ON THE PRIME IDEAL DIVISORS
 OF ($a^{n}-b^{n}$)

Edward H. Grossman

Let a and b denote nonzero elements of the ring of integers O_{K} of an algebraic number field K, such that $a b^{-1}$ is not a root of unity and the principal ideals (a) and (b) are relatively prime.

Definition 1. A prime ideal \mathfrak{p} is called a primitive prime divisor of $\left(a^{n}-b^{n}\right)$ if $\mathfrak{p} \mid\left(a^{n}-b^{n}\right)$ and $\mathfrak{p} \nmid\left(a^{k}-b^{k}\right)$ for $k<n$.

Definition 2. An integer n is called exceptional for $\{a, b\}$ if $\left(a^{n}-b^{n}\right)$ has no primitive prime divisors.

The set of integers exceptional for $\{a, b\}$ is denoted by $E(a, b)$. Using recent deep results of Baker, Schinzel [4] has proved that if $n>n_{0}(l)$ then $n \notin E(a, b)$, where $l=[K: Q]$ and n_{0} is an effectively computable integer. In particular card $E(a, b) \leq \boldsymbol{n}_{0}$. In this paper, using only elementary methods, upper bounds are obtained for card $\{n \in E(a, b): n \leq x\}$ which are independent of a and b.

1. Introduction. The prime divisors of the sequence of rational integers x_{n} $=a^{n}-b^{n}$ have been studied by Birkhoff and Vandiver. They showed [1, p. 177] that if a and b are positive and relatively prime, then for $n>6$ there is a prime p which divides $a^{n}-b^{n}$ and does not divide $a^{k}-b^{k}$ for $k<n$. Postnikova and Schinzel [3] have investigated analogues of this result for the ring of integers O_{K} of an algebraic number field K.

To fix our notation and terminology, a and b will always denote nonzero elements of O_{K} such that $a b^{-1}$ is not a root of unity, and the principal ideals (a) and (b) are relatively prime. Note then that all the ideals $\left(a^{n}-b^{n}\right)$ are nonzero.

Definition 1. A prime ideal \mathfrak{p} is called a primitive prime divisor of $\left(a^{n}-b^{n}\right)$ if $\mathfrak{p} \mid\left(a^{n}-b^{n}\right)$ and $\mathfrak{p} \nmid\left(a^{k}-b^{k}\right)$ for $k<n$.

Defintion 2. An integer n is called exceptional for $\{a, b\}$ if $\left(a^{n}-b^{n}\right)$ has no primitive prime divisors.

The set of integers exceptional for $\{a, b\}$ is denoted by $E(a, b)$. Using a theorem of Gelfond it can be shown [3, p. 172] that card $(E(a, b))<n_{0}(a, b)$. Recently, using deep methods, Baker [4] has improved Gelfond's theorem, and has shown that card $E(a, b)<n_{0}(l)$, where $l=[K: Q]$. In this paper we obtain by elementary methods upper bounds for card $\{n \in E(a, b): n \leq$ $x\}$ which are independent of a and b. To state our theorem precisely we
introduce the following notation: If $M=1$ we define $\log _{1} x=\log x$ and if $M>1$ is an integer we define $\log _{M} x=\log \left(\log _{M-1} x\right)$. The main result is

Theorem 1. Let K be a finite extension of Q of degree l, a and b elements of O_{K} such that $(a, b)=O_{K}$ and a / b is not a root of unity. If $M \geq 1$ is an integer, there is an $x_{0}=x_{0}(M, l)$ such that for $x>x_{0}$, card $\{n \in E(a, b): n \leq x\} \leq \log _{M} x$.

The proof of Theorem 1 as well as related results will be found in $\S 4$. Sections 2 and 3 are preparatory.
2. Preliminary lemmas. Our first lemma provides an algebraic criterion for an integer n to be exceptional for $\{a, b\}$. Let $F_{n}(x, y)$ denote the nth homogeneous cyclotomic polynomial. We then have

Lemma 1. Let $l=[K: Q]$ and suppose $n>2^{l}\left(2^{l}-1\right)$. If the prime ideal $\mathfrak{p} \mid\left(a^{n}-b^{n}\right)$ and is not a primitive prime divisor then $\operatorname{ord}_{\mathfrak{p}}\left(F_{n}(a, b)\right)$ $\leq \operatorname{ord}_{\mathfrak{p}}(n)$. In particular if $n \in E(a, b)$ then $\left(F_{n}(a, b)\right) \mid(n)$.

