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ON THE PRIME IDEAL DIVISORS
OF (an - bn)

EDWARD H. GROSSMAN

Let a and b denote nonzero elements of the ring of integers
O κ of an algebraic number field iΓ, such that abΛ is not a root of
unity and the principal ideals (a) and (b) are relatively prime.

DEFINITION 1. A prime ideal p is called a primitive prime
divisor of (απ - b") if p\ (απ - b") and p \ (ak - bk) for k < tu

DEFINITION 2. An integer n is called exceptional for {a, b) if
(an - bn) has no primitive prime divisors.

The set of integers exceptional for {a, b) is denoted by E(a, b).
Using recent deep results of Baker, Schinzel [4] has proved that if
n > #i0 (0 then n ^ E(a, b\ where / = [K: Q] and Λ0 is an effectively
computable integer, in particular card E{a, b) < /ι0. In this paper,
using only elementary methods, upper bounds are obtained for
card {n G E(a> b): n < JC} which are independent of a and b.

1. Introduction. The prime divisors of the sequence of rational integers xn

— an — bn have been studied by Birkhoff and Vandiver. They showed [1, p. 177]

that if a and b are positive and relatively prime, then for n > 6 there is a prime/?

which divides an — bn and does not divide ak — bk ΐoτ k < n. Postnikova and

Schinzel [3] have investigated analogues of this result for the ring of

integers Oκ of an algebraic number field K.

To fix our notation and terminology, a and b will always denote

nonzero elements of Oκ such that ab~ι is not a root of unity, and the

principal ideals (a) and (b) are relatively prime. Note then that all the ideals

(an — bn) are nonzero.

DEFINITION 1. A prime ideal p is called & primitive prime divisor of

(an - bn) ifp\(an - bn) and p\(ak -hk)fovk< n.

DEFINITION 2. An integer n is called exceptional for {a, b}ϊf(a" — bn) has

no primitive prime divisors.

The set of integers exceptional for {a, b] is denoted by E{a, b). Using a

theorem of Gelfond it can be shown [3, p. 172] that card (E(a, b)) < no(a, b).

Recently, using deep methods, Baker [4] has improved Gelfond's theorem,

and has shown that card E(a, b) < n0 (I), where l—[K: Q]. In this paper we

obtain by elementary methods upper bounds for card {n E E(a, b): n <

x} which are independent of a and b. To state our theorem precisely we
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introduce the following notation: If M = 1 we define logi x = log x and if
M > 1 is an integer we define log^x = log (log^ _ {x). The main result is

THEOREM 1. Let K be a finite extension ofQ of degree I, a and b elements of
Oκ such that (a, b) = Oκ anda/b is not a root of unity. IfM >\isan integer, there
isanx0 = xo(M, t)such that for x > x0, card {n G E(a, b): n < x) <

The proof of Theorem 1 as well as related results will be found in §4
Sections 2 and 3 are preparatory.

2. Preliminary lemmas. Our first lemma provides an algebraic criterion for
an integer n to be exceptional for {a, b}. Let Fn(x, y) denote the nth homogen-
eous cyclotomic polynomial. We then have

LEMMA 1. Let I = [K: Q] and suppose n>2ι(2ι - 1). If the prime ideal
— bn) and is not a primitive prime divisor then oxa$(Fn(a, b))

n). In particular if n G E(a, b) then (Fn(a, b))\(n).

Proof See [3, p. 172]. We note without proof that the result also holds
provided n> 2/(2'- 1).

From Lemma 1 if n is sufficiently large and n G E(a, b), then the ideal
norm of Fn (a, b) satisfies the inequality N{Fn (a, b)) < nι. We will show that
this can occur only if some conjugate of a/b is "very close" to a primitive
wth root of unity moreover the set of integers n for which this holds must be
spaced very far apart.

We consider K as imbedded in some fixed manner in the field of
complex numbers. ξn will denote the nth root of unity e2"i/n. If a and b are
any complex numbers such that a/b is not a root of unity, we let £*(α, b)
(or simply f * if a and b are understood) denote an nth root of unity
closest to a/b. For some n and complex numbers a and b, ζ*ιs a primitive
wth root of unity, for others it is not. Moreover, if there is no unique nth root
of unity closest to a/b, ξ* will denote a fixed nearest one. Thus

\a - bζ*\ = min {\a - bξn

v\: v = 1, ..., n}.

LEMMA 2. Let m> n and suppose that ζ* andζ* are primitive nth and
mth roots of unity satisfying

\a - bζ*\ < max(|α|, \b\) e x p ( - Λ

ι / 2 ) / n

and
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\a - K*\ < max (\a\, \b\) exp (-m 1 / 2

Proof If max(|tf|, |6|) = \b\ then we have 4/mn < |f* — ξ%\ <
exp(-w1/2)/fl + exρ(-m 1 / 2 )/m < 2exp(-V / 2 )/« and so m >
2exρ(«1/2). If max(|α|, |Z>|) = \a\ then a similar estimate holds for

|fn* _ £*|.

LEMMA 3. Let A be a subset of the positive integers such that whenever
n,m E A andm > n, then m > exp {n1/2). IfM is any positive integer there
is an xM depending only onM such that for x >: xM, card{n E A : n < x)

Let fc = card {« E Λ : « < x}. If«, < w2 < *"< Hk ^ ^ a r e

the A: elements of A less than jς then for any integery < k

(1) nk_j

iflogyx>21og3.
We first assume k> M + 1. Then takingy = M + 1 in (1) and x large

enough so that logM + ] x > 2 log 3 we have that nk _ M _ i < (3 logM + i x)2;
in particular k — M — 1 < (3 logM + , Λ:)2 and so /: < (M + 1) +
(3 logM +1 x)2. Since this inequality also holds when k < M + 1 and (Af +
1) + (3 \ogM + ! x)2 = 0(logMx) the lemma is proven.

Denoting by £'(#, 6) the set of n such that ξ* is a primitive nth root of
unity and such that \a — bξ*\ < max (\a\, \b\) exp (—n ι/2)/n, Theorem 1
will follow from Lemma 3 if it is shown that if n is sufficiently large and is
not in U E'(a {v\ b(v)), where a(v) and b(v) denote the conjugates of a and b,
then n £ E(a, b).

To perform the analysis we first break up Z + — E\a, b) into two
disjoint sets:

Sx = {n : \a - bζn*\ > max (\a\, \b\) exp (-n m)/n)

S2= {n:\a- bξ*\ < max (|α|, |6|) exp (-nι/2)/n9 and
fΛ* not a primitive nth root of unity}.

Before continuing we note that if n is an integer for which there is no
unique closest nth root of unity to a/b then n G S , .

It will be convenient to have the following notation. For any ζ* let k
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be the divisor of n such that £„* is a primitive kth root of unity. If d\n define

ad-bd rSkkd

ad b*

ΊΓΊF i f

In terms of this notation we have the following easy but basic lemma.

LEMMA 4. Ifζ* is a primitive kth root of unity and k < n then

n

d\n

Proof.

nld)π [«'-*']"«*> - π (ad-brmniad~bΎ
d\n d\n d\n\a-bζnj

kid k\d

= Fn(a,b)(a-bζn*)-L, where

L = £ φ Ψμ(n/d). Setting n' = n/k > \, d! = d/k we have L -

/ = 0.

3. Bounds for \ad - bd| and \[a d - bd]\.

The representation of Fn(a, b) given in Lemma 4 as well as the usual
product formula

Fn(a,b) =

will be used to provide lower bounds for N(Fn(a, b)). In this section we
derive the necessary estimates for \ad - bd\ and \[ad - bd]\.

LEMMA 5. For all d> 1

(3) \ad-bd\<2d max (|β|, \b\)d

(4)
2dmax(\a\,\b\)d ifk =

2</max(|fl|,|6|)</-1 if k= orderς*|rf
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Proof. Inequality (3) and (4) in the case k \d follow from \a d - b d | <
2 max (|β|, \b\)d. If k\dthen from (2)

ad-bd

Lower Bound Estimates: We first prove a preliminary lemma.

LEMMA 6. Let z be a complex number such that \z\ < 1 and \z —
f fc 1)| > |rΛ - 1| = λn. Then n>6andl-\z\> (y/3/2)KH.

Proof. Recall that ζ*(z, 1) is a closest «th root of unity to z. First we show
that if z = re^, where 1 > r >: max (0, cos π/n — Λ/3 sin 7r/«) and |^| <
w/n, then |z — 1| < λΛ. We have in fact

\z - 1|2 - Λ2 < ( r - (cosπjn - A/3sinπ/«))(r - (cosπ/w + fismπjn)) < 0.

By rotation it now follows that if 1 > |z| > max (0, cos 7τ/w -

V3sinττ/«) there is an «th root of unity ζ* such that \z - ζv

n\ < λw.

Finally if« < 6 we have cos π/« — Λ/3 sin it In < 0 and so the condition \z\

<\,\z — ξn*\ > λn is impossible. If n > 6 then 1 — |z| > 1 — cos it In +

(\/3/2)λΛ.

LEMMA 7. 7/Ή G SΊ andd\n then

(5) μ ' - &Ί > max {\a\, |fe|)^exp ( - π 1/2)/« or

(6) | α ' - 6 ' | > maxdαlJftl)^ Π \z - CJ\

in wA/cΛ cα^e rf > 1 tf/irf |z| < 1 satisfies \z — ?*(z, 1)|

PAΌO/ Since /i ε Si we can write

(7) | ^ - ^ | = m a x ( H , | 6 | ) V - l

where z = α/Z? or z = 6/Λ satisfies |z| < 1 and

(8) | z - ^ * ( z , l ) | 1 / 2 M
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If n > 1 and d = 1 then (5) is immediate. If n > 1 and d > 1 we distinguish
two cases accordingly as \z — fΛ*| > λrt or |z — fΛ*| < λΛ. In the former case
Lemma 6 gives 1 - |z| > (λ/3/2)λΛ > 2 φ/n\ hente |z* - 1| > 1 - |z| >
2 V3/>* > exp (-w 1/2)/w, which when combined with (7) gives (5).

If \z — f/| < λΛ then we must also have \z — f/| < λ,/. Otherwise
Lemma 6 gives {^β/2)\d < 1 — |z| < |z — ?Λ*| < λrt which is impossible
since «/</ > 2. Observing now that (6) follows immediately from (7) and
(8), the proof is complete.

LEMMA 8. Ifn G S2andd\n9 then //order ξ* = /c+rf

(9)
\[ad - fc']| > max (\a\, \b\)dexp (~«1/2)/w or

(10) | | y - * ' ] | > max(|α|,|/7|^ί Π U - f/l) exp(-n1/2)/ιι

i/i vvΛ/cΛ cα^e </ > 1 β«rf |z| < 1 satisfies \z — f/| < λrf. 7/Όrder fΛ* =

(11) l ^ - ^ l ^ m a x d β L H ) ^ 1 Π l*-tfl,

f c;

where for d = 1 the product on the right side of (11) ώ owe α/ίd ί/rf > 1, |z| <
1 satisfies \z — f/| < λ .̂

/ Since n & S2, with z = α/6 or Z>/α we have |z| < 1,

(12) | z - f | I / 2

and order ξn* = fc < «.
If A:+ύ? we have « > 1 and since fΛ* is not a Λh root of unity (12) implies

I/2

\z - f/| > |f/ - f/| - μ - f/| > exp (-Λ

 I/2)Aι.

We can now argue as in the previous lemma.
If k\d then we have

(13)

where \z\ < 1 satisfies (12). If d = 1 then since k\d, ξ* = 1 and (13) is
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precisely (11). For d > 1, (11) and the condition \z — ξj\ < λ̂  follow from
(12) and (13) in view of f * = ζ}.

In order to complete the lower bound estimates we must obtain lower
bounds for TT rv rΛz- C\ where d > 1 and \z\ < 1 satisfies \z - ld\ ^ \/
We first prove

LEMMA 9. Let d> I be an integer and r a real number satisfying 0 < r
< \and\r - 1| <λd,then

(14) πV-c u d-^
v = l

where τ — τd = [\/^/2] + 1.

/I Since r is real we have

Π k-tfl Mi/2) