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ABIAN'S ORDER RELATION AND ORTHOGONAL
COMPLETIONS FOR REDUCED RINGS

W. D. BURGESS AND R. RAPHAEL

Chaeron has shown that, in a ring R, the relation "α ^
b iff ab — a2", first studied by Abian, is an order relation iff
R is reduced (has no nilpotent elements). Let R be a reduced
ring with 1, a set X in R is orthogonal if ab — 0 for all a Φ
b in X and R is orthogonally complete if every orthogonal
set in R has a supremum with respect to "g". A strongly
regular ring is shown to be right (and left) self-injective iff
it is orthogonally complete. If R c S are reduced rings, S is
an orthogonal extension of R if every element of S is the
supremum of an orthogonal set in R; an orthogonal extension
which is complete is an orthogonal completion. Completions
are unique if they exist. An example shows that not all
reduced rings have completions but if R is strongly regular,
its complete ring of quotients, Q(R)f is its completion.
Further, if R is reduced, Baer and such that Q(R) is strongly
regular then R has a completion which is a partial ring of
quotients.

1Φ Orthogonal completeness and injectivity* The usual order
relation in a Boolean ring extends to reduced rings R when expressed
as: a ^ b iff ab — a2 ([1] and [5]). In what follows all rings referred
to will be reduced (i.e., 0 is the only nilpotent element) and with 1.
The basic facts about reduced rings required below can be found in
[13] and some of these are quoted here for convenience. If XczR
then the left and right annihilators of X coincide and will be denoted
Ann^ X or Ann X. Also the left and right singular ideals are always
trivial and, so, the left and right complete rings of quotients, Qt(R)
and Qr(R), are always regular. Further, Qι{R) = Qr(R)( = Q(R)) iff
aR (Ί bR = 0 implies ab — 0 for all a, be R. In this case Q(R) is
strongly regular (i.e., Q(R) is also reduced). We note also that all
idempotents of a ring R are central and that if R is strongly regu-
lar it is duo (i.e., all one-sided ideals are two-sided).

The order relation on a ring R makes R into a partially-ordered
multiplicative semigroup since a ^ b and c ^ d imply ac ^ bd ([5]).
Also, if a ^ b in R then ab = ba for a :£ b implies that (ab — ba)2 —
0. Hence all order properties are right-left symmetric.

In the sequel, if X is a subset of a ring R, sup^X or sup X
will always refer to the supremum with respect to "<^". It is shown
in [2] that there is an infinite distributive law in reduced rings.
That is, if X c R and sup X — a exists then for any he R, sup bX —
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ba and sup Xb = ab. This is a very useful tool.

LEMMA 1. If R is a ring and X a subset such that for each
xeX, xn = x (some fixed integer n) and if sup X = y exists then
yn = y. In particular the supremum of a set of idempotents, if it
exists, is an idempotent.

Proof. By the infinite distributivity yn = yn~ι (sup X) — sup {yn~ιX).
But since y = sup X and xn = x for all xe X, yn~ιx — xn = x and
sup y*"ιX = sup X — y.

The following theorem is not only of independent interest, giving
the result of Brainerd and Lambek [4] on Boolean rings as a special
case, but is also a tool in the remainder of this article. Recall that
a subset X of a ring R is orthogonal if ab = 0 for all a,beX, aΦ
b. R is orthogonally complete iff every orthogonal set in i2 has a
supremum. The idea of orthogonal completeness is more useful than
completeness for rings which are not Boolean since rings which are
not Boolean are rarely complete; the only field which is complete is
Z2. However, there are interesting orthogonally complete rings such
as products of domains. Orthogonal completeness was one of two
conditions Chacron, generalizing Abian's theorem, used to characterize
direct products of division rings. What follows arose from an at-
tempt to characterize orthogonally complete rings and to generalize
the theorem of Brainerd and Lambek ([4]) on the complete ring of
quotients of a Boolean ring.

THEOREM 2. A strongly regular ring R is right self-injective
iff it is orthogonally complete.

Proof. The proof which follows is a direct one but a proof, of
about the same length, using the sheaf representation of Pierce ([11])
is also possible.

For one direction we need the following lemmas.

