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ON THE HOMOTOPY INVARIANCE OF
CERTAIN FUNCTORS

BRIAN K. SCHMIDT

A functor from the category of topological spaces to the
category of groups is said to be homotopy invariant if it
carries homotopic mappings to the same mapping. It is well
known, for example, that the homology and homotopy functors
are homotopy invariant. On the other hand, the functor
which takes each topological space M to the free ahelian
group generated by the points of M is not homotopy invariant.
It will be shown that a functor which is not homotopy
invariant must take topological spaces to groups which are
very "large". For example, the homology groups of a
simplicial complex are finitely generated, while the free
abelian group generated by the points of a typical simplicial
complex is uncountably generated. Among other results, it
will be shown that every functor from simplicial complexes
to finitely generated groups is homotopy invariant.

Notation*

1. Throughout this paper GcπS will denote the category of sets
and !Etψ will denote the category of topological spaces. We will denote
by 3̂ the full subcategory of Xop whose objects are simplicial com-
plexes. The closed interval [0, 1] on the real line will be denoted I,
and the full subcategory of Zop whose only object is I will be denoted
$. © will denote an arbitrary category.

We will use the word "functor" to mean a covariant functor
and the word "cofunctor" to mean a contra variant functor. This
allows us to say, for example, that homology is a functor and
cohomology is a cofunctor. Thus a functor J2: $ —• @ assigns to the
object I in $ an object Ω(I) in ® and to each continuous mapping
/:/—>/ a morphism Ω{f): Ω(I) —> Ω(I) in such a way that composition
and identity morphisms are preserved.

Fundamentals*

2. For each x e I, let kx be the constant mapping from I to I
which takes every element of I to x.

3. THEOREM. Let Ω: $—>6f be a functor. If there exist distinct
continuous mappings f,g:I—>I such that Ω(f) = Ω(g), then there
exist distinct x, y el such that Ω(kx) = Ω(ky).
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Proof. Since f Φ g, there exists ze I such that f(z) Φ g{z). Let
x = f(z) and y = g(z). Then Ω{kx) = Ω(kfiz)) = Ω{fkz) = Ω{f)Ω{kz) =
Ω(g)Ω(kz) = Ω(gkz) = Ω(kg{z)) = Ω{ky).

4t. THEOREM. Let Ω: $—» ® be a functor. If there exist distinct
x, y e I such that Ω(kz) — Ω{ky), then Ω(kQ) = Ω(kλ).

Proof. It is clear that there exists a continuous mapping / : 7—• I
such that f{x) = 0 and f(y) = 1. So Ω(kQ) = Ω(kfω) = fl(/fcx) =
Ω(f)Ω(k9) = Ω(f)Ω(kv) = Ω(fky) = Ω(kfw) = Ωfc).

5. THEOREM. If ® is a category such that every functor Ω: $—>©
satisfies Ω(k0) = β ^ ) , ίfee^ e^eπ/ functor Δ\ φ—>@ is homotopy in-
variant.

Proof. Let f,g:M—>N be homotopic mappings in 5β. Define
i0: M-+M x I by io(x) = (a, 0), and define j \ : M—>M x I by ^(α;) =
(#, 1). Since/and # are homotopic, there exists a continuous mapping
h: M x I—> N such that / = hj0 and # = A^.

Define the functor Π: % -> ty by letting 77(7) equal I x ί and,
for each continuous mapping d:I~+I, Π(d) equal the mapping from
M x I to M x I which takes (x, y) to (x, d(y)). It is easy to verify
that Π(ko)jo = j0 and Π{k^)jo^=j1. And ΔΠ:^—>($ is a functor, so
Ji7(&0) = JZΓfa). Thus A{f) =
A(h)ΔΠ{ko)A{j0) = Δ(h)ΔΠ(kdΔ(j0) -

6. THEOREM. If for every functor Ω:$--+® there exist distinct
continuous mappings f,g:I-+I such that Ω(f) = Ω(g), then every
functor Δ: ̂ β —• © is homotopy invariant.

Proof. Combine Theorems 3, 4, and 5.

