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INDECOMPOSABLE MODULES FOR DIRECT
PRODUCTS OF FINITE GROUPS

HARVEY I. BLAU

An essentially known result is made explicit and its con-
verse is proved, thereby showing that if K is a field of
prime characteristic p, P a finite p-group and H a finite pr-
group, then every finitely generated indecomposable K(PxH)-
module is a tensor product of an indecomposable i^P-module
with an indecomposable KH-moάule if and only if either P
is cyclic or K is a splitting field for H.

Let R be a commutative ring with 1, G and H finite groups. If
V, TFare RG-, iZiί-modules respectively, then V ®R T7is an R(G x H)-
module, where (v (x) w)gh — vg (x) wh for all v eV, w e W, geG, he H.
The following false assertion is made in [3]:

If K is a field of prime characteristic p, P a finite p-group,
and H a finite p'-group, then every finitely generated indecompo-
sable K(P x H)-module is isomorphic to some V (x) W, where V, W
are finitely generated indecomposable KP-, KH-modules respectively.

A correct version, with the additional hypothesis that K is
algebraically closed, is proved in [1]. The purpose of this note is to
give the exact conditions under which the above conclusion is true.

All rings (and algebras) are assumed to have an identity, all
modules (and algebras) are unital and finitely generated, and all groups
are finite. J(R) denotes the Jacobson radical of a ring R. Our main
result, which is proved after some preliminary steps, is

THEOREM 1. Let p be a prime, K a field of characteristic p,
P a p-group and H a p'-group. Every indecomposable K(P x H)-
module is isomorphic to some V (x) W, where V, W are indecompo-
sable KP-, KH-modules respectively, if and only if either P is
cyclic or K is a splitting field for H.

PROPOSITION 2. Let R be a commutative ring with A. C. C.
such that R = R/J(R) has D. C. C. Let A and B be R-algebras.
Then

A (x) B/J(A ®B)™ ((A/J(A)) (x) (B/J(B)))/J((A/J(A)) <g) (B/J(B)))
R

as R-algebras. Furthermore, if either A/J(A) ^ R or R is a perfect
field, then J((A/J(A)) <g) (B/J(B))) = (0), so that A (g) B/J(A (x) B) *a
(A/J(A)) <g> (B/J(B)).
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Proof. J(R)A S J{A) [4, I. 8.15], so J(A)/J(R)A = J(A/J(R)A).
Since A/J(.#)A has D. C. C, J(A)" § J(i?)A for some positive integer
n. Let c(J(A)(x)B) denote the natural image of J{A)®B in A(x)B.
Then (c(J(A) (x) £))* = ̂ (J(A)W <8> B) £ *(J(2ϊ)A <8) B) = J(i2)(A(x)5). So
;(J(A) (g) B)/J(R)(A (g) 5) is a nilpotent ideal in A ®B/J(R)(A (g) 5),
whence

*(J(A) g) B)/J(R)(A <g> 5) g J(A (8) B/J(R)(A (x) B))

- J(A ® B)/J(R)(A (x) 5) .

Therefore ^(J(A)(x)β) g J(A(g)jB), and similarly ;(A(g)/(.B)) S «/(A(g)£).
Let C - *(A (x) J(B)) + *( J(A) (x) £). Then (A/J(A)) (x) (B/J(B)) ~

(A (x) 5)/C as ϋί-algebras. (The obvious homomorphism in each direc-
tion is indeed well-defined.) Since we have shown C S J(A (x) J5), it
follows that

((A (g) B)/C)I((J(A (x) B))/C)

((A/J(A)) (g) (B/J(B)))/J((A/J(A)) ® (B/J(B))).

Let A/J(A) - X, B/J(B) = F. J(i2)X= (0) = J(2Z) Γ implies X(g)R Y™
R Y. If X™ R, then JC(g)5 F ^ Y= B/J(B) implies J(X(x)^ Γ) - (0).
Suppose R is a perfect field. Since X and Y are each the direct

sum of a finite number of simple ideals, to prove J(X®R Y) = (0)
it suffices to assume that X and Y are simple. Let K be the center
of X, F the center of Y. K and F are extension fields of R. By
a theorem of Azumaya and Nakayama [6, V. 9.1], the lattice of
ideals of K (x)# F is isomorphic to the lattice of ideals of X (x)̂  Y
under the correspondence I —> /(X (g) F), where / is an ideal of K(x) F.
Since J(X(g) F) is nilpotent if and only if / is, this correspondence
preserves the radical. So /(X(g) Y) = (0) if and only if J(K®F) =
(0). Since β is perfect, F is a separable extension, so that

J(K(g)F) = J{K) ®F=(0)(g)F=(0)

[2, (69.10)].
Let R be a complete local domain, as in [4, I. 17] (i.e., R is

either a complete discrete valuation ring or a field). Let R = R/J(R).
Let G and H be groups. Let ERG{V) denote the i2-algebra of all
ϋ&r-linear maps of V into V. Consider the following two properties:

(A) Every R-free indecomposable R(G x H)-module has the
form V(X)RW for some R-free indecomposable RG-, RH-modules V,
W respectively.

