbations of hyperbolic problems, they are
in some respects more satisfactory as far as perturbations of para-
bolic problems are concerned when D{A) = D(B). We note that the
methods used here are completely different from those of [2].

2* Existence and uniqueness of solutions* A solution of the
problem (1.1) is a function u: [0, oo)—> D(B) such that (/— An)ue
C([0, oo); X) n C"((0, oo), X) and (1.1) is satisfied. The initial condition
in (1.1) is supposed to hold in the sense that (I — An)u(t) —• (I — An)u0

strongly in X as t-+0+. While we will always assume that I — An

in invertible, the inverse need not be bounded and so we do not
know in general that u(t) —* u0 strongly in X.

THEOREM 2.1. Let X be a Banach space and An and B linear
operators in X which satisfy the following

(2.1) I — An is one-to-one .

(2.2) D(B) S D(An) .

(2.3) |i x - Anx - ζBx || ^ || a? - Anx \\ for all x e D(B) and ζ > 0 .

(2.4) For some ζn > 0, Rg (I - An - ζnB) = X .

Then for any uQeD(B) the problem (1.1) has a unique solution u(t)
and

(2.5) || (/ - An)u(t) || ^ || (I - An)u01|, ί ^ 0 .

Proof. Set Άn = AnlD{B) and Bn = B(I - AX1 with D{Bn) -
Rg (I — Άn). A function u is a solution of (1.1) if and only if
(I - An)u = ve C([0, oo); X) n C'((0, oo); X) and

(2.6) M I - Bnv{t) = 0, (t > 0), v(0) = v0

at
where vQ = (I — An)uoe D(Bn). From (2.3) we obtain

\\y-ZBnv\\^\\y\\,yeD(Bn),i;>0,

which means that Bn is a dissipative operator in X, and from (2.4)
we have Rg (/ - ζBn) = X from some ζ > 0 (hence for all ζ > 0).
From these facts it follows that D(Bn) is dense in X (Goldstein [1];
c.f. [4]). We may now apply the Lumer-Phillips theorem [3] to the
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effect that Bn is the infinitesimal generator of a (C0)-semigroup
{etBκ t ^ 0} of contractions on X. Thus for any v0 e D(Bn), (2.6) has
a unique solution given by v(t) — etBnv0 and \v(t)\ ^ |vo | . The con-
clusions of the theorem now follow by setting

(2.7) u(t) = (I - AX^HI ~ An)u0 .

COROLLARY 2.1. Let X be a Hilbert space and An and B be
densely defined, maximal dissipative linear operators in X such
that D{B) § D(An) and which satisfy (1.3). Then the conclusions of
Theorem 2.1 hold. Moreover, Be C([0, oo), X) n C"((0, oo); X) and
u(t)-+u0 strongly in X as t—>0+.

Proof. Since An is densely defined and maximal dissipative,
(/ - An) is a bisection of D{An) onto X and || (I - An)~l || ^ 1. Also,
R. E. Showaiter proved [5] that under the stated hypotheses, AnΛ- B
is a densely defined, maximal dissipative operator in X. From this
fact follows that Rg (/ — An — B) = X. For a Hilbert space, condi-
tions (1.3) and (2.3) are equivalent. The conclusions of the corollary
now follow from (2.7) and Theorem 2.1.

REMARK. Suppose (2.1)-(2.4) hold and that in addition there is
a constant C > 0 such that

(2.8) || x - Anx - ζBx || ^ C\\ x - Anx \\

for each x e D{B) and all ζ with Re (ζ) > 0. Then the semigroup
{etBκ t ^ 0} has a strong holomorphic extension into some sector
I a r g ί | < a, and therefore (2.6) (respectively, (1.1)) is uniquely solvable
for any voeX (respectively, uoeD(An)). In fact, since B% generates
a (Co)-semigroup of contractions, the open right half-plane lies in the
resolvent set of Bn and from (2.8) we obtain || (λ - Bn)'1 \\ ^ (C\ λ I)"1

whenever Re λ > 0, which implies the desired conclusion. When X
is a Hilbert space, a sufficient condition for (2.8) is that all of the
values of z = (x — Anx, Bx) lie in some fixed sector

| a r g z - 7 r | ^ - | - - ε , ε > 0 .

To prove this, write z —\z \eiθ and ζ = [ ζ\e iφ. (2.8) is equivalent to

(1 - C2)|| x - Anx ||2 - 2| ζ || z I cos (ψ - θ) + | ζ |2 | | Bx ||2 ^ 0 .