LEMMA 3. Let R be a Baer ring (every anninilator is generated
by an idempotent). If X is a subset of R with an upper bound
a 6 R then sup X — a — ae where e is the idempotent so that Ann X =
eR.

Proof. For x e l , x(a — ae) = x2 so a — ae is also an upper

bound for X. If δ is any upper bound, x(b — a) = 0 for all xeX

and so b — a = er for some r e R. Then, (a — ae)b = (1 — e)ab =

(1 — e)(a(b — a) + a2) = (1 — e)a2 = (a — ae)2 (using throughout t h a t
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idempotents are central). Hence a — ae ̂  b.

LEMMA 4. Let R be a Baer ring such that aR n bR — 0 implies
ab = 0. Then every idempotent of Q(R) is in R and the Boolean
algebra of idempotents of R is isomorphic to the complete Boolean
algebra of annihilator ideals of R.

Proof. In [12, Lemma 1.6] it is shown that for a commutative
Baer ring R, R contains all the idempotents of Q(R). Since, here,
Q(R) is duo, a trivial modification of the proof gives the result in
the present situation. For the rest, the arguments of [10, §2.4],
for the commutative case carry over without change.

We can also note that, in general, if sup X = a exists then
Ann {a} — Ann X. Indeed if ra = 0 then sup rX = ra = 0 and rX —
{0} and if rX = {0}, sup rX = ra = 0. Conversely, if a is an upper
bound for X and Ann {α} = Ann X then a is the supremum. For if
b is another upper bound, X(a — b) = 0 so a(a — b) = 0 and a ^ b.

Returning now to the proof of the theorem, let R be right self-
injective. If X is an orthogonal subset of R, I = Σ*ez %R is a direct
sum and φ: I—> R defined by ψ(x) = x2 for all x e X, is an jS-homomor-
phism. Hence there is ae R so that φ{x) = ax = x2 for all xeX. It
follows that a is an upper bound for X and by (3) and (4) X has a
supremum.

Conversely, if R is orthogonally complete and φ:I—*R an JB-
homomorphism where / is a large right ideal then we with to lift φ
to an endomorphism. (It suffices to consider large right ideals by,
for example, [10, Exercise 4, p. 93].) Let J b e a maximal orthogonal
set in I; it is easily seen ([14]) that ®xexxR is also large. Indeed,
if 0 Φ r e R there is s e R with 0 Φ rs e I. But, by maximality of
X, for some x e X, rsx Φ 0 and since a strongly regular ring is duo,
rsx e xR.

Now for each xeX let ex be its corresponding idempotent, ex =

α?ίc' = x'x where x2xf — x, xnx = x'. If φ(ex) = ax9 the set {ax}xex is

orthogonal since for x Φ y, axay = φ{ex)φ{ey) = Φ(ex)exφ(ev)ey = axayexey =

axayx
fxyyr = 0. Put α = sup {αj. For all & e X it will be shown that

αe* = axex. For 7/ ̂  x in X,

α ^ = φ{ey)ex = φ(ey)eyex = 0

hence,

αê  = sup {α^βj = sup {0, α̂ ê } = axex .

The result now follows since φ(x) = φ(ex)x = axx = α̂ ê a; = aexx =
αα; and multiplication by α and the homomorphism φ coincide on the
large right ideal (Bχex%R
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COROLLARY 5. A Boolean ring B is orthogonally complete iff
it is self-injective iff it is complete.

The equivalence "self-injective iff complete" was first proved by
Brainerd and Lambek in [4].

Proof. Only the implication "orthogonally complete implies com-
plete" needs to be proved. If X is a subset of B, let Γbe a maximal
orthogonal subset of XB with supremum a. If for some x e X,
xa Φ x then for all y e Y, y(xa — x) — 0. This contradicts the maxi-
mality of Γ s o α is an upper bound for X. However, any upper
bound of X is easily seen to be an upper bound of Y so a is the
supremum of X.

COROLLARY 6. (Renault [13]). A strongly regular ring is left
self-injective iff it is right self-injective.

Proof. "Orthogonally complete" is right-left symmetric.

