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ON A CERTAIN PROBLEM OF REALIZATION
IN HOMOTOPY THEORY

K. VARADARAJAN

In this paper it is shown that given any group = and
any subgroup G of the centre of = there exists a 0-connected
CW-Complex X with 7,(X) =~ under an isomorphism carry-
ing the Gottlieb subgroup G,(X) of =, (X) onto G.

Introduction. Let X be a 0-connected CW-Complex and z,€ X.
In [2] Gottlieb defined a certain subgroup G(X, x,) of the fundamental
group 7(X, x,) of X at x, and studied some of its properties.
Earlier [4] Jiang Bo Ju defined a subgroup G, of 7 ,(X, f(x,)) corre-
sponding to any map f: X— X. The group G, when f = Id, turns
out to be precisely G(X, x,) studied by Gottlieb. These groups play
a role in Nielsen-Wecken theory of fixed point classes and were
investigated by R. F. Brown, W. J. Barnier, etc. In [3] Gottlieb
defined the higher dimensional analogues G.(X, x,) C 7. (X, x,) of
G(X, x,) and studied their properties. For any path ¢ joining z, to
%, in X the isomorphism o, 7,(X, x,) — 7,(X, %,) carries G, (X, x,) onto
G.(X, z,) for all » = 1. Thus one can talk of the nth Gottlieb group
G, (X) of X without reference to a base point. In [2] it is shown
that always G,(X) is a subgroup of the centre of 7,(X) and that if
X is a K(w, 1) CW-Complex G(X) is precisely the centre of =.

Given any sequence of groups (7,),»: With 7, aberian for k = 2
it is known that there exists a 0-connected CW-Complex X with
7(X) = m, for all k. A natural question that suggests itself is the
following:

Given a sequence of groups (7). Wwith 7w, abelian for £t = 2
and subgroups G, of m, under what conditions does there exist a
0-connected CW-Complex with 7,(X) = 7, under isomorphisms carry-
ing G(X) onto G,?

Though we do not attempt to solve this general problem in this
paper, we prove the following

THEOREM. Given any group © and a subgroup G of the centre
of @ there exists a 0-connected CW-Complex X with w(X) = under
an isomorphism carrying G,(X) onto G.

Finally I wish to thank Professor W. Browder for some very
profitable discussions I had with him in connection with this problem.

1. Discrete group actions. This section deals with some results
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that we need regarding the action of the fundamental group on
the higher homotopy groups of a space. As we could not find any
explicit reference we felt we should include them here. But before
dealing with these results we recall briefly how the action of the
fundamental group (X, 2,) on the homotopy group w.(X, z,) is
defined.

Let 0: I— X be any path in X with «(0) =2, and a(l) = x,.
Let cer, (X, x) be represented by f:(S", *) — (X, x,) where = denotes
the base point in S*» Let h:*xIUS"x1—X be given by
h,(*, t) = o(t) for all teI and h,(z, 1) = f(2) for all ze S*. Then the
isomorphism o, 7, (X, z,) — 7, (X, 2,) carries ¢ into the clement of
(X, z,) represented by g:(S”, ) — (X, x,) where ¢g(z) = F(z, 0) with
F:S8* x I— X any extension of h,. It is known that o, depends
only on the homotopy class [¢] of the path ¢ and that if o, 7 are
paths in X with ¢(0) =2, o)== =70) and 7(l) =2, then
0.t (X, %) — 7 (X, x,) is the same as the composite ozo7,. In
particular the assignment a-c¢ = gc) for every acn(X, x,) and
cer,(X, x,) where o is any loop at x, representing a, gives rise to
an action of 7 (X, x,) on 7, (X, x,).

Let 7w be a group and X, Y spaces on which 7 acts on the left.
As usual we define an action of # on X X Y by a(z, ¥) = (az, ay)
for any aem and (x,y)e X x Y. The quotient space of X XY
under this action of @ will be denoted by X X.Y. We recall the
following.

DEFINITION 1.1. 7 is said to act properly discontinuously X if
given x € X there exists an open set U of X with x€ U and satisfy-
ing the following condition:

a,6'c ;aUNdU#%= QP =—a=2a.