If I θ - π I ̂  π/2 - ε, there is a δ > 0 such that cos (φ - θ) ^ 1 - δ
for all φe (-π/2, π/2) and therefore

(1 - δy\\ x - Anx ||2 - 2| ζ II z I cos (ί* - θ) + I ζ |2 | | £ z ||2

^ (1 - δγ\\ x - Anx II2 - 2 | ζ 1(1 - δ)\\ x - Anx mi Bx ||
+ I ζ |2|| 5 * II2 = [(1 - δ)\\ x-Anx\\-\ ζ HI Bx | | ] 2 ^ 0 .
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Thus (2.8) holds with C2 = 2d - d\

3* Limiting behavior of solutions* We first prove that if B
is closed and An tends to zero in a certain way then (1.2) is well
posed.

THEOREM 3.1. Let X be a Banach space and An and B be linear
operators in X which satisfy (2.1)-(2.4). Suppose in addition

(3.1) B is closed .

(3.2) lim sup || Λ * 11/(11 * » 11 + 11*11) = 0 .
%-+oo xe D(B)

Then B is the infinitesimal generator of a {C^-semigroup of con-
tractions on X.

Proof. We have to show that B is a dissipative operator such
that Rg (/ - B) = X. From (2.3) and (3.2) we obtain, upon letting
n—* oof

(3.3) \\x-ζBx\\^\\x\\,xeD(B),ζ>09

and so B is dissipative. For each n and ζ > 0, Bn is dissipative
and Rg (I - ζBn) = X. Let y e X and xn e D(B) such that

xn - Anxn - Bxn = y , n = 1, 2, . .

By (2.3), \\xn- Anxn\\ g \\y\\ and therefore {Bxn} is bounded. Let

Cn= sup | | Λ
zeD(B)

Cn—>0 as n —* oo according to (3.2). From (3.3)

so that

Hence {xn} is also bounded. It follows from (3.2) that Anxn—>0
strongly in X as w —> oo. Therefore

| | x n -xm\\£ !| ( ^ - xm) - B(xn - xm) ||

^ | | A A ~ ^ m ^ | | >0

as w, m—> oo. Let a? = lim^. We have that &»—•#, 5a?n—*» — 2/.
Since J5 is closed, x e D(B) and x — Bx ̂  y, that is, Rg (/ - B) = X
This fact, together with the dissipativity of 5, implies !>(£) is dense
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in X. The conclusion of the theorem now follows from the Lumer-
Phillips theorem.

THEOREM 3.2. Let X be a Banach space and An and B be linear
operators in X which satisfy (2.1)-(2.4), (3.1) and (3.2). Then as
n—> oo, e

tBn-+etB strongly and uniformly on bounded subsets of [0, °o).

Proof. We apply the Trotter convergence theorem [6]. To do
this we show that for each ζ > 0,

(3.4) lim(J-CB.rl = (/-ζB)-1

n—»oo

in the uniform operator topology of Jί?(X) (— the linear space of
bounded linear operators on X).

We may write

(I - ζBκΓ = (I - ζB(I - A.)-1)"1

' = (I - An){I - ζB)~\I - An{I -

For each xe X,

- ζB)~ιx ||
(3 6) ^

Thus for all sufficiently large n,

(I - An{I - ζByr1 = Σ (AK(I -
fe=0

and
co . / 9 \ ft+i

II (/ - An(i- ζB)-1)-1 - ill ̂  Σ c ; + ι ( i + 4 )

which tends to zero as n —• oo. Therefore

(3.7) lim (I - ζB)'V - An{I - C^)"1)"1 = (I - ζ £ Γ

in the uniform operator topology of Sf{X). From (3.6) we have

|| AM - ζB)-\I - AM ~

+ 4
ζ

as w-»oo. (3.4) now follows from (3.5), (3.7), and (3.8).

THEOREM 3.3. Let X be a Banach space and An and B be linear
operators in X which satisfy (2.1)-(2.4), (3.1) and (3.2). Suppose in
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addition that Rg (/ — An) = X, n = 1, 2, , αwd sup*, || (/ — AJ"11| <
oo. Let uoeD(B) and un(t) be the unique solution of (1.1). Then
as n —+ oo, un (t) —> eίi?w0 strongly in X, uniformly on bounded subsets
Of [0, oo).

