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REPRESENTATION OF SUPERHARMONIC FUNCTIONS
MEAN CONTINUOUS AT THE BOUNDARY

OF THE UNIT BALL

J. R. DlEDERICH

In this paper it will be shown that superharmonic func-
tions can be represented by a Green potential together with
their boundary values if taken mean continuously at the
boundary of the unit ball.

Introduction• It is well known that if u(r, 0, ψ) is harmonic
inside the unit ball and has radial limit l i m ^ u(r, θ, φ) = 0 everywhere
on the surface, then u is not necessarily identically null inside and thus
cannot be represented by its radial boundary values. Furthermore, there
is an Lt (Lebesgue class) harmonic function, see §2. Remarks, which
satisfies l im^ u(r, θ,φ) = 0 except for (1, 0, 0). In [1] and [3], Shapiro
established the representation of harmonic functions in the two
dimensional unit disc by their radial limits when a certain radial
growth condition is satisfied. However, the set of functions satisfying
the radial growth condition does not contain the class L19 and con-
versely. Also, the analogues of [1] and [3] have not been established
in the iV-dimensional unit ball, 3 <£ N.

Our intention is to establish a representation of superharmonic
functions in Lλ on the iV-dimensional unit ball by their boundary values
if taken mean continuously. Definitions and the statement of the
theorems follow in the next section.

1* Preliminaries* We shall work in JV-dimensional Euclidean
space RN, 3 ^ N, and shall use the following notation: x = (xlf ,
xN) and B(x, r) = the open JV-ball centered at x with radius r; B(x,
r) = B(x, r) Π 5(0, 1); \E\, the Lebesgue measure of E; dE, the bound-
ary of E; dB(x, r) = dB(0, 1) n B(xf r); dωN, the natural surface area
on 35(0, 1); and subscripted A's, positive absolute Constances though
possibly different from one occurrence to another. For a point yQe
35(0, 1), u(x) SL measurable function on some B(y0, r0), and f(y) a
function on 35(0, 1), we set for p <£ r0

%(2/o, P) = 15(2/o, jO)!"1 L \n(x) - f(yo)\dx .
JB(yQ,p)

We use the notation u(yQ, p) when / = 0.

THEOREM 1. Let u(x) be superharmonic in Ω — 5(0, 1). If
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( 1 ) u(y, p) = 0(1) as p > 0 for each yedΩ

( 2 ) u(y, p) = o(l) as p > 0 a.e. [dω] on dΩ

then 0 rg u(x) on Ω.

Theorem 1 is the main step in establishing

THEOREM 2. Let u(x) be superharmonic in B(0, 1). Let f(y) be
in L1 on dΩ and satisfy

(3) [. I f(y) - /(i/.) IdωAv) = Oif?-1)

as p > 0 for each y0e3Ω .

If uf(y, p) satisfies (1) and (2), then

( 4) u{x) = \ G(x, x')dη(x') + PI(f, x)

where G(x, xf) is the Green function for Ωfrj is a nonnegative additive
measure on Ω, and PI(f, x) is the Poisson integral of f.

2. REMARK. Theorem 1 is best possible in two respects. If (1)
is required for all but one yQ e 3B(0, 1), then the conclusion fails as is
demonstrated by u(x) = (\x\2 — ΐ)[ωN\x — yo\

N]~\ with y0 — (1, 0, ,
0). Secondly, if the modulus is eliminated in the definition of u(y, p)
and the integral is defined improperly, then the conclusion fails even
if (2) is strengthened to "for each y e dΩ". Simply consider a non-
radial partial of the above function. In Theorem 2 the necessity of
(3) is not clear.

Clearly, Theorem 1 offers a uniqueness theorem for harmonic
functions which are mean continuous at the boundary of the unit ball.
Also, contained in the proof of Theorem 1 is a generalization of the
reflection principle for harmonic functions.

Finally, an open question regarding a converse to Theorem 1
will be considered in §5.

3. Proof of Theorem 1. Set u~(x) = min (u(x), 0). Then u~(x)
is superharmonic and clearly satisfies both (1) and (2). We intend,
of course, to show that u~(x) = 0 which we shall do in the following
steps.

Let Z be the set of points z on dΩ such that u~{x) is unbounded
in every neighborhood B{z, p). dΩ — Z clearly open so that Z is a
closed set.

Step 1. If y0e dΩ and dB(y0, 2p0) Γ) Z=φ, then l i m ^ vr(x) = 0 for
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x e B(yQ, ft) and y e dB(y0, ρQ).

Proof. Let y be a point of dB(y0, po) for which (2) is satisfied.
Let x be a point on the line segment ly through the center of Ω and
y. Select px — \x — y\, then by the superharmonicity of u~(x)

0 ^ u-(x) ^ \B(x, ρx)\~' \ w-{x')dx'
JB(x,pχ)

u-(x')dx'
)jB(y,2pχ)

u-(x')dx'
B(V,2pχ)

= -2Nu-(y,2px).

As x-+y,2px—>0, thus u~(y,2px)—+0, since ?/ is selected to satisfy
(2). So

(5 ) lim u~(x) = 0 a.e. on dB(y0, 2p0) .
X £ l v

By the definition of Z and the superharmonicity of u (x) it is clear
that vr{x) is bounded in B(y0, ft), and hence can be represented

/7/.~(OQS) r= l fir ({Y* oc^cLy? {χf^\ ~\~ h~(x\
J B(.VQ, PQ)

where G0(x, x') is the Green function for B(y0, ft), % is a nonnegative
set function and h~(x) is the greatest harmonic minorant of u~(x).
By Theorem 1 [4, p. 527], we have that

lim \ ^ G0(x, xf)dηQ{xf) = 0 a.e. on dB(yQ, ft) .