(B) For all R-free indecomposable RG-, RH-modules V, W
respectively, F(g) W is an indecomposable R(G x H)-module.
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PROPOSITION 3. ( i ) (A) implies (B).
(ii) // ERG(V)/J(ERG(V)) ** R for each R-free indecomposable

RG-module F, then (B) holds.
(iii) If \H\ is prime to the characteristic of Rf then (B)

implies (A).

The proof of (iii) is essentially given in [4, III. 3.7], but we
include it here for the sake of completeness. Note that if R is
an algebraically closed field of characteristic zero, (ii) and (iii)
imply the standard result on the irreducible characters of a direct
product.

Proof. ( i ) Let F, W be i2-free indecomposable i2G-, RH-
modules respectively. Let F (x) W = 0 Σ?=i Ut where the Ut are
indecomposable R(G x iJ)-modules (necessarily jβ-free). Each Ut **
Vi (x) Wi for some R-ίree indecomposable RG-, iϋiϊ-modules Vif Wt

respectively. Then

(F<g> W)RG = 0 (rank* W)V~®± (rank* Wt)Vt

and

(F <g) TF)M = 0 (rank* F)TF ̂  0 Σ (rank* V<)Wi

The unique decomposition property [4, I. 11.5] implies Vi^ V and
TF, ̂  W for l^i^n. Then F(x) IF ̂  0 w(F(x) TF) implies w = 1,
hence F(x) TF is indecomposable.

(ii) Let E=ES{GXH)(V®W). By [4, III. 3.6], E^EBG{V)®R

ERH(W) as an iϋ-algebra. Since W is indecomposable, ERH{W) has no
idempotents besides the identity. Hence ERH(W)/J(ERH(W)) is a
division ring [4, I. 12.6, I. 10.1]. By Proposition 2,

E/J(E) ~ (EJtV)IJ(EUV))) ®R (ERH(W)/J(ERH(W)))

~R(g)R (ERH(W)/J(ERH(W))) ^R(g)R (ERH(W)/J(ERH(W)))

~ ERH(W)/J(ERH(W)) .

Thus ί is a local ring and has no idempotents other than the
identity. It follows that F(x) W is indecomposable.

(iii) Let U be an indecomposable R(G x ίZ")-module. Since
I G x H: GI is a unit in JS, there is an indecomposable ϋJG-module F
such that U\VGxH = V(g)RGR(G x H) by [4, II. 3] and unique
decomposition. V®RGR{G x H) ** V(g)RG(RG(g)RRH) « (F(xWi2G)(x)*
RHf^ V®RRH9 where the isomorphisms are R(G x H)-linear. Let
RH — 0 Σ?=i Wi9 a sum of indecomposable jβiϊ-modules. Then
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Σ?=i V(g)B Wt. Since each V® Wτ is indecomposable by (B),
U ^ V®Wj for some j by unique decomposition.

PROPOSITION 4. Let R he a finite field. Then (B) holds if and
only if for all indecomposable RG-, RH-modules V, W respectively,

(IEPAV)/J(EBG(V)): R] , [ERH{W)IJ{EBH{W)Y B]) = 1 .

Proof. V and W indecomposable imply ERG(V)/J(ERG(V)) = Rr

and EEH(W)/J(EBH(W)) = R" are division rings, and hence fields by
Wedderburn's theorem. Since R is perfect, [4, III. 3.6] and Pro-
position 2 imply that F(x) W is indecomposable if and only if
B'®BB" is a field. It is well-known that (for B finite) B' ®RR"
is a field if and only if ([£': B], [R"\ R\) = 1.

EXAMPLES. ( 1 ) Proposition 3 (iii) is not true if the assump-
tion on \H\ is dropped. For instance, let H — G be a (non-trivial)
cyclic p-group, with R = R a field of characteristic p. For all
indecomposable i?G-modules Vτ and V3- (see the proof of Theorem
1 below), Vi (x) Vj is an indecomposable R(G x iϊ)-module by Pro-
position 3(ii). But there are only finitely many such modules, while
G x H has infinitely many nonisomorphic indecomposable modules over
R [2, (64.1)].

( 2 ) If B is a finite field of characteristic p, and G, H are p'-
groups, (A) and (B) may be true with R not a splitting field for
either group. Let R = GF (11), G be cyclic of order 7, H cyclic of
order 3. Considering the decomposition of RG as a cyclic J?G-module,
we find there exist two nonlinear irreducible i2G-modules, say Ui
for i = 1, 2 such that [ERG{U^): R] = 3. Similarly, there is one non-
linear irreducible .Rff-module W with [EBH(W): R] = 2. So (B) and
(A) hold, by Proposition 4 and Proposition 3(iii).