Proof, From (2.7) we obtain

|| Mn(t) - e ' X || ^ || (I - AnY\etBn - etB)u0\\

+ \\(I~AnΓAne
tBu0\\ + | | ( I - AnΓe^Anu0\\

^ (const.) [|| e ^ 0 - β'X || + α ( | | 5u01| + || «0||)] .

and the right side tends to zero as ^~>oo, uniformly on bounded
subsets of [0, oo).

COROLLARY 3.1. Let X be a Hilbert space and An and B be
densely defined, maximal dissipative operators in X such that D(B) ϋ
D(An) and which satisfy (1.3) and (3.2). Then for each uoeD(B)
the problem (1.1) has a unique solution un and un(t)--+etBu0 as n —•
oo, uniformly on bounded subsets of [0, oo).

Proof. As noted in the proof of Corollary 2.1, An and B satisfy
(2.1)-(2.4) and moreover, Rg (/ - An) = X with || (/ - An)~ι || ^ 1. In
addition B, being a densely defined, maximal dissipative operator in a
Hilbert space, is closed. The corollary now follows from Theorem 3.3.

REMARK. When An = n~γA, (3.2) is automatically satisfied pro-
vided A and B are closed operators with D{B) £ D{A). Thus in this
case hypothesis (3.2) may be omitted in Corollary 3.1. In fact, as a
rather well-known consequence of the closed graph theorem we have

\\Ax\\<LC{\\Bx\\ + || a? | | ) , xeD(B)

where the constant C does not depend on x. Therefore

sup \\Anx\\!(\\Bx\\ + I M D s S C n - 1 .

ueD(B)

4. Examples* As a first example we consider the problem

(4.1) JL( W - ai(x)u - aMη}~) ~ (*>ι(Φ + &(*)|*-) = 0 ,
0 <x<l, t > 0 ,

(4.2) u(x, 0) = uo(x) , 0 < x < 1 u(0, t) = cuil, t) , t > 0 ,

where c is a complex constant satisfying certain conditions and the
coefficients in (4.1) are real-valued and of class C'([0,1]). Let X be
the complex Hilbert space L2(0, 1) and H£(0, 1) be the subclass of
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L2(0, 1) consisting of those functions whose first derivative in the
sense of distributions is again in L2(0, 1). The norms in X and in
#2(0, 1) will be denoted by || ||0 and || \\1 respectively and the inner
product in X by ( , •); we have

u u = 15(0,1).

Each function in Hl{Q, 1) is continuous, i.e., coincides with a func-
tion in C([0, 1]) up to a set of Lebesgue measure zero, and the in-
jection of 2^(0, 1) into C([0, 1]) is continuous.

We define operators An and 5 in I as follows:

D(An) = D(B) =

and for u e D(An) = D(B),

Anu = a\u +
dx

232(0, 1): u(0) =

Bu = Vu du
dx

From our preceding remarks it is easy to see that D(B) is a closed
subspace of H}(0, 1) and D(B) is dense in L2(0, 1).

By a solution of (4.1), (4.2) we mean a solution of (1.1) in which
An and B are the operators defined above. In order to apply the
theory developed in §§2 and 3 to the problem (4.1) and (4.2) we shall
have to verify in particular condition (1.3). Concerning this we have

LEMMA 4.1. Suppose anb ^ 0 and that

(4.3)

(4.4)

2 dx
1 d (

2 dx

where an — b — ajb1 — a\Jb. Then (1.3) is satisfied.

Proof. For u e D(B) we have

du
dx

Re (u - Anu, Bu) = [(b1 - ai¥)\ u \2dx - [anb
Jo Jo

2

dx

ReΓ(6 - alb - anb
ι)ΰ—dx .

Jo dx

The following identity is easily obtained by an integration by parts:
For ueD(B) and /eC"([0, 1]),

Re [fU^Ldx=
J d 2 Jo dx

From this identity we obtain for u e D(B)
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duRe (u - Anu, Bu) = ±(a%2 dx

dx 2 dx

dx

o .

REMARK. If {an} and {aι

n} tend to zero in the topology of C"([0, 1])
and if for some ε > 0 we have

^ - - i - ^ r S - ε , 6(1)- |c|2δ(0) ^ -ε ,
2 dx

then (4.3) and (4.4) are easily seen to be satisfied for all sufficiently
large n.

THEOREM 4.1. Assume (4.3) and (4.4), that anb ;> 0 and a\ +
δ2 > 0. In addition suppose

(4.5) α M ( l ) - | c | K ( 0 ) ^ 0 ;

(4.6) αj, - λda^ < l f 0 ^ a; ^ 1
2 ώa;

(4.7) There exists ζn > 0 SMC/Ϊ. ί/iαί

/̂ e hypotheses of Theorem 2.1 are satisfied.