LEMMA. 1.2. Suppose the action of w on X is properly dis-
continuous. Then for any action of @ on Y the action of ® on
X x Y described above is properly discontinuous.

Proof. Let (x,y)e X x Y. Let U be an open set in X with
ze U and satisfying the requirement in Definition 1.1. Then V =
Ux Y is open in X X Y;(x,y)eV and aV=aUxaY=aUXxY
for any aen. Hence aVNa'V< @=aUNad U= Q@=a=a.

For the rest of this section X will denote a 0-connected
space admitting of a simply connected covering space X?— X.
The Deck transformation group of the covering X*— X will be
denoted by <(X). Let # be a chosen base point of X and 2, =
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p(%,). As is well-known & (X) is isomorphic to 7 (X, x,). A specific
isomorphism

(1) Ayt 2(X) — m(X, x,)

is got as follows. For any ae <7(X) let @, be any path in X joining
%, to a%. Then pod, =, is a loop at 2, in X and \,(a) = the
homotopy class [a,] of the loop «,. This isomorphism )\, definitely
depends on the choice of the base point %, in X.

Let us denote the group < (X) by w. Let Y be a 1l-connected
space and y, a base point in Y. Assume that the group 7 acts on
the left on Y further satisfying the condition ay, = y, for all a e.
By Lemma 1.2 the action of # on X x Y is properly discontinuous.
Denote the quotient space X X.Y by @ and the canonical quotient
map X X Y—@Q by ¢q. Since X x Y is simply connected and the
action of 7 on X x Y is properly discontinuous it follows that
¢: X x Y— @ is the universal covering of @ and x is the Deck
transformation group of the covering ¢: X x Y — Q. Let ¢(&, ¥,) =
%, Using (%, ¥,) as the base point in X x Y as described in the
previous paragraph we have an isomorphism '

(2) Nt T —— T(Q, o)

Let now % be an integer = 2 and let us assume 7,(X)=0.
Let j: Y— X x Y be the inclusion given by j(y) = (&, v). From the
fact that 7,(X) = 7,(X) = 0 we see that

Je Y, y)) — 7w (X % Y, (&, vo))

is an isomorphism. Since ¢: X x Y— Q is the universal covering
of @ the map ¢.:7, (X x Y, (&, %)) — 7.(Q, u,) is an isomorphism.
Denoting the composite goj by ¢’ we thus see that ¢&:7.(Y, %) —
7. (@, u,) is an isomorphism.

For any vemn(Q, w,) and werm,(Q, u,) we denote by v-w the
element in 7,(Q, u,) got by the action of v on w under the usual
action of 7,(Q, u,) on 7,(Q, u,). Since ay, =y, for any aen the
action of 7 on Y gives rise to an action of = on 7,(Y, y,). For any
ecemw and cew, (Y, y,) we denote the element of 7,(Y, y,) got under
this action by a=c. The following proposition assets that under the
isomorphisms \g: T — 7(Q, u,) and ¢%: 7, (Y, y,) — 7. (Q, u,) these two
actions correspond. More precisely we have

ProPOSITION 1.3. ¢i(axc) = Ny(a)-qk(c) for all aenm and ce
(Y, yo)-
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During the course of the proof of this proposition we will make
use of the following well known

LEMMA 1.4. Let ¢: A— B be a continuous map of topological
spaces. Let o be any path in A with o(0) = a, 0(1) = a,. Let
b, =®(a;) (¢4 =0,1). Then the following diagram is commutative

T4, a) —— 7,(4, a))

lﬁﬁ* l?’*
[

7.(B, b) ——Z— 7.,(B, b,)

DiAGraM 1

Proof of Proposition 1.3. Let f:(S™ »)— (Y, y,) represent ce
7.(Y, y). Let aerm choose any path #:I— X joining % to aZ, in
X. Then &,:I— X x Y defined by &,(t) = (4(t), ;) is a path in
X x Y joining @,(0) = (&, ¥,) to &,(1) = (a%, y,) = (a, ay,) = a(Z,, Yo)-
By the definition of N, we have \y(a) = [@,] Where a, = g- &, By
Lemma 1.4 we see that