In [6] Connell shows that if a commutative ring R has certain
roots of unity, the set Rq = {r e R \ rq = r}, where q is a prime power,
forms a ring with the multiplication of R and a suitable addition.
If R is orthogonally complete, (1) shows that each Rq will be or-
thogonally complete. But when Rq is a ring it is regular so, when
this occurs, if R is orthogonally complete then Rq is self-injective.
In particular, if R is self-injective so is each of the rings Rq.

There is another class of rings which is easily seen to consist of
orthogonally complete rings. This extends the fact that a finite
Boolean ring is complete.

LEMMA 7. The supremum of every finite orthogonal set in a
ring R exists and is the sum of its elements.

PROPOSITION 8. If R is a reduced ring with ascending chain
condition on annihilator ideals then R is orthogonally complete.

Proof. Let {az}teΛ be orthogonal with A well-ordered. For each
j e A put Ij — {r e R \ rak = 0 for all k > j). Since R is reduced this
is a properly ascending chain of annihilators forcing A to be finite.
Then, (7) gives the result.

From this one can see that there are orthogonally complete rings
which are not Baer, any Noetherian ring which is not Baer will do.
For example R = Z[x, y]/(xy).
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2* Orthogonal extensions and completions* The aim of this
section is to investigate when a ring R (always reduced) may be
embedded into an orthogonally complete ring S so that each element
of S is the supremum of an orthogonal set in R.

DEFINITION 9. If R £ S are rings then S is called an orthogonal
extension of R if every element of S is the supremum of an orthogo-
nal set of R. If R aS is an orthogonal extension so that S is or-
thogonally complete then S is called an orthogonal completion of R.

LEMMA 10. If R cS is an orthogonal extension then S is iso-
morphic over R to a subring of Qr(R) Π Qι(R) = L(R) (L(R) is the
maximal two-sided ring of quotients ([9])).

Proof. Since the singular ideals are zero it suffices to show that
S is a right and left essential extension of R. But for 0 Φ S e S,
a g s for some 0 Φ a e S, a any nonzero element of an orthogonal
set in R of which s is the supremum, and then 0 Φ as — sa = a2.

Although L(R) can be seen to be reduced, it is not known to us
if it is orthogonally complete so, in what follows, we will now assume
that our rings R are such that Qr(R) = Qι(R) = Q(R) is strongly
regular; i.e., aR Π bR = 0 implies ab = 0 for all a,beR ([13]). Of

course any commutative or duo ring has this property .

LEMMA 11. Let XaR be such that svφRX = a exists, then
supQ(i2) X = α.

Proof. If sup^ X — a and supρ(jB) X — q then q ̂  a. Let D be
a large right ideal so that qD £ R. For each deD, X(a — q)d — 0
so, since Ann^ {α} = Ann# X, a(a — q)d = 0. Then α2 = aq and a ̂  q.

From this it follows that when dealing with rings between R
and Q(R) it is not necessary to consider in which ring a supremum
is found. That is, if X is a subset of R with supremum q in Q(R),
then for a ring S, R S S £ Q(R), sup^ X exists if, and only if, q e S.

THEOREM 12. Let R be reduced and such that aR f]bR = 0 im-
plies ab = 0. Then R has maximal orthogonal extensions in Q(R)
which have no proper orthogonal extensions, and R has a unique
smallest extension CR in Q(R) which is orthogonally complete.

Proof. The existence of maximal orthogonal extensions follows
by Zorn's lemma and the rest is a consequence of the fact that
"orthogonal extension" is transitive. Indeed suppose R £ S and S £
T are orthogonal extensions and te T. Now t = sup X for some
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orthogonal Yx in R. Then \Jxeχ Yx is orthogonal. For, suppose
yeYx, ze Yx,, x Φ X\ then yxzx' = y2z2. But, using the fact that
Q(R) is duo we get yxax' = 0. Hence y2z* = 0 and using again that
Q(R) is duo we get (yzf = 0 and yz = 0.

Next, t = sup \JX Yx. We have t^x^y for each a e l ^ e F , .
Hence ί is an upper bound. If i' is another, £' >̂ y for each y e Yx

(for each x e l ) so ί' ^ x. Then ί' ^ ί.
To find a minimal extension which is orthogonally complete, put

CB= Γ\S for all S, R S S S Qt#), so that S is orthogonally com-
plete. By (11), CR is also orthogonally complete.

Clearly any orthogonal extension is in CR and any orthogonal
completion must be CR. This shows the uniqueness of orthogonal
completions if they exist.

EXAMPLE 13. Let R be the ring of all continuous real-valued
functions on [0, 1]. It will be shown that R does not have an or-
thogonal completion. By [8, p. 14], Q{R) is the ring of equivalence
classes of continuous functions on dense open subsets of [0, 1].

An orthogonal set in R is simply a set of functions whose sup-
ports are pairwise disjoint. It is clear that if q = sup {/α}, where
{fa} is an orthogonal set in R of more than one nonzero element,
then q coincides with fu on the intersection of the domain of q with
the support of fa and so q must have values arbitrarily close to 0.
Hence an element of Q(R) bounded away from 0 cannot be the su-
premum of a nontrivial orthogonal set in R. Now let {/J be, for
example, the sequence of functions whose graphs are:

1/(Λ + 1) l/Λ

Fig. 1

Let q = supρ(i2) {/„}. Since qί R neither is q + 1 where 1 is the con-
stant function. But q + 1 is bounded away from 0 and must be in
any ring between R and Q(R) which contains q.

The next results concern rings having orthogonal completions.

THEOREM 14. Let R be a strongly regular ring with complete
ring of quotients Q(R). Then Q(R) is the orthogonal completion of R.
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Proof, Let D be a large (right) ideal of R and S a maximal
orthogonal set of idempotents in D, then Ann S — 0. Indeed if xS =
0 then a? = x2y for some 7/ and put e — e2 ~ xy — yx. Now if eD Φ
0, ed ̂  0 for some idempotent deD and βdS = 0 would mean that
S U {ed} would contradict the choice of S. Hence eD = 0 which im-
plies e = 0 and hence x = 0.

Now suppose g e Q(ϋί) and D a large ideal of R so that #D S R.
Let S be a maximal orthogonal set of idempotents from D. By the
above, SR is large. Now qS is an orthogonal set in R and suppose
suPρ(β) QS = s. As shown in (4), Q(R) is Baer and so supρ(β) S is an
idempotent with trivial annihilator (as in the remark following (4)).
Hence supρ(i2) S = 1. Then, supρ(Λ) qS — q supρ(jβ) S = q. Hence Q(R)
is an orthogonal extension of R which by (2) is orthogonally complete.

LEMMA 15. Let R be a Baer ring and B(R) its Boolean ring
of idempotents. Then if I is a large ideal of B(R), a maximal
orthogonal set from I has trivial annihilator in R.

Proof. Let I be large in B(R) and S a maximal orthogonal set
from I. If rl = 0 for some r e R, there exists q e Q(R) with r2q = r.
Put f = f2 = rqe B(R), since idempotents in Q(R) are in R. Now
fS = 0 which implies / = 0 and r — 0.

PROPOSITION 16. Let R be a reduced Baer ring where aR f)bR —
0 implies ab = 0. Then R is orthogonally complete iff for every
large ideal I of B(R) and f e Hom^ (IR, R) there is a e R with f(e) —
ea for all eel.

This proposition says that R is orthogonally complete when cer-
tain elements of Q(R) are, in fact, in R. This will be exploited later.

Proof. Suppose R orthogonally complete. Let S be a maximal
orthogonal set in I. Since Ann^ S = 0 and SR is an ideal of R, SR
is large. Now f(S) is orthogonal so let a be its supremum. Thus
f(e) ^ a for all eeS and, therefore, f(e) - f(e)e ̂  ae. Also, f{ef)e g
f(e) for all e, e' eS since if e = e' we have equality and if e' =£ β,
/(β')e = 0. But, sup (f(S)e) = (sup f(S))e = ae and so ae ̂  /(β) for
all ee S. Combining the inequalities we have f(e) — ae for all e e S.
Since AnnΛ S = 0, /, as an element of Q(i2), equals α and f(e) = ae
for all eel.

Conversely, let S be an orthogonal set in R. Then SQ(R) is an
ideal in Q(R) and SQ(i2) 0 J is large for some ideal / of Q(R). Let
1 be the set of idempotents of SQ(R) 0 J, I is a large ideal of B{R).
In fact, I £ (SQ(R) f] R) 0 (J n i2) since an idempotent in J is a sum
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of an idempotent in SQ(R) with one in /. Hence IR £ (SQ(R) Π B) 0
(JOB). Define θ: (SQ(R) Π JB) φ (/ Π B) — J2 by 0 1 ^ = 0 and for
s G S, 0(S) = s2. This is well-defined since S is orthogonal. Let / —
θ\IR. By hypothesis there exists a e R so that f(e) = ea for all eeL
For seS, s = s2q for some q e Q(B) and sq = eeL Therefore, s2 =
#(s) = 0(es) = eαs — as. Hence S has an upper bound in R and then,
since it is Baer, a supremum.

LEMMA 17. The set & of right ideals of R which contain sets
of idempotents with trivial annihilator forms a topologizing idem-
potent filter ([3]).

Proof. If A, Dzeϊf with St = A Π J5(i2) then S ^ S A ί l A
since idempotents are central and Ann SΊ&, = 0. If De if, J9 Π B(JB) =
5 then Si2 £ D and Slϋ is an ideal in if. Hence for a e R, a~ιD Ξ2
SR Ξ2 S. Next if D e g* with S = D f] B(R) and J £ D is such that
for all d e A d~ιJe^, then, in particular, for eeS, e~ιJe&. If
6 = e~Vn S(JB), T = U.e^β^ ^ / has trivial annihilator.

THEOREM 18. Let R be a reduced Baer ring so that aR Π bR =
0 implies ab = 0 and gf £Λβ filter of right ideals of R which con-
tain sets of idempotents with trivial annihilator. Let Q# be the
ring of right quotients associated with gf, then Q# is the orthogonal
completion of R.

Proof. We will first use the criterion of (16) to show that Q&
is orthogonally complete. Let I be a large ideal of B(B) — B(Q{R)),
/: IQv -> Qs and D = {relQ Γ\R\ f(r) e R). D is a right ideal of R
and, in fact, ΰ e g 7 . Indeed, for e e l , f(e) e Q* so f(e)Se £ B for
some set of idempotents with trivial annihilator, Se (i.e., f(e)D' £ JS
for some D'egf). Then LLe/e£ β £D so that ΰ e g 7 , Hence there
is a qeQ? so that f\D~q Hence /(β) = gβ for all eel.

Next, every element of Q# is the supremum of an orthogonal set
in B. Let q e Q# then q~ιD £ B for some fleg7 with ί = f l n J5(i2)
a large ideal in J5(Λ). By (16), I contains an orthogonal set S with
AnnΛ S = 0. Then g$ is orthogonal in ϋ and has a supremum, say
#', in Qj. Then gβ ̂  q' for all e e S and so qeqf = g2e. Hence,
(<?(?' — ̂ 2)β = 0 for all eeS and, consequently, qqf — q2 giving q <Ξ g'.
Also, g(gβ) = q2e = (qe)2 so gβ <; q for all eeS. But since q' = sup qS,
qf ^ g. Hence g = g'.

Finally a remark about orthogonally complete rings.

THEOREM 19. Let R be a reduced ring in which aR Π bR = 0
implies ab = 0. If R is orthogonally complete then the classical
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ring of right (and of left) fractions Qcι(R) exists and Qeι(R) = Q(R),
the complete ring of right quotients.

Proof. Since Q(R) is, here, a two-sided ring of quotients of R,
regular elements of R are invertible in Q{R). If q e R, qDξiR for
some large right ideal D of R. Let S be a maximal orthogonal set
from Dj which is easily seen to have trivial annihilator in R and in
Q(R). Put sup S = ae R and a is regular since it has the same an-
nihilator in Q(R) as S (remark after (4)). Hence sup qS = qa and
qae R since gS £ R. Putting qa = 6 we get g = 6a"1. Similarly for
left fractions.

The following shows that the converse of (19) is false, which
leaves open the question: Which rings are orthogonally complete?

EXAMPLE 20. Let R = Πi 2 then Q(R) = Π/ Q L e t s =
{£ 6 Q(JB) I for almost all i e I, xt e Z}. Although Qcl(S) = Q(R) = Q(S),
it is easily seen that S is not orthogonally complete and, in fact,
Q(S) is its orthogonal completion.
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