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ON A CERTAIN PROBLEM OF REALIZATION
IN HOMOTOPY THEORY

K. VARADARAJAN

In this paper it is shown that given any group π and
any subgroup G of the centre of π there exists a O-connected
CPΓ-Complex X with π±(X) ^ π under an isomorphism carry-
ing the Gottlieb subgroup G^X) of n,(X) onto G.

Introduction* Let X be a O-connected CTF-Complex and xoeX.
In [2] Gottlieb defined a certain subgroup G(X, xQ) of the fundamental
group 7Γi(X, x0) of X at x0 and studied some of its properties.
Earlier [4] Jiang Bo Ju defined a subgroup Gf of π^X, f(x0)) corre-
sponding to any map /: X—> X. The group Gf when / = Idx turns
out to be precisely G{X, x0) studied by Gottlieb. These groups play
a role in Nielsen-Wecken theory of fixed point classes and were
investigated by R. F. Brown, W. J. Barnier, etc. In [3] Gottlieb
defined the higher dimensional analogues Gn(X, xQ) c ττΛ(X, xQ) of
G(X, x0) and studied their properties. For any path σ joining xQ to
x1 in X the isomorphism oy. πn(X, xx) ~-> πn(X, x0) carries Gn(X, xλ) onto
Gn{X, x0) for all n ^ 1. Thus one can talk of the nth. Gottlieb group
Gn(X) of X without reference to a base point. In [2] it is shown
that always GX{X) is a subgroup of the centre of 7tx{X) and that if
X is a K(π, 1) CW-Complex G^X) is precisely the centre of π.

Given any sequence of groups (π^j,^ with πk aberian for k ^ 2
it is known that there exists a O-connected CTF-Complex X with
πk(X) = πk for all k. A natural question that suggests itself is the
following:

Given a sequence of groups {πk)k^ with πk abelian for k ^ 2
and subgroups Gk of πk under what conditions does there exist a
O-connected CPF-Complex with τck(X) = πk under isomorphisms carry-
ing Gk(X) onto GkΊ

Though we do not attempt to solve this general problem in this
paper, we prove the following

THEOREM. Given any group π and a subgroup G of the centre
of π there exists a O-connected CW-Complex X with ^(X) = π under
an isomorphism carrying GX{X) onto G.

Finally I wish to thank Professor W. Browder for some very
profitable discussions I had with him in connection with this problem.

l Discrete group actions* This section deals with some results
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that we need regarding the action of the fundamental group on
the higher homotopy groups of a space. As we could not find any
explicit reference we felt we should include them here. But before
dealing with these results we recall briefly how the action of the
fundamental group π^X*, xQ) on the homotopy group πn(X, χ0) is
defined.

Let σ: I—+X be any path in X with α(0) = xQ and a(l) = χιm

Let c e πn(X, xt) be represented by /: (Sn, *) —> (X, xj where * denotes
the base point in Sn. Let hσ: * x / U S* x 1 -» X be given by
ho(*, t) = σ(t) for all tel and hσ(z, 1) = f(z) for all zeS\ Then the
isomorphism σ{. πn(X, xj —> πn(X, x0) carries c into the clement of
πn(X, x0) represented by g: (Sn, *) —• (X, x0) where g(z) = F(z, 0) with
F: Sn x I —>X any extension of hσ. It is known that σ# depends
only on the homotopy class [σ] of the path σ and that if σ, τ are
paths in X with <τ(0) = xQt σ(l) — xt = τ(0) and τ(l) = x2 then
σ τ#: τrw(X, a?2) —> 7Γ%(X, α?0) is the same as the composite ί7# o r#. In
particular the assignment a- c = σ${c) for every aeπJtX, x0) and
c e πn(X, x0) where σ is any loop at x0 representing α, gives rise to
an action of πγ(X> x0) on 7tn(X, x0).

Let π be a group and X, Y spaces on which π acts on the left.
As usual we define an action of π on X x Y by α(#, 2/) = (ax, ay)
for any aeπ and (#, #) e X x Y. The quotient space of 1 x 7
under this action of π will be denoted by XχπY. We recall the
following.

DEFINITION 1.1. π is said to act properly discontinuously X if
given xeX there exists an open set U of X with xe U and satisfy-
ing the following condition:

α, α' € aUΓ\a'UΦ 0 = » a = a' .