Ak

ﬂn(Xv x Y, (a%, ¥,)) g"‘_’ ﬂ'-n(X X Y, (%, Y))

l(I* lq*
(@, us) = 7@ w)

DiAGrAM 2

is a commutative diagram. Since \,(a) = [@,], by definition of the
action 7,(Q, u,) on 7, (Q, w,) we have

(3) No(@) - g5(0) = @(95())

The element ¢%(c) € 7,(Q, u,) is represented by the map ¢'of: (S, *) —
(@, u,). Denote by d the element in 7,(X X Y, %, X v,) represented
by the map h:(S”, ) — (X x Y, & X y,) given by h(z) = (aZ,, af(2))
for all ze S*. Then

g0 z) = q(al, af(2)) = 9(&, f(2)) = qJ(f(2)) = ¢’ f(z) forallzeS".

go h represents ¢.(d) in 7,(Q, u,) and ¢’ of represents gx(c) in 7,(Q, u,).
Since qoh = ¢'o f we have

(4) 7x(¢) = ¢«(d) .

Consider the map H:S" x I— X x Y given by H(z, t) = ((t),
af(z)). We have
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H(x, t) = (0(t), ay) = (@0(t), vo) = aA.(t)

and
H(z, 1) = (0(1), af(2)) = (aF, af(2)) = W(z) .

Hence a,,(d)en, (X x Y, (%, v,)) 1is represented by g:(S" ») —
(X x Y, (%, ¥,)) where g(z) = H(z,0). Now H(z, 0) = (6(0), af(z)) =
%, 0f(z)). Hence

(5) 9(2) = (&, af(2)) .

The element axc¢ of 7,(Y, y,) is represented by [:(S” =) — (Y, y,)
where I(z) = af(z). Hence ¢i(a = ¢) is represented by ¢’-l. But

¢ o U2) = q(@, af(z)) = q°9(2) by (5).

Since g represents @,.(d) it follows that qog represents ¢.(d..(d)) in
7.(Q, u,). From ¢ ol = gog we immediately get ¢ (a=c) = q.(&,.(d)).
But ¢.(@..d)) = a.q.(d)) by commutativity of Diagram 2. Hence

9i(axc) = a,.(q:(d))
= a,,(q%(c)) by (4)
= No(a) - ¢(c) by (3) .

This completes the proof of Proposition 1.3

2. Study of U(x) x |K(M, n)| for a 7-module M. Let = be a
a given group and K a K(w, 1) CW-complex. The universal covering
K of K is a contractible CW-complex and the Deck transformation
group of the covering K -5 K is 7. We will denote the contractible
complex K by U(x).

Let M be any left w-module and n any integer = 2. Consider
the Eilenberg-Maclane semi-simplicial complex K(M, n). The action
of T on M gives rise to an action of = on the semi-simplicial com-
plex K(M, n). This in turn gives rise to an action of 7= on the
geometric realization | K(M, n)| (Milnor’s geometric realization [5]).
We would like to apply the results of §1 to the case when X = K
and Y =|K(M, n)|]. For that purpose we should make sure that
there exists a base point y,€ Y such that a-y, =y, for all aex.
For this purpose we briefly recall the definition of the semi-simplicial
complex K(M, n).

For any integer k& = 0 let 4, be the set consisting of the integers
j such that 0 <7< k. Let C"(4,, M) denote the set of “n-cochains”
of 4, in M, namely functions @: 4, — M. For any integer k=1 let
gidy,— 4, for 01k and s,;:4,—4,, for 0<1<k—1 be
given by
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Y7 for0=p<si1-1
p+lforespu<k-1
)2 for 0= pu=s1

p—Llfori+1=pu=sk.

&) = {

si(p) = {
Let ef:C"(4,, M)— C*(4,_, M) and s}:C"(4,_,, M)— C™(4,, M) be
induced by ¢, and s;,. More specifically
for any v, v, ---, v, in 4,_, and @€ C"(4,, M)
61‘3)6?)(’00’ R Uﬂ) = q)(ei(vo), si(vo), ei('vl)’ ) Ei(/vn))
and

for any 2, x,, -+, 2, in 4, and 6 € C"(4,_,, M)
3;;*0(.’1?0, ) x‘n) = 0(31(:1;0), Sl(xl)} Tt Si(x'n)) .