Thus, in particular, for each uoeD(B) the problem (4.1), (4.2)
has a unique solution.

THEOREM 4.2. Assume (4.3)-(4.5), that anb ^ 0 and b Φ 0. /^
addition suppose

(4.8) {αj αwcZ {αJJ ίβ^d to zero in the topology of C"([0, 1]) as

/ie hypotheses of Theorem 3.2 are satisfied for all suffi-
ciently large n.

THEOREM 4.3. Assume (4.3)-(4.5), (4.8) and that anb > 0. Then
the hypotheses of Theorem 3.3 are satisfied for all sufficiently large n.

Thus if un is the unique solution of (4.1), (4.2), as n—> oo un(t)
converges in L2(0, 1) to the unique solution of

^L - b(x)^- - b\x)u = 0, 0 < a? < 1 , ί > 0 ,
dt dx
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u(x, 0) = uo(x) , 0 < x < 1 u(0, t) = cu(l91) , ί > 0 ,

uniformly on bounded subsets of [0, co).

Proof of Theorem 4.1. We have already verified (2.3). To check
(2.1) consider the equation

u- Anu=feX.

Multiplying by ΰ and integrating gives

('(I - αi)| u \2dx - Re j ' α . i ϊ — ώ = Re [ΰf dx
Jo Jo dx Jo

and this may be written

\ u |2 - Uan(l) - | c |
(4.9) J Λ 2 ώ 7 2

+ Re I iί/ dx .
J
I
Jo

From (4.5), (4.6) and (4.9) follows that u = 0 if / = 0.
We next verify (2.4). Let /eL2(0, 1). We have to solve

(4.10) u-Aji- ζnBu = (1 - a\ - ζj>> - (o. + ζΛ6)-fί- = /
ax

where ζn > 0 is to be determined.
Since anb ^ 0 and a\ + &2 > 0, we have αn + ζ& Φ 0 for every

ζ > 0 and therefore (4.10) is equivalent to

u(x) = knexv [κn(ξ)dζ + \XKn(x, ζ)f(ξ)dξ
Jo Jo

where
Kn(ξ) = (1~ ai(ζ) - U>ι(ξ))/(an(ξ) +

Kn{x, ί) = ~[exp \ZKMdη\j(an{ξ) + ζjb(ξ)) .

The constant kn must be such that %(0) = cu(ϊ). This condition leads
to

= Λ%c exp [Kn(ξ)dξ
Jo

and this equation is solvable for kn for arbitrary feL2(0,1) if and
only if

This last condition is satisfied provided ζn is chosen according to
condition (4.7). Thus (2.4) is satisfied.
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Proof of Theorem 4.2. We first note that (4.8) implies (4.6) for
all sufficiently large n. Moreover, (4.7) is also satisfied for all large
n if {ζn} is any sequence of positive numbers which tends to zero.
Thus conditions (2.1)-(2.4) are satisfied. That (3.1) and (3.2) also
hold is a consequence of the inequality

(4.11) Ho), ueD(B)

where the constant K is independent of u. In fact, suppose (4.11)
holds and {un}<zD(B), un~+u, Bun->v in L2(0, 1). By (4.11), {un}
converges in H}(0, 1). Since D(B) is a closed subspace of iϊ^O, 1)
and \\Bun \\o <: (const.) \\un\\x it follows that ueD(B) and Bu = v9

i.e., B is closed. Moreover, we have

I Anu | |0 ^ sup (I an(x) \ + \ a\(x u \

and therefore

sup \\Anu\
ueΌ(B)

uΦO

| Bu | u | K sup | aι

n(x) |)

which tends to zero as %—> co. Thus (3.2) is satisfied.
It only remains to prove (4.11). We have

bιu)dx .

Using the

we obtain

\\Bu\\l- [fb
Jo \

inequality

2\yz\£

| Bu ||o ^ inf | b(

du
dx

δ\y

χ)|

+ 611

du
dx

XX

L i , ι«
Γ l * l ,

2

— ε
0

du
dx

-Kε\\u\

C h o o s i n g ε = 1/2 infOsSjBS1 \b(x)\* l e a d s t o (4.11).