LEMMA. 1.2. Suppose the action of π on X is properly dis-
continuous. Then for any action of π on Y the action of π on
X x Y described above is properly discontinuous.

Proof. Let (x, y) e X x Y. Let U be an open set in X with
z e U and satisfying the requirement in Definition 1.1. Then V =
U x Y is open in X x Y; (x, y)eV and aV = aU x α F = aU x Γ
for any aeπ. Hence aVΠa'VΦ 0 =>aUΠa'UΦ 0 =>a = α'.

For the rest of this section X will denote a 0-connected
space admitting of a simply connected covering space Xp—> X.
The Deck transformation group of the covering Xp —• X will be
denoted by i^(X) . Let x0 be a chosen base point of X and #0 =
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p(x0). As is well-known £&{X) is isomorphic to πx{X, x0). A specific
isomorphism

( 1 ) λA-:ϋr(X) >πί(X,x0)

is got as follows. For any a e £&{X) let άa be any path in X joining
x0 to axQ. Then p o άa = aa is a loop at xQ in X and λx(α) = the
homotopy class [aa] of the loop aa. This isomorphism λ x definitely
depends on the choice of the base point xQ in X.

Let us denote the group &(X) by π. Let Y be a 1-connected
space and y0 a base point in Y. Assume that the group π acts on
the left on Y further satisfying the condition ay0 = y0 for all a e re.
By Lemma 1.2 the action of π on X x Y is properly discontinuous.
Denote the quotient space X X π Y by Q and the canonical quotient
map Xx Y—>Q by q. Since X x Y is simply connected and the
action of π on X x F is properly discontinuous it follows that
q: X x Y—>Q is the universal covering of Q and π is the Deck
transformation group of the covering q: X x Y—>Q. Let g(»0, y0) =
u0. Using (x0, y0) as the base point in X x Y as described in the
previous paragraph we have an isomorphism

( 2 ) XQ: π • πλ{Q, u0)

Let now n be an integer J> 2 and let us assume πn(X) = 0.
Let j Γ ^ l x Y be the inclusion given by j(y) = (x0, 2/) From the
fact that TΓ.XX) ~ πn(X) - O w e see that

j \ : πn(Y, yQ) > πn{X x Y, (x0, yQ))

is an isomorphism. Since q: X x Y—>Q is the universal covering
of Q the map q*:πn(Xx Y} (xOf y0)) —> ττn(Q, w0) is an isomorphism.
Denoting the composite qoj by g' we thus see that q*:πn(Y, yQ)-+
πn(Q, uQ) is an isomorphism.

For any v e π^Q, u0) and w e πn(Q, uQ) we denote by v w the
element in πn(Q, uQ) got by the action of v on w under the usual
action of πx(Q, u0) on πn(Q,u0). Since ay0 = y0 for any α6ττ the
action of π on F gives rise to an action of π on πn(Y, y0). For any
aeπ and c e πn(Y, y0) we denote the element of πn{Y9 y0) got under
this action by α*c. The following proposition assets that under the
isomorphisms λρ: π —> πx(Q, u0) and g'#: 7ΓΛ(F, 2/0) —• πn(Q, u0) these two
actions correspond. More precisely we have

P R O P O S I T I O N 1 . 3 . q * ( a * c ) = x Q ( a ) q'*(c) for a l l a e π a n d ce
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During the course of the proof of this proposition we will make
use of the following well known

LEMMA 1.4. Let φ: A —> B be a continuous map of topological
spaces. Let σ be any path in A with σ(0) = a0, σ(l) — αx. Let
bi = φ{a%) (i = 0, 1). Then the following diagram is commutative

πn(A, αx) --—> πn(A, a0)

\φ* \φ*

πn(B, 6L) °-^—> τr%(J5, 60)

DIAGRAM 1

Proof of Proposition 1.3. Let f: (Sn, *)—>(F, y0) represent c e
τr%(F, 7/0). Let αGTΓ choose any path Θ:I—>X joining #0 to ax0 in
X Then α α : I - ^ X x F defined by aa(t) = (θ(t\ y0) is a path in
X x F joining αα(0) = (x0, y0) to άa(ΐ) = (α»0, ?/0) = (α20, aj/0) = α(20, 2/0)
By the definition of XQ we have λρ(α) = [aa] where cca = q o aa. By
Lemma 1.4 we see that

πn(X x F , (axOf yQ)) ~ — > πn{X x Y, (χQf y0))

u,o) . — ^ L _ > ^ n ( Q y % o )

DIAGRAM 2

is a commutative diagram. Since λQ(α) = [aa]9 by definition of the
action πx(Q, u0) on πΛ(Q, u0) we have

( 3 ) λρ(α) q'*(c) = aa,{q'*{c)) .