Let Z™(d4,, M) be the subset of C"(4,, M) consisting of element @
satisfying the following two conditions:

(1) oy -+, x,)=0 if =, ---, z, are elements of 4, not all
distinet
(i) 3 (—=1)p(xy, <+« &y + =+, Xuy) = 0 for any @, @, «+ 2,y

in 4,. It is known that

e(Z"(diy M)) C Z™(dy—sy M)

£ E>1.
$H(Z™(dyr, M) C Z*(4,, M) } or any k=

For &k =0 the set of k-simplices K, (M, n) of the semi-simplicial
complex K(M, n) is the same as Z"(4,, M). For any k=1 the face
maps K, (M, n) — K,_(M, ») and the degeneracy maps K, ,(M, n) —
K,(M, n) are given by e} for 0 =<1k and s} for 0=t =<k —1
respectively. It is clear that the set K, (M, n) for any k. in 0 <k <
n — 1 has only one element, namely the zero element of C*(d4,, M).

The action of # on M gives rise to an action of = on K(M, n)
as follows. For any @e K,(M, n) let ap be the function 47" — M
defined by

(a¢)(x0’ ) xn) = a{¢(x0y ct xn)} .
Then it is easy to see that ap € K,(M, n) and that the map
Bat K(M, n) — K(M, n)

given by B.(®) = ap for any @ec K,(M, n) is a semi-simplicial iso-
morphism. Moreover for any a, @’ in 7 it is clear that B.., = B,° Ba-
If we denote the only 0-simplex of K(M, n) by e, clearly B.(¢) = e,
for all aexw. If we take Y =|K(M, n)|, ¥, = |e,| and define ay =
|B.](y) for any ye Y it is clear that we get an action of 7 on Y
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satisfying a-y, =y, for all aen. The resulting action of = on
©.(| K(M, n) |, y) = M agrees with the original m-module structure on
M that we started with.

Let Z, e Ur), Q= Ur)X.Y, q Ux) x Y—@Q the canonical
quotient map and wu, = ¢(&, v,). Let Mg 7w — m(Q, u,) be the iso-
morphism given by (2). Let H = {aen|am = m for all me M}

H ={wern(@Q, uy)|v-w=w for all wern,(Q, u,)} .
As an immediate consequence of Proposition 1.3 we get the following

PROPOSITION 2.1. The isomorphism Ny T — T(Q, w,) carries the
subgroup H of @ onto the subgroup H, of m(Q, u,).

3. A subgroup of the Deck transformation group. Let X be
0-connected topological space and X” — X a covering space of X (X
not necessarily simply connected). Let us denote the Deck trans-
formation group of the covering X? — X by <. Recall the usual

DEFINITION 3.1. A homotopy F: X x I— X is said to be fibre
preserving if there exists a homotopy H: X X I— X such that
- F oo
XxI—X

Jpx[d lp
xx 12 x

DIAGRAM 3

is commutative.
Let & denote the set of Deck transformations of X which are
homotopic to Idy through fibre preserving homotopies.

LEMMA 3.2. & s a subgroup of 2.

Proof. Let a, b be arbitrary elements of &. Let

Tx1-L. % eI %

lpxld lp and lprd lp

Xx1 2, x xx1-2x
DiaGrAM 4

be fibre preserving homotopies satisfying

F@& 0) =% F@ 1) = a&
z,

for all e X .
F(&, 0) = F@nzm}”axe
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It follows that

H(x, 0) = 2 = H(x, 1)
H'(x, 0) = x = H'(x, 1)

Let F": X x I— X and H": X x I— X be given by

} for all xe X .