7. All of our results on homotopy invariance will be based on
Theorem 6. To get these results, we must find methods of showing
that for certain categories ©, every functor Ω: $—>@ takes two distinct
continuous mappings to the same morphism. We will present several
methods, each applicable to a certain type of category. Our first
method is quite simple.

First Approach — Functors*

8. THEOREM. Let © be a category such that for every object



ON THE HOMOTOPY INVARIANCE OF CERTAIN FUNCTORS 247

G in © the set of morphisms from G to G is countable. Then every
functor zί:̂ β—>© is homotopy invariant.

Proof. Consider any functor Ω: $ —> ©. The set of morphisms
from Ω(I) to Ω(I) is countable, but the set of continuous mappings
from I to I is uncountable. Hence there exist distinct continuous
mappings /, g: I—* I such that Ω(f) = Ω(g).

9. For example, every functor from ^ to the category of finitely
generated abelian groups must be homotopy invariant. Thus Theorem
8 constitutes a proof that the homology functors, with domain $β, are
homotopy invariant. This is rather surprising, since we have made
very little use of the definition of homology. Similarly, every functor
from ίβ to the category of finitely generated groups must be homotopy
invariant. This proves that the first homotopy functor 7Γlf with domain
Sβ, is homotopy invariant. And Theorem 8 can be applied to many
other categories whose objects are finite or finitely generated in some
sense.

First Approach — Cofunctors*

10. Now we will turn to cofunctors. In view of the fact that
a cofunctor to © is the same thing as a functor to ©*, where ©* is
the category dual to ©, Theorems 6 and 8 may be restated to deal
with cofunctors as follows:

11. THEOREM. If for every cofunctor Ω:$—>® there exist
distinct continuous mappings /, g: I—+I such that Ω(f) = Ω(g), then
every cofunctor A:?$—+® is homotopy invariant.

12. THEOREM. Let & be a category such that for every object
G in © the set of morphisms from G to G is countable. Then every
cofunctor zf:φ —>© is homotopy invariant.

13. For example, every cofunctor from Sβ to the category of
finitely generated abelian groups must be homotopy invariant. This
proves that the cohomology cofunctors are homotopy invariant. Here
is a more unusual example. A functor or cofunctor zί: f̂β -—> 5̂ is said
to be homotopy preserving if, for any two homotopic mappings
/, g: M—>N in -iβ, A(f) is homotopic to Δ{g).

14. THEOREM. Every functor or cofunctor A: φ—>Sβ is homotopy
preserving.

Proof. Let Sβlj denote the category whose objects are simplicial
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complexes and whose morphisms are homotopy classes of continuous
mappings. Let Φ: Sβ—»SβJj be the functor given by Φ(M) = (M) and
Φ(f) = the homotopy class of /. Given any simplicial complex M,
the simplicial approximation theorem says that every continuous
mapping from M to M is homotopic to a simplicial mapping. And
the set of simplicial mappings from M to M is obviously countable.
Hence the set of morphisms from M to M in ^ is countable. Thus,
by Theorems 8 and 12, every functor or cofunctor from Sβ to Sβϊj is
homotopy invariant. In particular, ΦΔ\ 5̂—>Sβϊj is homotopy invariant.
And this says precisely that Δ is homotopy preserving.

Generalizations*

15. We will say that a category Z is "admissible" if Theorems
6, 8, 11, and 12 remain true when Sβ is replaced by %. For example,
let ϊ be a full subcategory of Zop. It is clear that the proofs of
these theorems stand without modification provided that / is an object
of Z and Z is closed under the operation product-with-J. Hence all
such categories are admissible. Moreover, Z may be admissible even
if Z is not closed under product-with-J or if / is not an object of Z.
For if the real line R is an object of Z and X is closed under product-
with-jR, we may replace / by R in the proofs of 6, 8, 11, 12, and all
preceding theorems. This does not change the meaning of homotopy:
Two continuous mappings f,g:M-+N are homotopic in the usual sense
if and only if there exists a continuous mapping h: M x R—+N such
that h(x, 0) = f{x) and h(x, 1) = g(x) for all x e M. Hence the category
of topological manifolds with boundary is admissible, even though it
is not closed under product-with-7. And the category of topological
manifolds is admissible, though it does not contain the object I.
Similarly, if the circle S1 is an object of Z and Z is closed under
product-with-S1, then Z is admissible. Hence the category of compact
topological manifolds and the category of compact topological manifolds
with boundary are admissible. In general, given a topological space
H, distinct points y, zeH, and continuous mappings f, g: M-+N, we
say that / and g are (JET, y, 2)-homotopic if there exists a continuous
mapping h: M x H—> N such that h(x, y) — f(x) and h(x, z) — g(x) for
all x G M. It is not hard to verify that (H, y, £)-homotopy is equivalent
to ordinary homotopy if