Proof. See [3, p. 172]. We note without proof that the result also holds provided $n>2 l\left(2^{l}-1\right)$.

From Lemma 1 if n is sufficiently large and $n \in E(a, b)$, then the ideal norm of $F_{n}(a, b)$ satisfies the inequality $N\left(F_{n}(a, b)\right) \leq n^{l}$. We will show that this can occur only if some conjugate of a / b is "very close" to a primitive nth root of unity; moreover the set of integers n for which this holds must be spaced very far apart.

We consider K as imbedded in some fixed manner in the field of complex numbers. ζ_{n} will denote the nth root of unity $e^{2 \pi i / n}$. If a and b are any complex numbers such that a / b is not a root of unity, we let $\zeta_{n}^{*}(a, b)$ (or simply ζ_{n}^{*} if a and b are understood) denote an nth root of unity closest to a / b. For some n and complex numbers a and b, ζ_{n}^{*} is a primitive nth root of unity, for others it is not. Moreover, if there is no unique nth root of unity closest to $a / b, \zeta_{n}^{*}$ will denote a fixed nearest one. Thus

$$
\left|a-b \zeta_{n}^{*}\right|=\min \left\{\left|a-b \zeta_{n}^{v}\right|: v=1, \ldots, n\right\}
$$

Lemma 2. Let $m>n$ and suppose that ζ_{n}^{*} and ζ_{m}^{*} are primitive nth and m th roots of unity satisfying

$$
\left|a-b \zeta_{n}^{*}\right|<\max (|a|,|b|) \exp \left(-n^{1 / 2}\right) / n
$$

and

$$
\left|a-b \zeta_{m}^{*}\right|<\max (|a|,|b|) \exp \left(-m^{1 / 2}\right) / m,
$$

then $m \geq 2 \exp \left(n^{1 / 2}\right)$.
Proof. If $\max (|a|,|b|)=|b|$ then we have $4 / m n \leq\left|\zeta_{n}^{*}-\zeta_{m}^{*}\right| \leq$ $\exp \left(-n^{1 / 2}\right) / n+\exp \left(-m^{1 / 2}\right) / m \leq 2 \exp \left(-n^{1 / 2}\right) / n$ and so $m \geq$ $2 \exp \left(n^{1 / 2}\right)$. If $\max (|a|,|b|)=|a|$ then a similar estimate holds for $\left|\bar{\xi}_{n}^{*}-\bar{\zeta}_{m}^{*}\right|$.

Lemma 3. Let A be a subset of the positive integers such that whenever $n, m \in A$ and $m>n$, then $m>\exp \left(n^{1 / 2}\right)$. If M is any positive integer there is an x_{M} depending only onM such that for $x \geq x_{M}, \operatorname{card}\{n \in A: n \leq x\}$ $\leq \log _{M} x$.

Proof. Let $k=\operatorname{card}\{n \in A: n \leq x\}$. If $n_{1}<n_{2}<\cdots<n_{k} \leq x$ are the k elements of A less than x, then for any integer $j<k$

$$
\begin{equation*}
n_{k-j} \leq\left(3 \log _{j} x\right)^{2} \tag{1}
\end{equation*}
$$

if $\log _{j} x>2 \log 3$.
We first assume $k>M+1$. Then taking $j=M+1$ in (1) and x large enough so that $\log _{M+1} x>2 \log 3$ we have that $n_{k-M-1} \leq\left(3 \log _{M+1} x\right)^{2}$; in particular $k-M-1 \leq\left(3 \log _{M+1} x\right)^{2}$ and so $k<(M+1)+$ $\left(3 \log _{M+1} x\right)^{2}$. Since this inequality also holds when $k \leq M+1$ and $(M+$ 1) $+\left(3 \log _{M+1} x\right)^{2}=o\left(\log _{M} x\right)$ the lemma is proven.