F'(% 2t) for 0 <t <1/2
F@®z 2t —1) for 1/12<¢t <1
H'(z, 2t) for 0 <t <1/2
H(x, 2t — 1) for 12t <1,

F"(#, t) = {
H'(x, t) = {

Then F"(% 0) = &% F"(%, 1) = ab% and

Tx15 %

e |

xxI12. x

DIAGRAM 5

is commutative. Hence abe Z.
Let A: X x I— X and B: X x I— X be defined by

AE, t) = F(a™'%, 1 — t); B(x, t) = H(x,1 —?)
Then A(Z, 0) = %, A®, 1) = ¢'% and

XI5 %

lpxld lp
xxI1-2.x

DIAGRAM 6

is commutative. Hence a™'e Z.

Thus for any a,b in & the elements ab and ™" are in Z.
This proves that & is a subgroup of .

Let S(X) denote the singular C.S.S. complex of X and |S(X)]
the geometric realization of S(X). Let j:|S(X)|— X be the
canonical map [5]. Let

DIAGRAM 7
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denote the pull-back of the covering space X -»X. Then EZ
| S(X)| is a covering space with the same Deck transformation group
g as X L X, Let <’ be the subgroup of those Deck transforma-

tions of E which are homotopic to Id, through fibre preserving
homotopies.

THEOREM 3.1. T C Z'.
For the proof of this theorem we need the following

LEMMA 3.3. Let A, B be topological spaces and h, h, homotopic
maps of A into B under a homotopy H: A X I— B. Then there
exists @ homotopy P:|S(A)| x I—|S(B)| between | S(h,)| and |S(h,)|
such that

1S(4) | x I-2515(B)|

leXId 1]’3
Aax1 2L g

DiAGrRAM 8
s comutative.

Proof. Let 4, be the C.S.S. complex whose p-simplices are
(p - 1) tuples (a, -+, @,) with @, = 0 or 1, the face and degeneracy
operations being the usual ones.

A

5i(a0’ ee ap) = (a/o, e, by o, ap)

S,(ao, ) aP—~1) = (a’O’ ) a/i—ly ai, a’i+19 Tt a’p——l) .

Let | 4,| denote the standard Euclidean p-simplex in R** with the
usual unit vectors e, ---, ¢, as its vertices. For any p-simplex
0= (a, -+, a) of 4, let 6,:|4,|— I be the simplicial map deter-
mined by 0,(¢) =a,. Let ¢ S(A) X 4,— S(A x I) be defined as
follows. For any @eS,(A) and any p-simplex o of 4, let ¢ X o)
be that singular p-simplex in A4 x I which satisfies ¢(@ x 0) (x) =
(p(x), 0)(x)) for all xe|4,|. Then ¢: S(A) x 4,— S(A x I) isa C.S.S.
inclusion. It is easily checked that P = |S(H)|o|¢| satisfies the
requirements of the Lemma.

Proof of Theorem 3.1. Observe that
E = {(& w)e X |S(X)|| p@) = jx(w)}

and 2'(%, w) = w. For any ae <& the action of a on E is given by
a(%, w) = (a%, w).
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Let now be 2. Then there exists a commutative diagram

¥ xI-.%

xId P
X J(p]i;{

DIAGRAM 9

with F(% 0) =% and F(% 1) = b%Z. Then H(x, 0) = o = H(x, 1) for
all e X. By Lemma 3.3 there exists a homotopy P:|S(X)| x I—
| S(X)| between | S(Idy)| and | S(Idy)| such that

1S(X) | x I— | S(X))]
ljxXId ljx
XxI 25 x

Diacgram 10

is commutative. But |S(Idy)| = Id|sx),. Hence P(w, 0) = w = P(w, 1)
for all we|S(X)|.

Let L:E x I—E be defined by L((& w),t) = (F(Z, t), P(w, t)).
To make sure that L((% w), t) e E we have to check that j,(P(w, t)) =
p(F(% t)). But commutativity of diagram 10 yields j.(P(w, t)) =
H(jx(w), t). Since (%, w)e E we get jz(w) = p(%). Hence

H(jx(w), t) = H(p(®), t)
= p(F(%, t)) by commutativity of Diagram 9.
Hence
Jx(P(w, 1)) = H(jx(w), t) = p(F(Z, t)).
It is easy to see that

ExI -2 E

x|
| S(X)| % I |S(X)|
DiagraM 11

is commutative. In fact

P(p'(Z, w), t) = P(w, t)
and
P’ o L((Z, w), 1) = p'(F(Z, t), P(w, t)) = P(w, 1)

Moreover
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L((®, w), 0) = (F(%, 0), P(w, 0)) = (%, w)
L((®, w), 1) = (F(&, 1), P(w, 1)) = (0%, w) = b(T, w)

This proves that be &'. Since b is arbitrary in & we get & C &'.

