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ON FUNCTIONAL EQUATIONS CONNECTED WITH

DIRECTED DIVERGENCE, INACCURACY AND

GENERALIZED DIRECTED DIVERGENCE

P L . KANNAPPAN AND C. T. N G

The measures directed divergence, inaccuracy as well as
generalized directed divergence occurring in information
theory can be characterized by the symmetry, expansibility,
branching, and additivity properties together with some
regularity and initial conditions. In this paper some func-
tional equations generalizing those implicit in these charac-
terizations shall be treated.

l Introduction* Let Δn = {P = (plf p2, , pn) \ pi ;> 0 and
Σ?«ift - 1} and Δ'n = {P = (plf p2, . , pn) \ Pi > 0 and Σ?~il\^ 1} b e

the set of all finite complete and incomplete probability distributions
respectively. In 1948 C. E. Shannon [16] introduced the following
measure of information

(1.1) H%(P)= - g f t l o g f t ,

on Δn which is now known as Shannon's entropy. This has been
generalized to inaccuracy [10]. Inaccuracy and the related quantities
directed divergence or information gain [11, 15] and generalized
directed divergence [3] are given by

(1.2) Hn(P 11 Q) = - Σ ft log ft , (P e Δn, QeΔnor Δ'n) ,

(1.3) /,(P| |Q) = Σ p , l o g £ ί , (PeΔn,QeΔn or Δ'%) ,
i=i q.

and

(1.4) Dn(PI I Q I B) = Σ Pi log- Si , (PeΔn,Q,ReΔn or Δ'u)

respectively. While characterizing these measures we come across
the following functional equations

(1.5) Σ Σ FiPiQj) = Σ F(Pi) + Σ F(qi) , (PeJn,Qe Δm) ,
i j ii=i j-i

(1.6) Σ Σ ΆPiQi, XtVj) = Σ F(Pu «ι) + Σ F(qJt Vi) ,
•=i j=i *=i i=i

(Pei», Q e Δm, l e Δn or j ; , Ye Δn or Δ'm)
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and

(1.7)
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m n m

Σ F(p%qj9 xtysΊ uτv3) = Σ F(pi9 xi9 ut) + Σ F(qά9 yi9 v3) ,

(PeΔn, Q e Δm, X, Ue Δn or Δ'n9 Y, Ve Δm or Δ'm)

(cf [2], [4], [5], [6], [7], [8], [9], [13]).
For the motivation to consider (1.6) and (1.7) and the application

of this result, refer to the Remark at the end of this paper.
In this paper we consider the functional equation

(1.8) V V F (Ύ) a r n \ — ;, Vi) >

(PeΔ2,QeΔ3,XeΔ'2, YeΔ[)

for unknown functions Fiίh Gi9 H3. Then this gives the measurable
solutions of (1.6) for all PeΔ2j QeΔ3, XeΔ2, YeΔ[ as a special case.
The measurable solution of (1.7) for PeΔ2jQe Δ3, X, Ue 4, Y9 Ve 4
can also be obtained by a reduction to (1.8).

In solving (1.8) we make use of the following result of C. T. Ng
[13]:

THEOREM 1.1. The measurable solutions of the functional equation

(1.9) Σ Σ Ftjfaq,) = g Gt(p%) + Σ Hά{q5) ,

for all Pe Δ2f Qe Δd, are given by

(H^q) = aq log q + b& + cί9 H2(q) = aq log q + (bt + d)q + c4,

jfiΓ3(g) = αg log q + (δL -f e)g + c7? ^ i(p) = ap log ̂  + b2p + c 2 ,

(1.10)

ί"i 2(p) = α̂ > log ̂ > + (62 + d)p

^i,3(ί>) = ap log p + (b2 + β)p +

FZΛ{p) = ap log p + hp + c3, F

^.sίp) = ap log p + (δ3 + Φ +

Ga(ί?) = -0(1 - p) + a[p log p + (1 - p) log (1 - p)\

= αp log p + (63

Cγ CQ ~Γ

where a, blf δ2, δ3, cly c2, , c9? d, e are arbitrary constants and g is an
arbitrary measurable function.