χ e l y

By this and (5)

( 6) lim h~(x) = 0 a.e. on 3B(yO9 ft) .
x->y
xel,.

Clearly h (x) is bounded in B(y0, p0) and therefore can be represented
by its radial limits. Hence lim^, h~(x) = 0 for x e B{yOf ρ0) and y e
dB(y0, Po). Since 0 >̂ vr(x) ^ fe~(ίc), the desired conclusion follows.

As an immediate consequence of Step 1, we have

Step 2. If 3-BO/o, 2p0) Π Z — φ, then the function uj(x) = u~~(x)
for a;e B(yQ, ρQ), u^(x) Ξ O f o r a G J5(^0, ft) - -B(2/o, ft) is superharmonic
in B(y09 ft).

Proof. vr{x) is continuously 0 at dB(yOf ft) and nonpositive in
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Step 3. If Z Φ φy then there is a z0 e Z, an r0 > 0, and a constant
A19 such that

(7) M-(S, |0) ^ Aι for 2 e 3£(z0, 2r0) n ^ (0 < p < 1) .

Proof. Since αr(ίc) is superharmonic and satisfies (2), it is in Lt

on Ω. Consequently by continuity of the integral u(y, p) is jointly
continuous f or 0 < p < 1 and y e dΩ. Proceeding as in [2, p. 69] and
again employing (2) the conclusion (7) follows.

By Step 1, the conclusion of Theorem 1 follows immediately if
Z ~ φ. Assuming Z Φ φ, select z0 as in Step 3. Let xι be an arbitrary
point in B(z0, r0), and let ρXl be the largest value for which B(x19

2pXl) n Z = φ. Clearly there is a point z* which lies in dB(z0, 2r0)
and is on the boundary of B(xu 2ρXl). By Step 2, we can extend
u~(x) by u^(x) in the part of B(xu ρx) lying outside Ω. So

vr(xύ = uϊfa) ^ \B(xl9 p^)]"1 \ uό(x')dx'
JB(XVPX1)

= \B(xlt pmi)\A u-(x')dx'
J

u-(x')dx'

1 B(z*, 4/0.,) I"1 [ u-(x')dx'
JB(z*4p)

by (7). Thus u~(x) is bounded in B(z0, r0). Thus zQ ί Z, a contradiction
based on the assumption that Z Φ φ; thus Z = φ and Theorem 1 is
established.

4* Proof of Theorem 2. The theorem will follow directly from

Step 4. Let. f(y) satisfy (3) and set h(x) = PI(f, x). Then hf(x,
p) satisfies (1) and (2).

To see this, set v(x) = u(x) — h(x); then

v(x, p) = [u - h](x, p) S uf(x, p) + hf(x, p)

so v(x, p) satisfies (1) and (2) since both u/x, p) and hf{x, p) do. So
by Theorem 1, 0 ^ v(x) and thus

G(x, x')dv{x') + g(x)
Ω
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with all the terms nonnegative. So g(x, p) satisfies (1) and (2) and
thus 0 ^ g(x); clearly then 0 <g —g(x) and g(x) = 0, whereby (4) follows.

Proof of Step 4. For yQ e dΩ, there is a 7 and a θ < f t such that

\f(y)~ f(Vo)\dy <7 for p < p0 .

Clearly we can assume that f(y0) = 0. Consider

I B(y0, p) r [ \ { ( 1 - I x \2)/ωN \ x - y \η \ f(y) \ dωN(v)dx

_ ( _ \(yo,p)r ( 1 - \x\*)/ωN\x
dB(yo,2p) JdΩ-dB(yo,2p) JB(yo,p)

- y\Ndx\f{y)\dωN{y)

In the second integral we have 1/21 yQ — y i ^ ] x — y \ <̂  2) y0 — y |, which
gives

ί I / ( ? / ) \ \ y - ι j Q \ ~ N d ω N { y )
dΩ-dB(yo,2p)

where s(yQ

For Ji we

to obtain

, r) =

= A

SA

use

( i -
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VII

= d.
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Np

4 - o (
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, r) Π 5Ω

Γ + S Ί
J 2 / 0 J p o lp) as
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v i a ? — 2/1

L J

s[yo,r

f(y)

•r-N

p-

Ndx

\f(y)\ds,.(y)dr

Loo Ί- ΛiJ j'Jj 1
2p

" Π \f(y)
J o Js{yo,r )

— > 0 .

\χ\*)/\χ - vofd

1 dsr,{y)

jSB{y0

\dr'

x - y0 ψdx

\f{y)\dy
2/0)

\f(y)\dy
dB(yo,2p)

which shows that hf(xt p) satisfies (2). Since 7 can be taken arbi-
trarily small for almost every yQ e 3.0, hf(x, p) also satisfies (1).
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5* Converse to Theorem 1* Let u(x) = \ G(x, x')dr]{xf), with
u(x) in Lγ on Ω. Zygmund constructed, see [5, p. 644], such a u{x)
which fails to have a finite nontangential limit at every point of the
boundary of unit disc. Even so, Tolsted and Solomentseff have
established in R2 and RN respectively that u must have radial limit
zero a.e. along any nontangential ray. However, Zygmund's example
as well as the other examples in [5], have a zero mean continuous
boundary limit a.e., i.e., they satisfy (2).

Open Question: Is there an L19 Green potential which does not
satisfy (2)?1

It is interesting to note that continuity at a boundary point yQ

implies mean continuity at y0 which implies nontangential limit at y0

for harmonic functions. From the above examples, we see that this
hierarchy fails for superharmonic functions. Furthermore it is not
clear that mean continuity at y0 implies a radial limit at y0 for
superharmonic functions.
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1 The answer is negative, i.e., every Li Green potential satisfies (2). See the
Notices, Jaw. 1975.