The element q*(c)eπn(Q, u0) is represented by the map q'°f: (Sn, * ) ~ ^
(Q, u0). Denote by d the element in πn(X x F, ^0 x y0) represented
by the map h: (Sn, *) —> (X x Y, x0 x τ/0) given by h(z) = (α^0, α/(^))
for all s 6 SM. Then

q o h(z) - q(ax0, af(z)) = g(20, /(^)) - ? o#/(s)) - g ' o/(^) for all zeS*.

qoh represents q*(d) in πn(Q, u0) and qΌf represents g'*(c) in ττn(Q, ^ 0 ) .
Since g o ft = qΌ f we have

( 4 ) ffi(β) = ff (d) .

Consider the map H:Sn x I~+X x Y given by flίs, t) = ($(t),
af(z)). We have
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#(*, ί) = (θ(t), Wo) = (Ht), V«) = &a(t)

and

H(z, 1) = (0(1), af(z)) = (ax*, af{z)) = h(z) .

Hence dai(d) e πn(X x Y, (x0, £/„)) is represented by g: (Sn, *) —*
(X x Y, (x0, y0)) where f/(z) = H(z, 0). Now #(z, 0) = (0(0), af(z)) =
*o, α/O)) Hence

( 5 ) ί/(2) = (x0, af(z)) .

The element a*c of ττΛ(Y, ?/0) is represented by I: (Sn, *)~* (Y, y0)
where l(z) = af(z). Hence q*(a * c) is represented by q'°l. But

q' o l(z) = q(xOy af(z)) = q ° g(z) by ( 5 ) .

Since g r epresent s α?α#(ώ) it follows t h a t q°g r e p r e s e n t s q*(aa$(d)) in
πn(Q, u0). F r o m qΌl = qog we immediate ly ge t <?'*(α*c) = g*(α
But q*(όCat(d)) = α β | ( ^ ( d ) ) by c o m m u t a t i v i t y of D i a g r a m 2. Hence

= λρ(α) g;(c) by ( 3 ) .

This completes the proof of Proposition 1.3

2. Study of U(π) x | ίΓ(M, n) \ for a TΓ^module M. Let TΓ be a
a given group and K a î (τr, 1) CW-complex. The universal covering
K of K is a contractible CPF-complex and the Deck transformation
group of the covering K -̂ » K is TΓ. We will denote the contractible
complex K by ί7(τr).

Let M be any left ττ-module and n any integer ^ 2. Consider
the Eilenberg-Maclane semi-simplicial complex K{M, n). The action
of π on ikf gives rise to an action of π on the semi-simplicial com-
plex K(M, n). This in turn gives rise to an action of π on the
geometric realization ] K{M, n) \ (Milnor's geometric realization [5]).
We would like to apply the results of § 1 to the case when X = K
and Y ~ I K{M, n) |. For that purpose we should make sure that
there exists a base point yQ e Y such that a - y0 = y0 for all a e TΓ.
For this purpose we briefly recall the definition of the semi-simplicial
complex K(Mf ri).

For any integer k ^ 0 let Δk be the set consisting of the integers
j such that 0 g j g fc. Let Cn{Ak, M) denote the set of '%-cochains"
of Δk in M, namely functions φ: Ak —> M. For any integer k ^ 1 let
^ Λ-i —> Λk for 0 ^ i ^ k and st\ Δk —• Jfc_! for 0 ^ ί ^ / b - ~ l be
given by
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ί μ for 0 ^ μ 5Ξ i — 1

for i <* μ <Lk

ίox 0 ^ μ^ i

ε (a) =Λ r ; [μ + 1 for i ^ μ S k - 1

Let εf: C*(Δh, M) -> C*(Λ-i, ΛΓ) and sf: Cn(Δk_lt M) -> Cn(Δk, M) be
induced by ε< and s,. More specifically

for any v0, ^ , , vn in JΛ_τ and φ e Cn{Ak, M)

e*<P(v0, - ,vn) = <p(et(v0), et(v0)9 et(vj, , φn))

and

for any xOf xu , xn in ^Λ and θ e CΛ(4Jfe_1, M)