Proof of Theorem 4.3. We have only to verify that Rg(/— An) =
L2(0, 1), w ^ iV, and

sup II (I - <

From (4.9) and the present hypotheses it follows that for all
sufficiently large n,

±\\u\\l^\\u- Anu\
Δ

u G D(An) .

Let fe L2(0, 1). Since an Φ 0, the equation
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u - Anu = (1 - ai)u - a,^L =f
dx

is equivalent to

u(x) = ^ Fn(x)

where Fn{x) is a known function and the constant kn must be such
that u(0) = cu(l). This is possible for arbitrary /eL 2 (0, 1) if and
only if

fi 1 _ αi(f)

J° o,(f)
cexp

and this last condition is obviously satisfied for all sufficiently large
n in view of (4.8). Thus Rg(I — An) — X, n^ N, and the proof is
complete.

EXAMPLE 2. We consider, for n = 1, 2, , the problem

(4.12) ^(u-±^)-(b(x
3έ \ n dx I \n

, ί > 0 ,

(4.13)

(4.14)

u(x, 0) = uo(x) , 0 < a; < 1 ,

The function 5 is real-valued and of class C"([0, 1]) and c is a complex
constant. Let X = L2(0, 1), D(.AJ be as in the first example and
An = 1/w d/da;. Let ίί2

2(0, 1) be the set of functions in L2(0, 1) whose
first and second distributional derivatives are in L2(0, 1) and set

D(B) =

The norm in

0, 1): u(0) = c

d2u
Bu = bu +

ώx2

), 1) is denoted by

dx dx

u G D(B) .

• ||2 and defined by

2\ 1/2
du
dx

2

+
0 dx"

Each function in JBΓ2

2(0, 1) is of class C"([0, 1]) and the injection of
ii?(0, 1) into C'[(0, 1)] is continuous. It follows that D(B) is a closed
subspace of iΪ22(0, 1), is dense in L2(0, 1) and as in the first example
it is not difficult to verify that

(4.15) | | i 6 | | 1 ^ J Γ ( | | Λ * | | o + \\u\\0) , ueD(B).

Let B* be the adjoint of B. As is well-known, D(B*) c iϊ2

2(0, 1)
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and, since b + d2/dx2 is a formally self-adjoint differential operator,

B*v = bv + — , v e D(B*) .
dx2

We show that B* = B. If v e D{B*) then for all u e £>(£) we have

(Bu, V) =

- ^ ( l ) - c-^(0)) + (u, £*<;) .
cte dx /

Since the first two terms on the right must vanish for all u e D(B)
we have v(0) = cv(l), c(dv/dx)(0) = (dv/da?)(l), that is, veD(B). Thus
J3* S -B On the other hand, (J5u, v) — (^, Bv) for all w and v in
D(JS) so that B is symmetric. Hence £ is self-adjoint.

T H E O R E M 4.4. Suppose 6 ^ 0 , d6/da? ^ 0

6(1) - I c |26(0) ^ 0 .

ίΛe hypotheses of Corollary 3.1 are satisfied.

Thus for each w and uozD(B) the problem (4.12)-(4.14) has a
unique solution MΛ and, as n—> oo, %n(ί) converges in L2(0, 1) to the
solution of

- I r - ? V - * ( * ) " = o > o < ^ < i , t > o ,
3 ί 3α;2

u(α?, 0 ) = %oO*0 » 0 < x < 1 ,

w ( 0 , ί ) - c u ( l , t) , c | ^ ( 0 , ί ) - | ^ - ( 1 , ί ) , ί > 0 ,
o x o x

uniformly on bounded subsets of [0, oo).

Proof of Theorem 4.4. We have for u e D(B)

(Bu,u) = [b\u\2dx - Γ
Jo Jo

du

dx
dx < 0 .

B is therefore a self-adjoint, dissipative operator and, consequently,
maximal dissipative. We also have

^.Re ( M V) = —(1 - I c |2)| u(ΐ) | 2 , u e D(An) .
Δ

Since b ^ 0 and db/dx ^ 0 we have 6(1) ^ 6(0) ^ 0. Since also 6(1) ^
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|c|26(0) it follows that \c\2 ̂  1. Thus An is dissipative and one easily
proves as in the first example that Rg(I — An) = X.

Next we verify (1.3). We have for ueD(B)

n Re (Anu, Bu) = Re [ JίL.(bu +
Jo dx \ dx2

= i-(δ(l) - I c |2δ(0))|

dx
V P -

(1.3) follows from this inequality and the fact that B is dissipative.
Finally, (3.2) is an immediate consequence of (4.15).
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