Denoting by $E^{\prime}(a, b)$ the set of n such that ζ_{n}^{*} is a primitive nth root of unity and such that $\left|a-b \zeta_{n}^{*}\right|<\max (|a|,|b|) \exp \left(-n^{1 / 2}\right) / n$, Theorem 1 will follow from Lemma 3 if it is shown that if n is sufficiently large and is not in $\cup E^{\prime}\left(a^{(v)}, b^{(v)}\right)$, where $a^{(v)}$ and $b^{(v)}$ denote the conjugates of a and b, then $n \notin E(a, b)$.

To perform the analysis we first break up $Z^{+}-E^{\prime}(a, b)$ into two disjoint sets:

$$
\begin{aligned}
S_{1}= & \left\{n:\left|a-b \zeta_{n}^{*}\right|>\max (|a|,|b|) \exp \left(-n^{1 / 2}\right) / n\right\} \\
S_{2}= & \left\{n:\left|a-b \zeta_{n}^{*}\right| \leq \max (|a|,|b|) \exp \left(-n^{1 / 2}\right) / n,\right. \text { and } \\
& \left.\zeta_{n}^{*} \text { not a primitive } n \text {th root of unity }\right\} .
\end{aligned}
$$

Before continuing we note that if n is an integer for which there is no unique closest nth root of unity to a / b then $n \in S_{1}$.

It will be convenient to have the following notation. For any ζ_{n}^{*} let k
be the divisor of n such that ζ_{n}^{*} is a primitive k th root of unity. If $d \mid n$ define

$$
\left[a^{d}-b^{d}\right]= \begin{cases}a^{d}-b^{d} & \text { if } k \nmid d \tag{2}\\ \frac{a^{d}-b^{d}}{a-b \zeta_{n}^{*}} & \text { if } k \mid d .\end{cases}
$$

In terms of this notation we have the following easy but basic lemma.
Lemma 4. If ζ_{n}^{*} is a primitive k th root of unity and $k<n$ then

$$
F_{n}(a, b)=\prod_{d \mid n}\left[a^{d}-b^{d}\right]^{\mu(n \mid d)}
$$

Proof.

$$
\begin{aligned}
& \prod_{d \mid n}\left[a^{d}-b^{d}\right]^{\mu(n / d)}=\prod_{\substack{d \mid n \\
k \nmid d}}\left(a^{d}-b^{d}\right)^{\mu(n \mid d)} \prod_{\substack{d|n| n \\
k \mid d}}\left(\frac{a^{d}-b^{d}}{a-b \zeta_{n}^{*}}\right)^{\mu(n \mid d)} \\
& \quad=F_{n}(a, b)\left(a-b \zeta_{n}^{*}\right)^{-L}, \quad \text { where }
\end{aligned}
$$

$L=\sum_{d|n, k| d} \mu(n / d)$. Setting $n^{\prime}=n / k>1, d^{\prime}=d / k$ we have $L=$ $\sum_{d^{\prime} \mid n^{\prime}} \mu\left(n^{\prime} / d^{\prime}\right)=0$.
3. Bounds for $\left|a^{d}-b^{d}\right|$ and $\left|\left[a^{d}-b^{d}\right]\right|$.

The representation of $F_{n}(a, b)$ given in Lemma 4 as well as the usual product formula

$$
F_{n}(a, b)=\prod_{d \mid n}\left(a^{d}-b^{d}\right)^{\mu(n \mid d)}
$$

will be used to provide lower bounds for $N\left(F_{n}(a, b)\right)$. In this section we derive the necessary estimates for $\left|a^{d}-b^{d}\right|$ and $\left|\left[a^{d}-b^{d}\right]\right|$.

Lemma 5. For all $d \geq 1$

$$
\begin{equation*}
\left|a^{d}-b^{d}\right| \leq 2 d \max (|a|,|b|)^{d} \tag{3}
\end{equation*}
$$

$$
\left|\left[a^{d}-b^{d}\right]\right| \leq \begin{cases}2 d \max (|a|,|b|)^{d} & \text { if } k=\operatorname{order} \zeta_{n}^{*} \nmid d \tag{4}\\ 2 d \max (|a|,|b|)^{d-1} & \text { if } k=\operatorname{order} \zeta_{n}^{*} \mid d\end{cases}
$$