(a) there exist continuous mappings ί: I—• H, j : H—>I such that
i(0) - y, ΐ(l) - z, j(y) - 0, and j(z) = 1.
And the proof of Theorem 4 remains valid if

(b) given distinct s, te H, there exists a continuous mapping
m: H-* H such that m(s) — y and m(t) = z.
Thus, if (a) and (b) are satisfied, every category Z which contains
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H and is closed under product-with-j? is admissible.

16. There are some admissible subcategories of Xop which are
not full. Consider, for example, the category of smooth manifolds.
As was said in 15, two continuous mappings/, g: M—>Nare homotopic
if and only if there exists a continuous mapping h: M x R~+N such
that h(x, 0) = f(x) and h(x, 1) = g(x). And it is well known that if /
and g are smooth, we may take h to be smooth. (Smooth homotopy
is equivalent to continuous homotopy.) Thus, replacing I by JB, we
find that the category of smooth manifolds is admissible. Similarly,
replacing I by R or S1, we find that the following categories are
admissible: smooth manifolds with boundary, compact smooth manifolds,
compact smooth manifolds with boundary.

17. Let % denote the category of pairs of simplicial complexes.
An object in φ2 is a pair (Ml9 M2), where Mλ and M2 are simplicial
complexes and M2 is a subset of Mλ. And a morphism /: (Mu M2) —»
(Nlf N2) is a continuous mapping from M1 to iVL such that f{M2) c N2.
We say that two morphisms /, g: (Mlf M2)—>(NU N2) are homotopic if
and only if there exists a continuous mapping h: M1 x /—• JVΊ such that
h(x, 0) = f(x) and h(x, 1) = g(x) for all xeM, and h(M2, y) c N2 for all
yel. If we replace / by the pair (/, I) in the proofs of 6, 8, 11, 12,
and all preceding theorems, it follows that ?̂2 is an admissible category.
Likewise, the category of pairs of any category in 15 or 16 is
admissible.

A Generalization That Fails*

18. Since the cardinality of / is C, the cardinality of the con-
tinuum, one would expect the set of continuous mappings from I to
/ to have cardinality greater than C. But a continuous mapping from
I to I is determined by its restriction to the set of rational numbers
in the domain. Hence the set of continuous mappings from I to I
has cardinality C. Thus the proof of Theorem 8 does not work for
categories © in which the set of morphisms from G to G can have
cardinality C We will now strengthen Theorem 8 to make it work
for many such categories.

Second Approach — Functors*

19. Let B be a set, and let S3 be the full subcategory of @n§
whose only object is B. Suppose there exists a functor Ω: 3 —+ S3
such that Ω(f) — Ω(g) only if f = g. We will prove that B is un-
countable. As in 2, let kx:I—>I be the mapping which takes every
element of I to x. Let ex = Ω(kx).
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20. THEOREM. For all x,yel, eyex = ey.

Proof. eyex = Ω(ky)Ω(kx) = Ω(kykx) = £?(&„) = ey.

21. COROLLARY. For all xel, exex = ex.

22. THEOREM. Consider beB and distinct x, yel. If ex(b) =
ey(b), then ez(b) = ex(b) for all zel.

Proof. Clearly there exists a continuous mapping f:I—>I such
that f{x) = x and f(y) = z. Then /fcβ = fcβ and fky = kz. So Ω(f)ex =
Ωif)Ω(kx) = Ω{fkx) = fl(fc.) - β,. Likewise, fl(/)β¥ - ef. Thus βs(6) -

(6) = ex(b).

23. Let Eo be the set of all beB such that ex(b) = b for all
xel. And let Bx be the set of all b e B such that ex(b) — b for exactly
one xel.

24. C O R O L L A R Y . Consider beB and distinct x,y el. IfβJJb) = b
and ey(b) = 6, then b e Bo.

2 5 . COROLLARY. Consider beB and xel. If ex(b) = b, then
either be Bo or be Blt

26. THEOREM. Bι is not empty.

Proof. Suppose B1 = 0 . Consider any beB and distinct x, yel.
By Corollary 21, ex(ex(b)) = ex(b). Hence, by Corollary 25, ex(b) is an
element of either Bo or Bt. Since B1 = 0 , ee(6) e Bo. Thus ey(ex(b)) =
6^(6). But by Theorem 20, ^(^(fr)) = βy(6). Since 6 was arbitrary, we
have ex — ey, or Ω(kx) = i ? ^ ) . This contradicts 19.

27. Let c be any element of J5X. Define a mapping ω: I—*B by
= ex(c).

28. THEOREM, α; is one-to-one.

Proof. Suppose that there exist distinct x, y el such that ω(x) =
); that is, ex(c) = ey(c). Then Theorem 22 says that ez(c) must be

the same element of B for all zel. But there is exactly one zel
such that ez(c) = c, since c e J5le This is a contradiction.

29. COROLLARY. If B is a set as in 19, then B is uncountable.

30. THEOREM. Let % be a svhcategory of @n§ in which every
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object is countable. Then every functor J:^3—>© is hornotopy in-
variant.

Proof. Consider any functor Ω: $ -* ©. Let B = Ω(I), and let
35 denote the full subcategory of ©n§ whose only object is B. We
may view Ω as a functor from $ to 95. Since 5 is countable, Corol-
lary 29 says that there exist distinct continuous mappings f, g: I—>I
such that Ω(f) = i2(#). Hence, by Theorem 6, every functor Δ: ̂ 3 —»©
is homotopy invariant.

31. For example, every functor from 3̂ to the category of count-
able abelian groups must be homotopy invariant. This proves that
the n\h homotopy functor πn, with domain ^3, is homotopy invariant.
Similarly, every functor from Sβ to the category of countable rings
must be homotopy invariant.

32. For completeness, we will prove two more theorems at this
point. Let B, 35, and Ω be as in 19.

33. THEOREM. ω(x) e B19 for all xe I.

Proof. For any y el, eyω(x) = eyex(c) = ey(c) = oj(y). Thus eyω(x) =
ω(x) precisely when y ~ x.

34. THEOREM. For any continuous mapping f: I—+I, Ω(f)ω — ωf.

Proof. For any x e /, Ω(f)ω(x) = Ω(f)ex(c) = Ω(f)Ω(kx)(c) = (fhx){c) =
Ω(kf{x))(c) = ef(x)(c) = ωf(x).

35. This theorem asserts the naturality of ω. Strictly speaking,
it says that ω is a natural transformation from the forgetful functor
(from $ to en§) to Ω (viewed as a functor from g to @n§). [1],

Second Approach — Cofunctors*

36. Now we would like to prove that Theorem 30 remains true
if Δ is a cofunctor instead of a functor. Unfortunately, the proof
of Theorem 30 relies on the construction of a mapping ω: /—> B9 and
this construction does not work for cofunctors. Hence we must take
a slightly different approach.

37. As before, let B be a set and let S3 be the full subcategory
of @rt3 whose only object is B. Suppose there exists a cofunctor
Ω: 3-> 35 such that Ω(f) = Ω(g) only ii f = g.
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38. Recall that I is a linearly ordered set. Given x, y el, let
px(y) denote the smaller of x and y. Then px: I —>I is a continuous
mapping. And let 2lut+ denote the set of all continuous mappings
f:I~+I such that f'1:1~*I exists (Z"1/ and ff'1 are the identity) and
such that x < y implies f(x) < f(y). It is easy to verify that:

39. If x ^ y, then pxpy = px and pypx = ̂ .

40. Given a? 61 and / e 2Cut+, /p*/" 1 = j>/(x).

Let qx = Ω(px).

41. THEOREM. If x ^ y, then g ^ = qx and ?„?, = gx.

Proof. Using 39, we have qxqy = Ω(px)Ω(py) =
g,. Likewise ^ = Ω(py)Ω(px) = Ω(pxpy) = j

42. THEOREM. Giww cc e / α^d / e 2tnt+, Ω{f~ι)qxΩ{f) = g/

Proof. Using 40, we have

Ω(f-*)qJKf) = Ω(Γ>)Ω(px)Ω(f) = Ω(fpJ^) = Ω{pf{x)) = qf[x)

43. THEOREM. For any f e Stut+,

Proof. Let 17 and l β denote the identity mappings on / and B
respectively. Then Ω{f)Ω{f-1) = Ω{f~ιf) = Ω(lz) = 1B. Likewise
Ω(f->)Ω(f) = ΩUT1) = Ω(h) = 1B.

44. Define a mapping λ: B —> J by letting λ(δ) equal the greatest
lower bound in / o f {# e 11 ̂ (̂6) = δ}. Note that we do not know
whether g^β)(δ) = 6. But we can at least say the following.

45. T H E O R E M . Consider x e l and be B with x Φ λ(6). Then

λ(δ) < x if and only if qx(b) = b.

Proof. If qx(b) = 6, it is obvious that λ(6) < x. Conversely, if
λ(δ) < x, there exists w e I such that λ(6) ^ w < x and gw(δ) = b. By
Theorem 41, qxqw = qw. Thus qxqw(b) = qw(b), which says that qx(b) = b.

46. THEOREM. For any f e SCut+, f~'x = λfl(/).

Proof. Consider a? e I and 6 e B such that α? is not equal to
f^Mb) or XΩ(f)(b). It suffices to show that f^Xφ) < x if and only
if XΩ(f)(b) < x. Our approach will be the following.
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/"ιλ(6) < x

\o>
λ(6) < f(x)

h
Q/iAb) = b

I ( i i i )

Ω(f-ι)qxΩ(f)Φ) = b

((iv)

q,Ω(f)φ) = Ω(f)(b)

(v)

(i) follows from the fact that / and f'1 belong to 2Iut+. Note that,
since x Φ /"^(δ), we have f(x) Φ λ(δ). Thus (ii) follows from Theorem
45. (iii) follows from Theorem 42, and (iv) follows from Theorem 43.
And, since we have assumed that x Φ XΩ(f)(b), (v) follows from
Theorem 45.

47. This theorem asserts a kind of naturality of λ. Viewing
2lut+ as a category whose only object is I, we may define a cofunctor
Λ: SIut+ -> @n3 by letting Λ(I) = I and Λ(f) = f"1. Then λ is a natural
transformation from Ω (viewed as a cofunctor from SXut+ to @n§) to
Λ. Note that this kind of naturality is much more restricted than
that of Theorem 34.

48. T H E O R E M . There exists ceB such that 0 < λ(c) < 1.

Proof. Suppose there is no such c. By Theorem 41, ?i/2(?i/2(δ)) =
g1/2(δ) for all beB. Thus by Theorem 45, Xqφ(b) £ 1/2. So λg1/2(δ)
must equal 0. Therefore, by 45 again, g1/4(gi/2(f>)) = 9i/2(&) for all
δG β. But, by Theorem 41, g1/4(g1/2(δ)) = g1/4(δ) for all beB. So
?i/2 = (yi/*, which says that i3(^1/2) = Ω(plh). This contradicts 37.

49. THEOREM, λ maps 5 owίo ίfee interior of I.

Proof. By Theorem 48, there exists ceB with 0 < λ(c) < 1.
Given any O G / with 0 < x < 1, there exists / e 2tut+ such that
jf-'λfc) - x. Thus, by Theorem 46, λ(O(/)(c)) = x.

50. COROLLARY. // B is a set as in 37, then B is uncountable.
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51. THEOREM. Let % be a subcategory of @n8 in which every
object is countable. Then every cofunctor A\^>—»© is homotopy
invariant.

Proof. Corollary 50 says that for every cofunctor Ω: $ —• ©
there exist distinct continuous mappings /, g\I—+I such that Ω(f) =
Ω(g). Hence the assertion follows by Theorem 11.

Generalizations*

52. In Theorem 30, 5β may be replaced by any of the categories
named in 15, 16 or 17. If we replace I by a space H as in 15, the
proof of Theorem 22 requires that H satisfy the added condition that

(c) given distinct s, te H and any ue H, there exists a continuous
mapping m: H—> H such that m(s) = s and m(t) = u.
This is satisfied by R, S\ and many other spaces.

In Theorem 51, Sβ may be replaced by any of the categories named
in 15 or 17. We may replace / by R or S1 as in 15, but our con-
struction of λ makes it difficult to replace I by anything more general.
Likewise, the construction of λ rules out the categories in 16, which
admit only smooth mappings. This happens because the mappings
px:I—+I have no smooth analog.

53. Note that the proof of Theorem 51 is very symmetrical. In
particular, this proof can be daulized to give a proof of Theorem 30.
But the proof we have given of Theorem 30 is simpler and more
general, in that it applies to smooth structures as well as topological
structures.

54. There is one important category © to which Theorems 30
and 51 do not apply: the category %$σ

κ of countable dimensional vector
spaces over a field K. The problem is that a countable dimensional
vector space (or even a finite dimensional vector space) may have an
uncountable number of elements. It will now be shown that Theorems
30 and 51 remain true when © = fβσ

κ.

55. THEOREM. Every functor Δ:^>-^^&σ

κ is homotopy invariant.

Proof. We will proceed as in Theorems 20-29. Let B be a vector
space over K> and let 33 be the full subcategory of the category of
vector spaces over K whose only object is B. If there exists a functor
Ω: $ — S3 such that Ω{f) = Ω{g) only if / = g, then there is a one-
to-one mapping ω:I-+B such that Ω(f)ω = ωf for all continuous
mappings /: I—•/. Suppose that the image of ω is a linearly dependent
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set. Then there exists an element x e I, a finite set Yal — {x}, and
scalars aye K indexed by y e Y such that ω(x) = Σ*er ayω(y). It is
easy to construct a continuous mapping /: 7 —> I such that f(y) = y
for all y e Y and f(x) Φ X. Then

ω(f(x)) = Ω(f)ω(x) = β(/) ( Σ α Λ ) ) = Σ ayΩ(f)ω{y)
\yeY / yeY

= Σ a>vω(f(y)) = Σ ayω(y) = ω(a ) .
2/eF j / e r

This is a contradiction, since ω is one-to-one. Hence the image of ω
is a linearly independent set. And the image of ω is uncountable,
so it follows that the dimension of B is uncountable. Thus for every
functor Ω: $-+33^ there exist distinct continuous mappings /, g: I—>I
such that £?(/) = Ω(g). Therefore, by Theorem β, every functor
//:̂ β—> 93J is homotopy invariant.

56. T H E O R E M . Every cofunctor /f:^3—* SS^ is homotopy in-
variant.

Proof. This is analogous to the proof of Theorem 55. Proceed
as in Theorems 41-50, and use naturality of λ.

57. Note that we may replace 93̂  by the category SXj of countable
dimensional algebras over K in Theorems 55 and 56, because every
functor z/:φ—> 214 can be viewed as a functor from ψ to 2%.

Conclusion*

List A: simplicial complexes
topological manifolds
topological manifolds with boundary
compact topological manifolds
compact topological manifolds with boundary
pairs in any category above

List B: smooth manifolds
smooth manifolds with boundary
compact smooth manifolds
compact smooth manifolds with boundary
pairs in any category above

List C: finitely generated abelian groups
finitely generated groups
finitely generated rings

List D: countable abelian groups
countable groups
countable rings
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countable dimensional vector spaces over a field K
countable dimensional algebras over a field K.

58. We have shown that every functor from a category in List
A or B to a category in List C or D is homotopy invariant. And
every cofunctor from a category in List A to a category in List G
or D, or from a category in List B to a category in List C, is
homotopy invariant. And these results can be extended to many other
categories by the methods developed herein. Some questions that
remain are:

1. Is every cofunctor from smooth manifolds to countable groups
homotopy invariant?

2. For which rings R can the category of countably generated
iϋ-modules be placed in List D?
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