Let Zn(Jk, M) be the subset of C%(z/A, Λί) consisting of element ψ
satisfying the following two conditions:

( i ) φ(x09 , xn) — 0 if a?o, , xn are elements of Δk not all
distinct

( ϋ ) Σiiϋ ( - i M ^ o , , #i, , » +i) = 0 for any «0> a?lf xn+ί

in Jfc. It is known that

εt{Z%Δk, M)) c Z%Δk_u M)

For k Ξ> 0 the set of ά-simplices Kk(M, n) of the semi-simplicial
complex if(M", w) is the same as Zn(Jk, M). For any k Ξ> 1 the face
maps ^ ( M , n) —> iffc_!(M, 7i) and the degeneracy maps K^M, n) —•
Kk(M, n) are given by ε? for 0 ^ i ^ Λ and sf for 0 ^ i <Ξ Λ — 1
respectively. It is clear that the set Kk(M, n) for any k in 0 <̂  & <̂
% — 1 has only one element, namely the zero element of Cn{Δk, M).

The action of π on M gives rise to an action of π on ϋΓ(ikf, n)
as follows. For any φ e Kk(M, n) let α<p be the function J£+ 1 —»ilί"
defined by

Then it is easy to see that aφ e Kk(M, n) and that the map

βa: K(M, n) > K(M, n)

given by βa(φ) — aφ for any φ e Kk(M, n) is a semi-simplicial iso-
morphism. Moreover for any α, α' in π it is clear that βaa, = βa° βa>-
If we denote the only 0-simplex of JSΓίilf, ^) by e0 clearly βa(e0) — e0

for all α e π . If we take F = | K(M, n)|, yQ = \eQ\ and define α̂ / =
I βa I (?/) for any y e Y it is clear that we get an action of π on Y
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satisfying a y0 = y0 for all a e π. The resulting action of π on
πn(\ K{M, n)\, y0) = M agrees with the original 7Γ-module structure on
M that we started with.

Let xoeU(π), Q = U(π)χzY, q:U(π)xY-+Q the canonical
quotient map and uQ ~ q(xQ, yQ). Let λρ: π —> π1(Qf u0) be the iso-
morphism given by (2). Let H = {a e π | am — m for all m e M}

Hx = {v e 7c1(Qy u0) I v - w = w for all w e πn(Q, ^o)}

As an immediate consequence of Proposition 1.3 we get the following

PROPOSITION 2.1. The isomorphism λρ: π —* TΓ^Q, U0) carries the
subgroup H of π onto the subgroup H^ of π^Q, u0).

3* A subgroup of the Deck transformation group* Let X be
O-connected topological space and Xv —•> X a covering space of X (X
not necessarily simply connected). Let us denote the Deck trans-
formation group of the covering Xp —> X by Sf, Recall the usual

DEFINITION 3.1. A homotopy F: X x /—>X is said to be fibre
preserving if there exists a homotopy H: X x I—>X such that

DIAGRAM 3

is commutative.
Let 2? denote the set of Deck transformations of X which are

homotopic to Idχ through fibre preserving homotopies.

LEMMA 3.2. <& is a subgroup of &.

Proof. Let α, 6 be arbitrary elements of 'gf. Let

X

X

x I >

\pxld

xiJL,

• X

I'
•X

and

X

X

T
 F'

x I >
\pxld

X I >

X

I-
•X

DIAGRAM 4

be fibre preserving homotopies satisfying

F(x, 0) - 2, JP(£C, 1) = o
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It follows that

H(x, 0) = x = H(x, 1

Let F": I x ί - ^ l a n d H": Xx I-+Xbe given by

F'(x, 2ί) for 0 ̂  ί ^ 1/2

Fφx, 2ί - 1) for 1/2 ^ ί ^ 1

fe 2t - 1) for 1/2 £ t £ 1 .