4. The main result. As stated in the introduction the main
result proved in this paper is:

THEOREM 4.1. Let © be any group and G any subgroup of the
centre ©. Then there exists a 0-connected CW-Complex X such that
(X)) = under an tsomorphism carrying the Gottlieb subgroup
G(X) of m(X) onto G.

Let M be any nonzero free left 7/G-module, for instance M =
Z(m/G) the integral group ring of #/G. Using the canonical quotient
map 7: T — /G we consider M as a left 7-module. More specifically
for any aenw and any me M we set am = n(a)m. Then it is clear
that G ={aew|am = m for all me M}. Consider the covering
space U(m) x Y% Q where ¥ = | K(M, n)| (with » an integer = 2)
constructed in §2. Since a-m = m for a € G and all m e M the iso-
morphism B,: K(M, n) — K(M, n) reduces to the Identity of K(M, n)
whenever a € G. Hence |B,| = Id,. It follows that ay =y for all
y€ Y whenever a € G. For the covering space U(w) x Y—‘LQ let I
be the subgroup of 7« consisting of those Deck transformations which
are homotopic to Idy.xy through fibre preserving homotopies. As
a first step towards proving Theorem 4.1 we show

ProposiTION 4.2. GC T

For the proof of this proposition we need the following well
known results. Let A be a O-connected space and A2 4a covering
space of A. Let & be the Deck transformation group of this
covering.

PROPOSITION 4.3. A homotopy F: A x I ~—>.71~ 18 fibre preserving
if and only if aF(%, t) = F(a%, t) for all (T,t)ec A x I and all ac 2.

This is Theorem II.2 of [2]. The proof given there is valid for
a covering space of any O-connected space A. (A need not be a
CW-complex).

PROPOSITION 4.4. If A is a CW-complex and A 2, A the universal
covering of A, the subgroup of <(A) which corresponds to the
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Gottlieb group Gi(A, a0) under the isomorphism <(A)— m (4, a0)
consists precisely of all those Deck transformations which are
homotopic to Idy under fibre preserving homotopics.

This is Theorem II.1 of [2].

PropoSITION 4.5. If A is a K(z, 1) CW-complex then G,(A) is
the centre of .

This is Corollary 1.13 of [2].

Proof of Proposition 4.2. Since G is in the centre of 7 and
by Proposition 4.5 G,(K(w, 1)) = the centre of = we see that GC
G,(K(m, 1)). By Proposition 4.4, for any be G the Deck transforma-
tion ¥ — b% of U(n')—gK(n, 1) is homotopic to Id,. by fibre pre-
serving homotopy F: U(n) x I— U(n). By Proposition 4.3 we have
aF(%, t) = F(a%, t) for every aex and (%, t) e U(x) x I

Consider the homotopy L: U(r) x Y x I— U(r) x Y given by
L((®, v),t) = (F(%,¢),y). We have L(%,y),0) = (F(Z,0), ¥) = (@, y) and
(L&, v), 1) = (F@, 1), y) = (b%, y) = (bZ, by) since by = y for any ye Y
whenever be G. Hence L((Z, v), 1) = (b%, by) = b(Z, v).

Also if aem we have

aL((&, ), 1) = a(F (@, t), y) = @F(&, 1), ay) = (F(aF, 1), ay)
= L((aZ, ay), t) = L(a(®, ), ?) -

It now follows from Proposition 4.3 applied to the covering
U(r) x Y% Q that L: Ur) x Y x I— U(r) x Y is a fibre preserving
homotopy. Since L((&, v), 0) = ((%, ¥), 0) and L((%, v), 1) = b(&, y) we
see that be I" and b is arbitrary in G. Hence GC I

Proof of Theorem 4.1. Consider the O0-connected space Q =
U(r) X.| K(M, n)| where » =2 and M a nonzero free m/G-module
converted into a m-module using the natural homomorphism 7: 7 —
w/G. Since G = {aexm|am = m for all me M} by Proposition 2.1 we
get

(6)  M(@) = H ={ven(Q, u)|v-w = for all wer,(Q, )}

If @ happens to be CW-complex Propositions 4.2 and 4.4 immediately
yield

(7) Ae(G) C Gi(@Q, o)

We now recall the following
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PROPOSITION 4.6. Let X be a CW-complex and x,¢e X.