On the other hand, let R = GF (11), H cyclic of order 3, and
G cyclic of order 4. G has one nonlinear irreducible iϋG-module V
with [ERG{V):B] = 2. Then Proposition 4 implies (B) and (A) fail.
However, if R = Q is the rational field, then there is one nonlinear
irreducible QG-module V with EQG(V) ^ Q(V—1), and one nonlinear
irreducible Qiί-module W with EQII(W) & Q(V/'z:3). Since QiV^Λ) (g)ρ

©(l/^S) is a field, 7(x) W is indecomposable and (A), (B) hold.

Proof of Theorem 1. If if is a splitting field for H, then for
all indecomposable (hence irreducible) iΓiϊ-modules W, EKH( W) ^ K.
So every indecomposable K(P x iί)-module is isomorphic to some
F(x) W by Proposition 3(ii) (applied to H) and (iii).

If P is cyclic of order pn, then the pn distinct indecomposable
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ifP-modules are given by Vt = KP/J(KPY for I ^ ί ^ pn [2, (64.2)].
Since Vt is cyclic, EKP{Vt) ** KP/J(KP)\ Hence E^V^JiE^V,)) **
KP/J(KP) ^ K f or 1 <; i ^ pn. Again, every indecomposable K(P x H)-
module is isomorphic to some Vt (x) W by Proposition 3(ii) and (iii).

Suppose K is not a splitting field for H and P is not cyclic.
There is an irreducible ETϊ-module W with D = EKH{W) a division
ring of dimension greater than one as a JΓ-algebra. Pick aeD — K,
and let f(x) = xn + α%_1x

%"1 + - + axx + α0 be the irreducible poly-
nomial for a over K. (So each ate K and % > 1.) if £ J5Γ(tf) S D.

Let ^ and ^2 generate the noncyclic group of order p2, which is
a homomorphic image of P. Let 7 be a vector space over K of
dimension 2n, with basis ul9 u2j , un, yl9 y2, , yn.

Let

= (tti) =

0

0
i o . . . . .
o i o . .

0 0

\ —t

0

0

" CLn—l I nXn

Then Y is an indecomposable iLP-module, with (u^){g1 — 1) = yιy

(u.dig, -1) = Σstay,, (y^)(9r - 1) = 0 - (yt)(g2 - 1) [5, Proposition 5],
We show that in fact EKP(Y)/J(EKP(Y)) ^ K{a):

EKP(Y) consists of all 2n x 2n matrices over K which commute

with both 0
τ^τ where the blocks are n n.

commutes with the first if and only if it has the form

A matrix

41?. and
j

also commutes with the second if and only if AT ~ TA. An n-
dimensional if-space φ Σ ^ i ^ is a faithful, cyclic iΓ[T]-module
with vtT = Σ?=i tijVj Hence AT = TA implies A e K[T]. Now f(x)
is the minimum polynomial for T, so K[T] ^ K[x]/(f(x)) ^ K(a).
Thus, J(EKP{Y)) equals the set of all nonunits in EKP{Y), namely the

set of all matrices of the form -̂ r-^-. Then EKP(Y)/J(EZP(Y))

Let F a K be a splitting field for H. Then W®κ F & 0 Σ i ; i C7€i

where each Utj is an absolutely irreducible i^iϊ-module, and Utj ^ Ust

if and only if i = s. Since EFH(Ui3) ^ F for all i, i, we have
D®KFP**EFH{W®K F) ^ ® Σ i Fni, & direct sum of full matrix
algebras over F. Then D is a separable iΓ-algebra [2, (71.2)]. It
follows that J{K{a) (g)κ D) = (0).

Let JE - ^ ( P x 5 ) ( 7 ( x ) , W). By [4, III. 3.6] and Proposition 2,

K{a) (x) D/J(K(a) (x) D) = (x)
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However, K{a) (x) D 2 ^(α) (x) ϋΓ(α) ̂  i^)M/</(cc)> which contains
zero divisors, since f(x) is reducible over K(a). Therefore, E/J(E)
is not a division ring, whence E contains more than one idempotent.
So Y® W is decomposable. Proposition 3(i) implies not every in-
decomposable K(P x iί)-module is of the given form.

REFERENCES

1. R. Brauer and W. Feit, An analogue of Jordan's theorem in characteristic p, Ann.
of Math., 84 (1966), 119-131.
2. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative
Algebras, Interscience, New York, 1962.
3. W. Feit, Groups with a cyclic Sylow subgroup, Nagoya Math. J., 27 (1966), 571-584.
4. , Representations of Finite Groups, Part I, Lecture Notes, Yale Univer-
sity, New Haven, Connecticut, 1969.
5. A. Heller and I. Reiner, Indecomposable representations, Illinois J. Math., 5 (1961),
314-323.
6. N. Jacobson, Structure of Rings, Amer. Math. Soc. Coll. Publ., 37, 1964.

Received May 2, 1973.

NORTHERN ILLINOIS UNIVERSITY