Then F"(x, 0) = 2, ^"(25,1) = αbx and

X x I >X

\pxld \p

X x I—+X
DIAGRAM 5

is commutative. Hence αb e &.

Let A: X x I-+X and 5 : I x J - * X be defined by

A(x, t) = F(α'% 1 - t); B(x, t) = ff(a?, 1 - ί)

Then A(x, 0) = x, A(x, 1) = α"1^ and

ίx/Λl

Xx /-^JSΓ
DIAGRAM 6

is commutative. Hence α"1 e 2 .̂
Thus for any α, b in gf the elements αδ and α"1 are in ^ .

This proves that & is a subgroup of ^ .
Let S(X) denote the singular C.S.S. complex of X and | S(X) |

the geometric realization of S(X). Let j z : \ S(X) | —> X be the
canonical map [5]. Let

—X

DIAGRAM 7
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denote the pull-back of the covering space X —> X. Then E —>
I S(X) I is a covering space with the same Deck transformation group

^ " a s i - ^ I . Let &' be the subgroup of those Deck transforma-
tions of E which are homotopic to IdE through fibre preserving
homotopies.

THEOREM 3.1. c

For the proof of this theorem we need the following

LEMMA 3.3. Let A, B be topological spaces and h0, hx homotopic
maps of A into B under a homotopy H: A x I—+B. Then there
exists a homotopy P: \ S(A) \ x I-
such that

S(A)\ xl

S(B)\ between \S(ho)\ and

\S(B)\

H
j B

A x I > B
DIAGRAM 8

is comutative.

Proof. Let Δγ be the C.S.S. complex whose p-simplices are
(p + 1) tuples (a0, , ap) with a€ = 0 or 1, the face and degeneracy
operations being the usual ones.

st(a0, P_0 = (α0, ^lf aif

Let I Jp I denote the standard Euclidean ^-simplex in Rp+X with the
usual unit vectors eOf -—,ep as its vertices. For any p-simplex
σ — (αo, '",Up) of 4i let θa: I Δv \ —> I be the simplicial map deter-
mined by θσ(et) = α*. Let c: S(A) x 4ι~+ S(A x I ) be defined as
follows. For any φ e SP(A) and any p-simplex σ of Δ1 let c(φ x σ)
be that singular ^-simplex in A x I which satisfies c(φ x σ) (x) ~
(<P(v), θ<fa)) for all xe\Ap\. Then r. S(A) x A, -> S(A x I) is a C.S.S.

inclusion. It is easily checked that P = | S(H)
requirements of the Lemma.

satisfies the

Proof of Theorem 3.1. Observe that

E = {(x, w)eX\S(X)I I p(x) = jx(w)}

and p'(x, w) = w. For any α e ^ the action of a on £7 is given by

a(x, w) =
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Let now δ e ^ . Then there exists a commutative diagram

\pxld \p

Xx I-=Uχ
DIAGRAM 9

with F(x, 0) = x and F(x, 1) = bx. Then ίί(α;, 0) = x = flifo 1) for
all x e l By Lemma 3.3 there exists a homotopy P:\S(X)\ x /—•

between | S(itfz) | and | S(Idx) | such that

\S(X)\ χl-IL>\S(X)\

\3xXld \Jχ

DIAGRAM 10

is commutative. But | S(Idx) | = Idmz)\. Hence P(w, 0) = w — P{w, 1)
for all we\S(X)\.

Let L:E x I-+E be defined by £((£, w), ί) = (F(x, ί), P(w, ί))
To make sure that L((x, w), t)eE we have to check that jx(P(w, t)) =
p(F(x, t)). But commutativity of diagram 10 yields jx(P(w, t)) =
H(jx(w)9 t). Since (x, w)eE we get i x (^) = p(x). Hence

= p(F(xf t)) by commutativity of Diagram 9 .

Hence

jx(P(w, t)) = H(jx(w), t) = p(F(x, ί)).

It is easy to see that

E x I — ^ E

Ip'xld

\S(X)\xI —

DIAGRAM 11

is commutative. In fact

p//y//;yί ηiΛ +} — "Pίnn f\

JΓ yjj \*Λ/f vVjj ϋj — JΓyiΛ/j bj

and

p'°L((x, w), t) = p\F{x, t), P(w, t)) = P(w, t)
Moreover
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L((x, w\ 0) = (F(x, 0), P(w, 0)) - (», w)

L((x, w), 1) = (F(x, 1), P(w, 1)) - (bx, w) = b(x, w)

This proves that b e S '̂. Since b is arbitrary in ^ we get ST c S^\

4* The main result. As stated in the introduction the main
result proved in this paper is:

THEOREM 4.1. Let π be any group and G any subgroup of the
centre π. Then there exists a 0-connected CW-Complex X such that
πx{X) ~ 7i under an isomorphism carrying the Gottlieb subgroup
G,(X) of π,(X) onto G.

Let M be any nonzero free left ττ/G-module, for instance M =
Z(πjG) the integral group ring of π/G. Using the canonical quotient
map Ί]\ π —»πjG we consider M as a left π-module. More specifically
for any aeπ and any m e M we set am — η(a)m. Then it is clear
that G — {a e π | am = m for all m e M). Consider the covering

space U(π) x Y-^Q where Y = \K(M, n)\ (with n an integer ;> 2)
constructed in § 2. Since a m = m for ae G and all meM the iso-
morphism βa: K(M, n) —> K{M, n) reduces to the Identity of K(M, n)
whenever a e G. Hence | βa \ = Idγ. It follows that ay = y for all

yeY whenever aeG. For the covering space U(π) x Y-^Q let Γ
be the subgroup of TC consisting of those Deck transformations which
are homotopic to Idu{π)xY through fibre preserving homotopies. As
a first step towards proving Theorem 4.1 we show

PROPOSITION 4.2. GaΓ.

For the proof of this proposition we need the following well

known results. Let A be a 0-connected space and A —> A SL covering
space of A. Let 3ί be the Deck transformation group of this
covering.

PROPOSITION 4.3. A homotopy F:Άx I—>Ά is fibre preserving
if and only if aF{x, t) = F(ax, t) for all (x,t)eΆxI and all α e ^ .

This is Theorem II.2 of [2]. The proof given there is valid for
a covering space of any 0-connected space A. (A need not be a
CW-complex).

PROPOSITION 4.4. If A is a CW-complex and Ά ^Athe universal
covering of A, the subgroup of £P(A) which corresponds to the
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Gottlieb group GX{A, αO) under the isomorphism &(A) —• π^A, αO)
consists precisely of all those Deck transformations which are
homotopic to Idi under fibre preserving homotopics.

This is Theorem II. 1 of [2].

PROPOSITION 4.5. If A is a K(π, 1) CW-complex then G^A) is
the centre of π.

This is Corollary 1.13 of [2].

Proof of Proposition 4.2. Since G is in the centre of π and
by Proposition 4.5 Gi(K{π, 1)) = the centre of π we see that G c
Gx{K(π, 1)). By Proposition 4.4, for any δ e G the Deck transforma-

tion x —> bx of U(π) —• K(π, 1) is homotopic to Iduiπ) by fibre pre-
serving homotopy F: U(π) x I —> 27(7r). By Proposition 4.3 we have
αF(S, ί) = F(ax, t) for every aeπ and (£, έ)e U{π) x J.

Consider the homotopy L: U(π) x F x /—• J7(ττ) x F given by
L((x, y), t) - (F(x, t), 2/). We have L(2ί, y)f 0) - (F(Z, 0),») - (^, y) and
(L(^, 2/), 1) = (F(x, 1), 2/) = (bx, y) = (bx, by) since by = y for any y e Y
whenever beG. Hence L((x, y), 1) = (δ£, by) — b(x, y).

Also if aeπ we have

aL((x, y), t) = a(F(xf t), y) - (αF(flff t), ay) = (F(α^, ί), αy)

= L((αx, ay), ί) = L(a(x, y), t) .

It now follows from Proposition 4.3 applied to the covering

U(π) xY-^Q that L: U(π) x Y x I-> Z7(ττ) x Γ is a fibre preserving
homotopy. Since L((x, y), 0) = ((£, y), 0) and !/((&, /̂), 1) = b(x, y) we
see that be Γ and & is arbitrary in G. Hence GcΓ.