Proof. Inequality (3) and (4) in the case $k \nmid d$ follow from $\left|a^{d}-b^{d}\right| \leq$ $2 \max (|a|,|b|)^{d}$. If $k \mid d$ then from (2)

$$
\begin{aligned}
\left|\left[a^{d}-b^{d}\right]\right|=\left|\frac{a^{d}-b^{d}}{a-b \zeta_{n}^{*}}\right| & =\left|a^{d-1}+a^{d-2}\left(b \zeta_{n}^{*}\right)+\ldots+\left(b \zeta_{n}^{*}\right)^{d-1}\right| \\
& \leq d \max (|a|,|b|)^{d-1}
\end{aligned}
$$

Lower Bound Estimates: We first prove a preliminary lemma.
Lemma 6. Let z be a complex number such that $|z| \leq 1$ and $\mid z-$ $\zeta_{n}^{*}(z, 1)\left|>\left|\zeta_{n}-1\right|=\lambda_{n}\right.$. Then $n>6$ and $1-|z|>(\sqrt{3} / 2) \lambda_{n}$.

Proof. Recall that $\zeta_{n}^{*}(z, 1)$ is a closest nth root of unity to z. First we show that if $z=r e^{i \theta}$, where $1 \geq r \geq \max (0, \cos \pi / n-\sqrt{3} \sin \pi / n)$ and $|\theta| \leq$ π / n, then $|z-1| \leq \lambda_{n}$. We have in fact
$|z-1|^{2}-\lambda_{n}^{2} \leq(r-(\cos \pi / n-\sqrt{3} \sin \pi / n))(r-(\cos \pi / n+\sqrt{3} \sin \pi / n)) \leq 0$.
By rotation it now follows that if $1 \geq|z| \geq \max (0, \cos \pi / n-$ $\sqrt{3} \sin \pi / n)$ there is an nth root of unity ζ_{n}^{v} such that $\left|z-\zeta_{n}^{v}\right| \leq \lambda_{n}$. Finally if $n \leq 6$ we have $\cos \pi / n-\sqrt{3} \sin \pi / n \leq 0$ and so the condition $|z|$ $\leq 1,\left|z-\zeta_{n} *\right|>\lambda_{n}$ is impossible. If $n>6$ then $1-|z| \geq 1-\cos \pi / n+$ $\sqrt{3} \sin \pi / n>(\sqrt{3} / 2) \lambda_{n}$.

Lemma 7. If $n \in S_{1}$ and $d \mid n$ then

$$
\begin{equation*}
\left|a^{d}-b^{d}\right| \geq \max (|a|,|b|)^{d} \exp \left(-n^{1 / 2}\right) / n \quad \text { or } \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left|a^{d}-b^{d}\right| \geq \max (|a|,|b|)^{d}\left(\prod_{\zeta_{d}^{v} \neq \zeta_{d}^{*}(z, 1)}\left|z-\zeta_{d}^{v}\right|\right) \exp \left(-n^{1 / 2}\right) / n \tag{6}
\end{equation*}
$$

in which case $d>1$ and $|z| \leq 1$ satisfies $\left|z-\zeta_{d}^{*}(z, 1)\right| \leq \lambda_{d}$.
Proof. Since $n \in S_{1}$ we can write

$$
\begin{equation*}
\left|a^{d}-b^{d}\right|=\max (|a|,|b|)^{d}\left|z^{d}-1\right| \tag{7}
\end{equation*}
$$

where $z=a / b$ or $z=b / a$ satisfies $|z| \leq 1$ and

$$
\begin{equation*}
\left|z-\zeta_{n}^{*}(z, 1)\right|>\exp \left(-n^{1 / 2}\right) / n \tag{8}
\end{equation*}
$$

If $n \geq 1$ and $d=1$ then (5) is immediate. If $n>1$ and $d>1$ we distinguish two cases accordingly as $\left|z-\zeta_{n}^{*}\right|>\lambda_{n}$ or $\left|z-\zeta_{n}^{*}\right| \leq \lambda_{n}$. In the former case Lemma 6 gives $1-|z|>(\sqrt{3} / 2) \lambda_{n}>2 \sqrt{3} / n$; hence $\left|z^{d}-1\right| \geq 1-|z|>$ $2 \sqrt{3} / n>\exp \left(-n^{1 / 2}\right) / n$, which when combined with (7) gives (5).

If $\left|z-\zeta_{n}^{*}\right| \leq \lambda_{n}$ then we must also have $\left|z-\zeta_{d}^{*}\right| \leq \lambda_{d}$. Otherwise Lemma 6 gives $(\sqrt{3} / 2) \lambda_{d}<1-|z| \leq\left|z-\zeta_{n}^{*}\right| \leq \lambda_{n}$ which is impossible since $n / d \geq 2$. Observing now that (6) follows immediately from (7) and (8), the proof is complete.

Lemma 8. If $n \in S_{2}$ and $d \mid n$, then if order $\zeta_{n}^{*}=k+d$

$$
\begin{equation*}
\left|\left[a^{d}-b^{d}\right]\right| \geq \max (|a|,|b|)^{d} \exp \left(-n^{1 / 2}\right) / n \quad \text { or } \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left|\left[a^{d}-b^{d}\right]\right| \geq \max (|a|,|0|)^{1}\left(\prod_{\zeta_{d^{\prime}} \neq \zeta_{d}^{d}(z, 1)}\left|z-\zeta_{d}^{v}\right|\right) \exp \left(-n^{1 / 2}\right) / n \tag{10}
\end{equation*}
$$

in which case $d>1$ and $|z| \leq 1$ satisfies $\left|z-\zeta_{d}^{*}\right| \leq \lambda_{d}$. If order $\zeta_{n}^{*}=k \mid d$

$$
\begin{equation*}
\left|\left[a^{d}-b^{d}\right]\right| \geq \max (|a|,|b|)^{d-1} \prod_{\zeta_{d} \neq \zeta_{d}^{d}}\left|z-\zeta_{d}^{v}\right|, \tag{11}
\end{equation*}
$$

where for $d=1$ the product on the right side of (11) is one and if $d>1,|z| \leq$ 1 satisfies $\left|z-\zeta_{d}^{*}\right| \leq \lambda_{d}$.

Proof. Since $n \in S_{2}$, with $z=a / b$ or b / a we have $|z| \leq 1$,

$$
\begin{equation*}
\left|z-\zeta_{n}^{*}\right| \leq \exp \left(-n^{1 / 2}\right) / n \tag{12}
\end{equation*}
$$

and order $\zeta_{n}^{*}=k<n$.
If $k+d$ we have $n>1$ and since ζ_{n}^{*} is not a d th root of unity (12) implies

$$
\left|z-\zeta_{d}^{*}\right| \geq\left|\zeta_{d}^{*}-\zeta_{n}^{*}\right|-\left|z-\zeta_{n}^{*}\right|>\exp \left(-n^{1 / 2}\right) / n .
$$

We can now argue as in the previous lemma.
If $k \mid d$ then we have

$$
\begin{equation*}
\left|\left[a^{d}-b^{d}\right]\right|=\max (|a|,|b|)^{d-1}\left|\frac{z^{d}-1}{z-\zeta_{n}^{*}(z, 1)}\right| \tag{13}
\end{equation*}
$$

where $|z| \leq 1$ satisfies (12). If $d=1$ then since $k \mid d, \zeta_{n}^{*}=1$ and (13) is
precisely (11). For $d>1$, (11) and the condition $\left|z-\zeta_{d}{ }^{v}\right| \leq \lambda_{d}$ follow from (12) and (13) in view of $\zeta_{n}^{*}=\zeta_{d}^{*}$.

In order to complete the lower bound estimates we must obtain lower bounds for $\prod_{\zeta_{d}^{y} \neq \zeta_{d}^{*}}\left|z-\zeta_{d}^{v}\right|$, where $d>1$ and $|z| \leq 1$ satisfies $\left|z-\zeta_{d}^{*}\right| \leq \lambda_{d}$. We first prove

Lemma 9. Let $d>1$ be an integer and r a real number satisfying $0 \leq r$ ≤ 1 and $|r-1| \leq \lambda_{d}$, then

$$
\begin{equation*}
\prod_{\nu=1}^{d-1}\left|r-\zeta_{d}^{\nu}\right| \geq d^{-3 \tau+1} \tag{14}
\end{equation*}
$$

where $\tau=\tau_{d}=[\sqrt{\pi d / 2}]+1$.
Proof. Since r is real we have

$$
\begin{equation*}
\prod_{\nu=1}^{d-1}\left|r-\zeta_{d}^{v}\right| \geq(1 / 2) \prod_{\nu=1}^{[d / 2]}\left|r-\zeta_{d}^{v}\right|^{2} \tag{15}
\end{equation*}
$$