2. Measurable solutions of the functional equations (1*6) and
(1.8). We first suppose that equation (1.8) is to hold for all PeΔ2,
Q e Δz, Xe Δ'2, Ye 4 , where Fij9 Gt, Hά: [0, 1] x ]0, 1[ ->R are functions
measurable in their first variables.
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For arbitrarily fixed xi9 y5 in ]0, 1[ with Σ U χι ^ 1, Σ;=i VJ ̂  1»
equation (1.8) is of the form (1.9) in the pt'a and <?/s. Therefore, by
Theorem 1.1 there exist ' c o n s t a n t s ' a(xlf x2, yl9 y2, y3)9 bt(xl9 x2} yί9 y2,y3),

i = 1, 2, 3, cj(xl9 x2, ylf y2, y3), j = 1, 2, - - , 9, d(xl9 x29 ylf y2, y3), e(xlf x2,

Vu Vzf Vs) and a measurable function g( , xί9 x2f yί9 y29 y3) such t h a t

(2.1)

x) = a(xl9 x2, yl9 y2, y3)q log q + bx{xu x2, yl9 y2, y3)q

+ c,{xl9 x2, ylf y29 y3) ,

H2{q, y2) = a(xu x2f ylt y2, y3)q log q + (6X + d)(xu x2, yl9 y2f

+ Ct(xlf x2y yl9 y2, y3),

H3(q, y3) = a(xl9 x29 y19 y2f y3)q l o g q + (b, + e)(xx, a?2, 2/!, i/2,

+ c7(xl9 x29 yl9 y2, y3) ,

FiΛPf χiVi) = »(«!, «2, i/i, i/2, 7/3)p log p + 62(0?!, a?2, ^ ^ y

+ ^(α?!, a;2, yl9 y2,2/8) ,

J î,2(?>, ffi2/2) = «(»!, ^2,2/1,2/2,2/s)2> log ί> + (b2 + d)(x19 x%9 yu y2f

!, a?2, i/i, y29 y3)p log p + (b2

(xu x29 y19 y29 y3) ,

, cc2, ^ , y2,

= α ( ^ i , »2,2/x, V* Vz)P log P + bs(xl9 x2f yl9 y2, y3)p

+ c3(xu x2, yl9 y29 2/3) ,

= a(xl9 x29 yl9 y29 y3)p log p + (δ 3 + d)(xί9 x2, y» y2, yz)p

+ ce(xl9 x29 yl9 y29 2/3) ,

= α(»i, «2, 2/1, 2/2, 2/8)ί> l o g P + (63 + e)(xu x2y yl9 y2, y3)p

+ c9{xlf x2, yίt y2, y3) .

(2.2) ]

Gl(P, Xl) = 9(Pf XU X2, Vu V2, Vs) ,

G2(p, x2) = - g ( l - p, xu x2,2/1,2/2,2/3) + a(xl9 x2, yl9 y2, ys)[plogp

+ (1 - p) l o g (1 - p)] + (b3 - b2)(xl9 x2, y19 y2f y3)p

c3 — c4
c6 — c7

+ c9)(x19 x2, 2/1, 2/2,2/3) .

From (2.1) we get

(2.3) a(xly x2y 2/1, 2/2,2/3) Ξ constant = a

and

(2.4)

(δi(ί», «2, 2/1,2/2, 2/3) Ξ a f u n c t i o n of yx o n l y = 61(2/1) ,

W2/1) + d(a?!, a?2, 2/1,2/2,2/3) Ξ a f u n c t i o n of 2/2 = #1(2/2) >

&i(2/i) + β ( ^ , «2,2/1, 2/2, 2/3) Ξ a f u n c t i o n of 2/3 = ^1(

62(a;lf a^2,1/1,2/2,2/3) = a f u n c t i o n of %1yι = fi^aj^
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(2.4)

WviVd + d(xl9 x2j yl9 y2f y3) = a function of xλy2 = Θ2(xxy2) ,

hixύJi) + e(xlf xi9 yu y2, y3) = a function of x,y3 = φ2{x,y3) ,

h{Xu x%, Vi, 2/2, 2/3) = a f u n c t i o n of x2y1 = 63(#22/i) ,

b3(x2yd + d(&i, a?2, 2/1, 2/2, 1/3) Ξ a f u n c t i o n of ^2^/2 = ^ 2 2 / 2 ) ,

68(ί»22/i) + β(»i, »2, Vu V*> Vs) = a f u n c t i o n of x2yz = ^ 3 (^ 2 2/ 3 ),

where »<, yy are in ]0, 1[ with
Similarly

19 χ2, y»