Let P(X, x,) = {vex (X, )| v -w = w for all wez,(X, x,) and all
n = 1}. Then G(X, x,) C P(X, x,).

This is Proposition 1.4 of [2]

It follows from (6) and Proposition 4.6 that if @ happens to be
a CW-complex

(8) GA(Q, o) C No(G)

(7) and (8) yield Mo(G) = G\(@Q, u,). Thus if @ happens to be a CW-
complex X = @ will satisfy the requirements of Theorem 4.1. Even
though U(z) and | K(M, n)| are CW-complexes the product U(w) X
| K(M, »)| with the product topology need not be. Even if it is (or
even if we alter the topology to the weak topology and get a CW-
structure on the set U(m) x | K(M, n)|) there is no guarantee that
Q will be CW. However it is possible to rectify the situation. It
turns out that X = | S(Q)| satisfies the requirements of Theorem 4.1.

First of all observe that there exists a point ¢,e X = |S(Q)]
such that jo(c,) = u,. In fact if we take the O-singular simplex «,,
corresponding to the point u, then ¢, = |, | €| S(Q)| satisfies jo(c,) =
%, It is known that jo.:m,(] S(Q)], ¢,) — 7(Q, u,) is an isomorphism
for all + = 1. [5].

Let H(X, ¢,) = {vern(X, ¢)|v-w = w for all wen,(X, ¢)}. Using
Lemma 1.4 and the fact that j,:7 (X, ¢)— 7@, u,) is an iso-
morphism for all 7 we see that

(9) Jo.(H(X, ¢)) = H, .
Let

E - Ur)xY

el

1S@)] - Q
D1aGrRAM 12

denote the pull back of the covering space U(x) x YLQ. Let I
be the subgroup/of 7w consisting of those Deck transformations of
the covering EilS(Q)[ which are homotopic to I; through fibre
preserving homotopies. By Theorem 3.1 we get " I”’ We take
e, = (%, o), ¢;) as the base point in E and use it to get the iso-
morphism

Apiw— (X, ¢) .

It is easy to see that
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/ N

(X, ) ——f—a 7(Q, o)
Q%

D1aGraM 13

is a commutative diagram. In fact if & is a path in E joining
e, = (%o, Yo), C) to a-e, = (a(X,, ¥o), ;) it is clear that »& is a path
in U@@) x Y joining (%, ¥,) to a(®, ¥,).- This fact yields commuta-
tivity of Diagram 13.

From Proposition 4.4 we have G,(X, ¢,) = Mg(I"). Commutativity
of Diagram 13, the fact that j, is an isomorphism together with
(6) and (9) yield

(10) AM(G) = H(X, c) .
From Proposition 4.6 we get G(X, ¢,) € H(X, ¢,). Hence
(11) G(X, ) Cax(G) .

Also from GCI'cI” we get Me(G) CAx(IN) TAx(L”) and Ny (I7) =
G.(X, ¢,). Hence

(12) M (G) C Gu(X, )

(11) and (12) together yield M4 (G) = G(X, ¢,).

Thus M 7(X, ¢,) — 7 is an isomorphism carrying G,(X, ¢,) onto
the subgroup G of =.

This completes the proof of Theorem 4.1.

Finally we end the paper by raising a question. Let

E A
ool
[S(4)] =5 A
DiaGram 14
be the pullback of a covering AL A of a O-connected space A. Let

Z and &’ be the subgroups associated to the covering A2 A and

E?L»[S(A)] respectively of the Deck transformation group <. We
have proved in §3 that & < &’ (Theorem 3.1).

PROBLEM. Is & = &7
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