We give a lower bound for the latter product. From $|r-1| \leq \lambda_{d}$ we obtain

$$
\begin{equation*}
\left|r-\zeta_{d}{ }^{v}\right| \geq\left|1-\zeta_{d}{ }^{v}\right|-|1-r| \geq\left|1-\zeta_{d}{ }^{v}\right|-\lambda_{d} . \tag{16}
\end{equation*}
$$

Let $\tau=\tau_{d}=[\sqrt{\pi d / 2}]+1$ and suppose first that $[d / 2]>\tau_{d}$ and v satisfies $[d / 2] \geq v>\tau_{d}$. Then

$$
\begin{array}{r}
\left|1-\zeta_{d}{ }^{\nu}\right|-\left|\zeta_{d}{ }^{v}-\zeta_{d}{ }^{\tau}\right|=4 \sin (\pi \tau / 2 d) \cos \pi(v / d-\tau / 2 d) \tag{17}\\
\geq(4 \tau / d)(d-2 v+\tau) / d \geq 4 \tau^{2} / d^{2} \geq 2 \pi / d \geq \lambda_{d}
\end{array}
$$

Thus from (16), $\left|r-\zeta_{d}{ }^{\nu}\right| \geq\left|\zeta_{d}{ }^{\nu-\tau}-1\right|$ and so

$$
\begin{gather*}
\prod_{v=1}^{[d / 2]}\left|r-\zeta_{d}^{v}\right| \geq \prod_{\nu=1}^{\tau}\left|r-\zeta_{d}^{v}\right| \prod_{\nu=\tau+1}^{[d / 2]} \mid 1-\zeta_{d}^{v-\tau \mid} \tag{18}\\
=\frac{\prod_{v=1}^{\tau}\left|r-\zeta_{d}{ }^{v}\right| \prod_{v=1}^{[d / 2]}\left|1-\zeta_{d}^{v}\right|}{[d / 2]} . \\
v=[d \mid 2]_{-\tau+1}\left|1-\zeta_{d}^{v}\right|
\end{gather*}
$$

Since $r \geq 0$ we have

$$
\begin{equation*}
\left|r-\zeta_{d}{ }^{v}\right| \geq\left|r-\zeta_{d}\right|>2 / d \tag{19}
\end{equation*}
$$

if $d \geq 4$ and the same inequality $\left(\left|r-\zeta_{d}{ }^{\nu}\right| \geq 2 / d\right.$) holds for $d<4$. Observing finally that $\left|1-\zeta_{d}^{v}\right| \leq 2$ and

$$
\prod_{\nu=1}^{[d / 2]}\left|1-\zeta_{d}^{\nu}\right|^{2} \geq \prod_{v=1}^{d-1}\left|1-\zeta_{d}^{\nu}\right|=d
$$

we obtain (14) from (15) and (18).
Now if $\tau_{d} \geq[d / 2]$ we have from (19)

$$
\prod_{\nu=1}^{d-1}\left|r-\zeta_{d}^{\nu}\right| \geq(2 / d)^{d-1} \geq(2 / d)^{2[d / 2]} \geq d^{-2 \tau} 2^{2 \tau} \geq d^{-3 \tau+1}
$$

and so (14) is also proven in this case.

$$
\text { Lemma 10. If } d>1 \text { and }|z| \leq 1 \text { satisfies }\left|z-\zeta_{d}{ }^{*}\right| \leq \lambda_{d} \text { then }
$$

$$
\begin{equation*}
\prod_{\zeta_{d}^{v} \neq \zeta_{d}^{*}}\left|z-\zeta_{d}^{v}\right| \geq d^{-3 \tau} \tag{20}
\end{equation*}
$$

where $\tau=\tau_{d}=[\sqrt{\pi d / 2}]+1$.
Proof. We may assume that $\zeta_{d}{ }^{*}=1$ and $z=r e^{i \theta}$, where $0 \leq \theta \leq$ π / d; thus we must prove the lower bound (20) for $\prod_{v=1}^{d}-1\left|z-\zeta_{d}^{v}\right|$. Let $z^{\prime}=$ $r e^{2 \pi i / d}$. Then if $1 \leq v \leq[d / 2],\left|z-\zeta_{d}^{v}\right|>\left|z^{\prime}-\zeta_{d}^{v}\right|$ and if $[d / 2]<v \leq d-$ $1,\left|z-\zeta_{d}^{v}\right| \geq\left|r-\zeta_{d}^{v}\right|$. Combining these results and using $\left|z-\zeta_{d}\right| \geq \lambda_{d} / 2$ $\geq 2 / d$ we obtain