Proof of Theorem 4.1. Consider the 0-connected space Q =
[/(π) χ r I K(M, n) I where n ^ 2 and ikί a nonzero free τr/G-module
converted into a π-module using the natural homomorphism ηiπ—*-
π/G. Since G = {α e π | am = m for all m 6 ikί} by Proposition 2.1 we
get

( 6 ) λρ(G) = fli = {v e πλ(Q, uo)\v w = for all w e 7ΓΛ(Q, t60)}

If Q happens to be CPF-eomplex Propositions 4.2 and 4.4 immediately
yield

( 7 )

We now recall the following
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PROPOSITION 4.6. Let X be a CW-complex and xQeX.

Let P(X, x0) = {v e π^X, xQ) | v w = w for all w e πn(X, x0) and all
n ^ 1}. Then G,(X9 x0) c P(X, a?0).

This is Proposition 1.4 of [2]
It follows from (6) and Proposition 4.6 that if Q happens to be

a CTF-complex

( 8 ) Gi(Q, wo) c λρ(G)

(7) and (8) yield λς(G) = G^Q, uQ). Thus if Q happens to be a CW-
complex X = Q will satisfy the requirements of Theorem 4.1. Even
though U(π) and \K(M,n)\ are C TF-complexes the product U(π) x
I K(M, n) I with the product topology need not be. Even if it is (or
even if we alter the topology to the weak topology and get a CW-
structure on the set U(π) x | K{M, n) |) there is no guarantee that
Q will be CW. However it is possible to rectify the situation. It
turns out that X = | S(Q) | satisfies the requirements of Theorem 4.1.

First of all observe that there exists a point c0 e X = \ S(Q) \
such that JQ(C0) = u0. In fact if we take the O-singular simplex αUQ

corresponding to the point uQ then c0 = \αUQ\e\ S(Q) | satisfies jQ(cQ) =
u0. It is known that j Q ; . πt(\ S(Q) |, c0) —> π^Q, u0) is an isomorphism
for all i ^ 1. [5].

Let H^X, c0) = {v G 7ΓX(X, c0) | v tt? = w for all ^ e πn(X, cQ)}. Using
Lemma 1.4 and the fact that j Q t : πt(X, cQ) —>ττ, (Q? uQ) is an iso-
morphism for all i we see that

( 9 ) JQAHAX, C0)) =

Let

x

I S(Q) I - ^ Q
DIAGRAM 12

denote the pull back of the covering space U(π) x 7 Λ Q , Let Γ '
be the subgroup of π consisting of those Deck transformations of
the covering E -^ | S(Q) \ which are homotopic to IdE through fibre
preserving homotopies. By Theorem 3.1 we get Γ c Γr We take
e0 = ((%o, Vo), Go) as the base point in E and use it to get the iso-
morphism

λ x : π > πx{X, c0) .

It is easy to see that
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π

/ \

/ « \
πx(X, c0) r >π1(Q, u0)

3Q*

DIAGRAM 13

is a commutative diagram. In fact if σ is a path in E joining
% = ((&<>, 2/o), c0) to α e0 = (a(x0, y0), c0) it is clear that rσ is a path
in C7(π) x Y joining (x0, y0) to a(x0, y0). This fact yields commuta-
tivity of Diagram 13.

From Proposition 4.4 we have G:(X, c0) = λ z (Γ') Commutativity
of Diagram 13, the fact that j Q , is an isomorphism together with
(6) and (9) yield

(10) XX(G) = J3i(X, c0) .

From Proposition 4.6 we get GX{X, c0) c iϊi(X, c0). Hence

(11) G,(X, co)

Also from G c Γ c Γ we get XX(G) c XX(Γ) c Xx(Γr) and λx(Γ') =
GX(X, c0). Hence

(12) Xx(G)czG1(X,c0)

(11) and (12) together yield λx(G) - Gγ{X, c0).
Thus λ^1:7Γi(X, co)~~>τr is an isomorphism carrying G^X, c0) onto

the subgroup G of π.
This completes the proof of Theorem 4.1.
Finally we end the paper by raising a question. Let

J2J > JC±

P'

S(A)\-^A
3A

DIAGRAM 14

be the pullback of a covering i i i of a O-connected space A. Let

^ and &' be the subgroups associated to the covering Ά—> A and

E —> I S(A) I respectively of the Deck transformation group 3ί. We
have proved in § 3 that gf c gf' (Theorem 3.1).

PROBLEM. IS ^ = ^ ' ?
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