1 and Σl=i 20 ^ l

2, yίf y2, yz) =

(2.5) <J cδ(x!, a?2, ylf y2, y3) =

cβ(a?!, x2,2/1,2/2, yz) = c6(x2y2) ,

c7(xlf x2, yu y2, y3) = c7(y3),

c8(xlf x2, yίf y2, y3) = cj^x.y^ ,

c9(xu x2y yu y2y y3) = c9(x2y3) ,

where xif yά are in ]0, 1[ with χ<=i χi = 1 a n ( i Σi=i 2/i
The simultaneous equations (2.4) are equivalent to

(2.6)

d(χ19 χ2f 2/1, yz, 2/3) = #1(2/2) - 61(3/1) =

i, V2, yz) =

where xit yd are in ]0, 1[ with xι + x2 ^ 1, 2/1 + 2/2 + 2/s ^ 1-
We shall give the general solutions of equation (2.6) through the

following lemma.

LEMMA 2.1. The general solutions of the functional equation

(2.7) f(rs) - g(rt) = h(s) - k(t) ,

for all r, s, te ]0, 1[ with s + t ^ 1, are ^

(2 g )

C ,

C ,

/or aϊϊ x e ]0, 1[, where A, B, C are constants and ψ:]0, oo[~+R (reals)
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is a solution of the Cauchy equation,

(2.9) firs) = fir) + fis) .

Proof. We rewrite equation (2.7) as

(2.10) f{τs) - h{s) = g(rt) - k(t) ,

for all r, s, te ]0, 1[ with s + t ^ 1. Thus f(rs) — h(s) is a function
of r only, say

(2.11) f(rs) - h(s) = l(r) ,

for all r, se]0, 1[. Thus by [11, p. 59] there exists ψ: ]0, oo[-+R
satisfying

(2.9) f(rs) - fir) + fis) ,

for all r, s € ]0, oo[ such that it represents / , h, and I through the
equations

(fix) - Ψ(x) + A ,

(2.12) h(x) - t W + B ,

(i(a ) = f{x) + A- B ,

for all α? e ]0, 1[, where A and B are arbitrary constants. Similarly
g and fc are given by

ί 9ix) = Ψ(x) + A + C ,
( ' j I &(B) = ^(α;) + 5 + C ,

for all x e ]0, 1[ and where C is an arbitrary constant. This completes
the proof of Lemma 2.1.

Thus the general solution of the equations (2.6) is given by

(2.14)

' bt(x) = fix) + A, , i = 1, 2, 3

θ,ix) = fix) + A, + # , ΐ = 1, 2, 3

&(&) = ^(a;) + At + C , i = 1, 2, 3

for all # G ]0, 1[, where Aiy 5, C are constants and ψ is a solution of
the Cauchy equation (2.9).

Now we shall determine the function g and the 'constants' c/s
in equation (2.2). We prepare our result by the following lemma.

LEMMA 2.2. Let kτ: ]0, 1[—+R, i — 1, 2, 3 he functions satisfying
the functional equation

(2.15) k,ir) + k2irs) + kB(rt) = Γ(s, ί)
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for all r, s, te ]0, 1[ with s + t ^ 1. Then, and only then, there exist
functions ψ, φ:]0, oo[—> R which are solutions of (2.9) and constants
A, B, C such that

(2.16)

- φ(x) + C,

Ίφ) = f(x) + A ,

ks(x) = φ(x) + B .

Proof. As the right side of (2.15) is independent of r, we have

(2.17) k,{r) + k2(rs) + kz(rt) = k,{rf) + k2(r's) + Hr't) ,

for all r, r', s,te ]0, 1[ with s + t ^ 1. For arbitrary s, s' e ]0, 1[ we
can choose t e ]0, 1[ such that s + t, s' + t ^ 1 and thus from (2.17)
we get

(2.18) k2(rs) - leer's) = fca(rβ') - fe(rV),

for all r, r', s, s' e ]0, 1[. We can now fix rf and s' arbitrarily and
then equation (2.18) reduces to

(2.19) k2{rs) = k(r) + Us),

for all r, s e ]0, 1[, (for some functions lτ), which is an equation similar
to (2.11). Thus there exists a function ψ: ]0, oo[-*R satisfying (2.9)
such that

k2(x) = ψ(x) + A ,

for all x e ]0, 1[, where A is a constant. Similarly there exists

Φ ]°> ° ° [ ^ Λ satisfying (2.9) such that

fc8(a) = ^(α) + B,

for all x e ]0, 1[. If we replace k2, k3 by ψ, φ respectively in equation
(2.17) while fixing r' we get kx as is in (2.16). This proves our
lemma.

From equation (2.2), we see that g is a function of p and x1 only,
say

(2.20) g(p, xl9 x2, ylf y2, y3) = g(p, xλ) .

Now, from equation (2.2), we see that — c ^ ) + c2(ffi2/i) +
is independent of yx and therefore by Lemma 2.2 we have

A,
(2.21)
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for all x e ]0, 1[, where ψι and φ1 are solutions of the equation (2.9)
and Dlf Elf Fx are arbitrary constants. Similarly we have

(2.22)

φ) = f2(x) + φ2(x) + A ,
Φ) = τK0») + Ez,

Φ) = 9>2(») + F2,

Φ) = ΫΦ) + &0
Φ) = ̂ 0*0 + A

A ,

where ψi9 Φ2, ψB, φ3 are solutions of (2.9) again. If we replace the
c/s in the second equation of (2.2) by equations (2.20), (2.21), and (2.22)
we see that -g(l - p, x,) - f(x,)p + ψ(xj) + ^(x,) + ψ2{xx) + f 8(»i) is
independent of xlf say

(2.23)
- p, x,) = flr(l - p) -

for all p e [0, 1] and xx e ]0, 1[, where g: [0, 1] -+ R is an arbitrary
measurable function.

Combining equations (2.1), (2.2), (2.3), (2.4), (2.5), (2.14), (2.21), (2.22),
and (2.23) we are ready to conclude the following theorem.

THEOREM 2.1. Let F, , 9 Gi9 H3: [0, 1] x ]0, 1[ -+ R (i = 1, 2, j -

1, 2, 3) be functions which are measurable in their first variables.
Then these functions satisfy the functional equation (1.8) if and only
if there exist ψ, ft, φt: ]0, co[-> R all satisfy the Cauchy equation (2.9)
such that

<2.24)

iq, y) = aq log q + [f(y) + A,]q + ψ^y) + φ,{y) + A ,

, V) = m log q + [f(y) + A, + B]q + f2(y) + φ2(y) + A ,

A + c]tf + ^8(i/) + 3̂(?/) + A ,, y) = aq log g

FIΛ(P, V) = ctP log p + [^(T/) + A2]p + -f^) +

Fi,z(P9 y) = UP log p

Fi,s(Pf y) = α P log p

F2Λ(P, y) = ap log p + [f (y) + Ad]p + 9 ^ ) + F, ,

^2,8(p, y) = ap log p + [ψ(y) + A3 + B]p + â(i/) +

F2ΛP, y) = ap log P + [f (2/) + A, + φ + 08(i/) + F

Gi(p, x) = 9(p) + Ψ(x)p + 11(») + ^2(^) + ^8(α) ,

G2(p, ») = -0(1 - p) + a[p log p + (1 - p) log (1 -

+ [ψ(αθ + A3 - A2]p + Φ,{x) + 2̂(cc) + Φl

- Λ - A - A - A + #1 + A + E3 + F,

+ A2

F2 + F3,
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for all p,qe [0, 1], x, y e ]0, 1[, where a, Aιf B, c, Di9 Ei9 Fτ, i = 1, 2, 3,
are all constants, and g is an arbitrary measurable function.

THEOREM 2.2. If F: [0, 1] x ]0, 1[—>JR is measurable in its first

variable, then it satisfies the functional equation (1.6) for all PeJ2,
Q e 4, Xe 4, Ye 4 if and only if F is of the form

(2.25) F(p, x) = ap log p + [f(x) + A]p ,

for all p e [0, 1], x e ]0, 1[, where ψ is a solution of the Cauchy equa-
tion (2.9) and α, A are constants.

3* On the measurable solutions of the functional equation
(1*7)- Let F: [0, 1] x ]0, 1[ x ]0, 1[->JR be measurable in its first
variable and satisfy the equation (1.7) for all PeΔ29 QeΔ39 Xy UeΔ29

Y,

For each fixed ul9 v3- equation (1.7) reduces to the form (1.8). Thus
by Theorem 2.1 there exist in particular ψ, ψly ψ2, φlf φ2 satisfying the
Cauchy equation (2.9) in their first variables and Alf A2, A3, a, B, Dlf

A, Ei, E2, F1 such that

(3.1)

ulf u2, vl9 v29 vz)

Φy)(y9 uίf u2j v19 v2, v5)

ul9 u29 vl9 v2, v3)

(f 2 + φ2)

(3.2)

fF(q, y, vx) = a(ul9 u2f vl9 v29 v3)q log q H

+ ASul9 u2f vl9 v29 v3)]q +

+ DAμl9 u29 v19 v29 v3) ,

F{q, y9 v2) = a(uιy u2j v19 v2, v3)q log q -

+ (A1 + B)(ul9 u29 vl9 v2, v3)]q

(y, u19 u29 v19 v29 vz) + D2{uu u2, vl9 v29 v3) ,

F(q, y, u.v,) = a(u19 u29 vl9 v29 vz)q log q + [f(y9 ul9 u2f vl9 v2f v3)

+ A2(ul9 u29 vl9 v29 v3)]q + ψλ(y9 u19 u2, vl9 v29 v3)

+ JSί(Wi, u2, vl9 v2, v3) ,

F(q9 y, vnv2) = a(u19 u29 vl9 v29 v3)q log q + [ψ(y9 uί9 u2, vl9 v2, vz)

+ (A2 + B)(ul9 u29 vί9 v29 vs)]q

+ ^2(2/, ^ 1 , ^2, ^ 1 , ^2, ^3) + E2(uL9 u2, vl9 v29 v3),

'2Vj) = a(ulf u2, vl9 v2, v3)q log q + [ψ(y9 u19 u29 v19 v2, v3)

+ A3(ul9 u29 vl9 vZf v3)]q + φ^y, ul9 u29 v19 v2y vz)

+ F^ul9 u2, v19 v29 v3) .

a(ul9 u2j vl9 v2, v3) = a constant — a .

F(q,

Hence it follows that

(3.3)
uί9 u29 vl9 v29 v3) + ASVi, u2, vl9 v2, v3)

= a function of y and v1 only = θ(y9 vλ) ,
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(3.4) φ(y, u19 u29 v19 v2, v3) + A^ul9 u2, v19 vZ9 v3) + B(u19 u29 v19 v29 v3) = θ(y9 v2) ,

(3.5) f{y9 ul9 u29 vί9 v29 v3) + A2(u19 u2, vL9 v29 v3) = θ(y, u.v,) ,

u±> u*> v±> v*> ̂ ) + A2(u19 u2, vl9 v2y v,) + B(ul9 u29 vl9 v29 v3)(o.b)

= θ{y, uλv2) .

From equations (3.3) to (3.6) we have

(3.7) θ(y, v2) - θ(y, vλ) = θ{y, u,v2) - θ(y, uLvL)

and

(3.8) A2(ult u29 vu v2, v3) - A^ul9 u29 vl9 v29 v3) = θ{yy u.v,) - θ(y, vλ) .

For (3.7), by Lemma 2.1 there exists, for each fixed y, a function
θx( , y) satisfying the Cauchy equation (2.9) and a constant Θ2(y) such
that, we have

(3.9) θ(y, v) = θL(v, y) + Θ2(y) .

Now equations (3.8) and (3.9) yield

(3.10) θλ(v, y) = a function of v alone = θ^v) .

Thus we can rewrite the first equation of (3.1) as

F(q, y, v,) = aq log q + [θfa) + 02(y)]q

+ (-f! + o,)(y9 uίy u2, v19 v2, v3) + A(^i, u29 v19 v2, v3) .

From (3.11) we see that (Ψi-\-φD{y, ulf u2, v19 v2, v3) + DL(u19 u2, v19 v2, v3)
depends on y and v1 only. Since ψl9 φx satisfy the Cauchy equation
(2.9), (ΨΊ + Φd(y9 uL9 u2y vl9 v29 v3) and D^u,, ιι2y vi9 v2y v3) depend on (y, vλ)
and v1 only respectively. Thus we can write (3.11) in the form

F(q, y, v) = aq log q + [θ^v) + Θ2(y)]q

+ (*i{y9 v) + a2(v) ,

where θ1 and a1 ( , v) satisfy the Cauchy equation (2.9).
From the first, third, and fifth equations of (3.1) and (3.12) we

have

for all u19 u2, vL e ]0, 1[ with ux + u2 ^ 1. Hence at is independent of
the second variable and we may write the equation (3.12) as

(3.13) F(q, y, v) = aq log q + [θλ{v) + Θ2(y)]q + ax{y) + a2(v) ,

for all q e [0, 1], y, v e ]0, 1[ where θ1 and aλ are solutions of the Cauchy
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equation (2.9). If we interchange the roles of the second and the
third arguments of F in the above procedure we see that θ2, a2 are
also solutions of the Cauchy equation (2.9).

Substituting (3.13) into (1.7), taking into account that θi9 ai are
solutions of the Cauchy equation (2.9) we get ai = 0. Thus we have
proved the following theorem.

THEOREM 3.1. Let F: [0, 1] x ]0, 1[ x ]0, 1[—>i2 be measurable
in its first variable. Then F satisfies the functional equation (1.7)
if and only if F has the form

(3.14) F(q, y, v) = aq log q + [θx{v) + Θ2(y)]q ,

where θίf Θ2:]O, oo[—>Λ satisfy the Cauchy equation (2.9).

COROLLARY 3.1. Let F: ([0, X] x ]0, 1[ x ]0, 1[) U {(0, 0, [0, 1[)} u

{(1, 1, ]0,1])} U {(0, [0,1[, 0)} U {(1, ]0,1], 1)} — R be measurable in its first
variable. Then it satisfies the equation (1.7) if and only if F has
the form given by (3.14) on [0, 1] x ]0, 1[ x ]0, 1[ and on the boundary
F(0, 0, •) = 0, F(l, 1, 0 = ΘJi ), F(0, , 0) = 0 and F(l, , 1) = Θ2{.).

REMARK. The measures Hny In, Dn in (1.2), (1.3), (1.4) possess in
particular properties: (a) Symmetry. Hn, In, Dn are symmetric in the
pairs (pi9 qτ), (pi9 qx), (pt, qu r%) respectively, (b) Expansibility: If P =
(PifPzf - - ' P n ) , Q = ( ? i , « 2 , -* fQ«)f R = ( r l f r 2 , « , r Λ ) a n d P ' = ( p 1 9 p 2 , •••,

Pn, 0), Q' = (ql9 92, . . . , q%9 0), R = (rl9 r8, - -, rn, 0), then Hn(P \\ Q) =
H^iP'WQ'), In{P\\Q)=In+1{P'\\Qr) and Dn(P\ \Q\ R) -D % + ι (P ' \ \Q'\R')>
(c) Branching: If P = (pl9 p2j , p n ) , Q = (qu q2j , qn), R = (ru r2J

. , rn) and Pf = {px + p2f p3, , pn)9 Q' = (ft + ft, ft, , qn) and
R' - (n + r2, r3, , r J , then Hn(P || Q) - tf^P' || Q'), /.(P II Q) -
/ ^ i ( P ' II Q') a n d DJtP \ \ Q \ R ) - D^(P' \\Q'\ R) d e p e n d o n (pu p2y Ql, q2),
(Pi, P2, q» ft) and (p19 p2, ql9 ft, n, r2) respectively. It is shown by
C. T. Ng [14] that these three properties are equivalent to the
representability of Hn, In, Dn in the form Hn(P \\ Q) = Σ<"U/(P<, Qth
IJLPII Q) = Σ?=i ί7(l?*f ft) and AXP | | Q | Λ) = Σ?=i A(ft, ft. *\) where /,
flr, fc are any function satisfying /(0, 0) = g(09 0) = h(09 0, 0) = 0. From
these representations, the additivity property of these measures
motivates the study of the functional equations (1.6) and (1.7).

The Theorems 2.2 and 3.1 lead to a characterization of directed
divergence and inaccuracy and of generalized directed divergence
respectively. These three measures are determined by (a) Symmetry,
(b) Expansibility, (c) Branching, (d) Additivity, and (e) Regularity
conditions such as Lebesgue measurability and appropriate initial
conditions.
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