$$
\prod_{\nu=1}^{d-1}\left|z-\zeta_{d}^{v}\right| \geq \frac{\left|z-\zeta_{d}\right|}{\left|r-\zeta_{d}^{[d / 2]}\right|} \prod_{v=1}^{d-1}\left|r-\zeta_{d}^{\nu}\right|
$$

$$
\begin{equation*}
\geq d^{-1} \prod_{v=1}^{d-1}\left|r-\zeta_{d}^{v}\right| \tag{21}
\end{equation*}
$$

Since $|r-1| \leq|z-1| \leq \lambda_{d}$, (20) follows from Lemma 9 and (21).
From Lemmas 7, 8 and 10 we arrive at our final lower bound estimates.

Lemma 11. If $n \in S_{1}$ and $d \mid n$ then

$$
\begin{equation*}
\left|a^{d}-b^{d}\right| \geq \max (|a|,|b|)^{d} d^{-3 \tau} \exp \left(-n^{1 / 2}\right) / n \tag{22}
\end{equation*}
$$

where $\tau=\tau_{d}=[\sqrt{\pi d / 2}]+1$.
If $n \in S_{2}, d \mid n$, then if order $\zeta_{n}^{*}(a, b)=k \nmid d$, (22) holds for $\left|\left[a^{d}-b^{d}\right]\right|$. If $k \mid d$ we have

$$
\begin{equation*}
\left|\left[a^{d}-b^{d}\right]\right| \geq \max (|a|,|b|)^{d-1} d^{-3 \tau} \tag{23}
\end{equation*}
$$

4. Main theorem and related results. The proof of Theorem 1 will follow easily from the following lemma.

Lemma 12. There is an integer n_{0}^{\prime} such that if $n>n_{0}^{\prime}$ and $n \in S_{1} \cup S_{2}$ then

$$
\begin{equation*}
\log \left|F_{n}(a, b)\right| \geq \varphi(n) \max (\log |a|, \log |b|)-2^{v(n)} n^{5 / 8} \tag{24}
\end{equation*}
$$

Proof. If $n \in S_{1}$ we use Lemmas 5 and 11 and the formula $F_{n}(a, b)=$ $\prod_{d \mid n}\left(a^{d}-b^{d}\right)^{\mu(n / d)}$ to obtain (24).

If $n \in S_{2}$ then (24) follows from Lemma 4 and the estimates of Lemmas 5 and 11.

Proof of Theorem 1. Recall that $S_{1} \cup S_{2}$ is the complement of the set $E^{\prime}(a, b)=\left\{n \in Z^{+}:\left|a-b \zeta_{n}^{*}\right| \leq \max (|a|,|b|) \exp \left(-n^{1 / 2}\right) / n\right.$ and $\zeta_{n}^{*} \mathrm{a}$ primitive nth root of unity $\}$. Let $E^{\prime}=\cup_{v=1}^{l} E^{\prime}\left(a^{(v)}, b^{(v)}\right)$, where $l=[K: Q]$ and $a^{(v)}, b^{(v)}$ denote the conjugates of a and b. If $n \notin E^{\prime}$ then the lower bound (24) is valid for all v provided $n>n_{0}^{\prime}$. Thus

$$
\begin{gather*}
\log \left|N\left(F_{n}(a, b)\right)\right|=\sum_{v=1}^{l} \log \left|F_{n}\left(a^{(v)}, b^{(v)}\right)\right| \tag{25}\\
\geq A \varphi(n)-12^{v(n)} n^{5 / 8} \quad \text { where } \\
A=\sum_{v=1}^{l} \max \left(\log \left|a^{(v)}\right|, \log \left|b^{(v)}\right|\right)
\end{gather*}
$$

$$
\begin{equation*}
=\log |N(b)|+\sum_{v=1}^{l} \max \left(\log \left|\frac{a^{(v)}}{b^{(v)}}\right|, 0\right) \tag{26}
\end{equation*}
$$

If $|N(b)|=1$, then a / b is in O_{K} and there is a constant c_{K}, depending only on $[K: Q]$, such that $\left|a^{(v)} / b^{(v)}\right|>c_{K}$ for some v. Thus $A \geq \min (\log 2$,
$\left.\log c_{K}\right)=C_{K}^{\prime}$. Using the well-known [2, p. 114] estimates $\varphi(n)>$ $c_{1} n / \log \log n$ and $2^{\nu(n)}<c_{2}(\epsilon) n^{\epsilon}$ (with $\epsilon=1 / 8$), (25) gives

$$
\log \left|N\left(F_{n}(a, b)\right)\right| \geq \frac{C_{K} n}{\log \log n}-c_{2} l^{3 / 4}>l \log n \text { for }
$$

$n>n_{0}(l)$ and so from Lemma $1, n \notin E(a, b)$.
Thus $E(a, b) \subset E^{\prime} \cup\left\{n \leq n_{0}\right\}$ and the density estimate for $E(a, b)$ follows in view of Lemmas 2 and 3.

We can extract additional quantitative information from the above proof. Let us write $\left(a^{n}-b^{n}\right)=\mathfrak{U} \mathfrak{B}$ where $\mathfrak{A}+\mathfrak{B}=O_{K}$ and $\mathfrak{P} \mid \mathfrak{A}$ if and only if \mathfrak{P} is a primitive prime divisor of $\left(a^{n}-b^{n}\right)$. We call \mathfrak{A} the primitive part of $\left(a^{n}-b^{n}\right)$ and denote it by $P_{n}(a, b)$. Then we have

Lemma 13. If $n>n_{0}(K)$ and $n \notin E^{\prime}$ then

$$
\begin{equation*}
\log \left|N\left(P_{n}(a, b)\right)\right|=A \varphi(n)+O\left(n^{3 / 4}\right) \tag{27}
\end{equation*}
$$

where A is defined by (26) and the constant implied by O depends only on K.
Proof. Lemma 1 implies that for $n>2^{l}\left(2^{l}-1\right)$

$$
\log \left|N\left(F_{n}(a, b)\right)\right|-l \log n \leq \log \left|N\left(P_{n}(a, b)\right)\right| \leq \log \left|N\left(F_{n}(a, b)\right)\right|
$$

If $n \in S_{1} \cup S_{2}$ the left side can be bounded from below using (24). Moreover, as in Lemma 12 one shows that for n sufficiently large, $n \in S_{1} \cup$ S_{2}

$$
\log \left|F_{n}(a, b)\right| \leq \varphi(n) \max (\log |a|, \log |b|)+2^{v(n)} n^{5 / 8}
$$

Using these estimates we immediately obtain (27).
Lemma 13 and the density estimate for E^{\prime} enable us to derive both a normal order and average order for $\log \left|N\left(P_{n}(a, b)\right)\right|$. The proofs are straightforward and are omitted.

Theorem 2. $\quad \log \left|N\left(P_{n}(a, b)\right)\right|$ has $\varphi(n) A$ as a normal order, i.e. for any $\epsilon>0$ if

$$
T(\varepsilon, x)=\left\{n \leq x:|\log | N\left(P_{n}(a, b)\right)|-\varphi(n) A|<\varepsilon \varphi(n) A\right\},
$$

then card $T(\epsilon, x) / x \rightarrow 1$ as $x \rightarrow \infty$.

$$
\text { THEOREM 3. } \quad \sum_{n \leq x} \log \left|N\left(P_{n}(a, b)\right)\right|=\frac{3 A}{\pi^{2}} x^{2}+O\left(A x^{7 / 4}\right)
$$

where the constant implied by $O($) depends only on K.

References

1. G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. of Math., 5 (1902-03), 173-180.
2. W. J. LeVeque, Topics in Number Theory, vol. 1, Addison Wesley, Reading, Mass., 1956. 3. L. P. Postnikova and A. Schinzel, Primitive divisors of the expression $a^{n}-b^{n}$ in algebraic number fields, Math. U.S.S.R.-Sbornik, 4 (1968), No. 2, 153-159.
4 A. Schinzel, Primitive divisors of the expression $A^{n}-B^{n}$ in algebraic number fields, J. Reine Angew. Math., 268/269 (1974), 27-33.

Received July 23, 1973.
City College of CUNY

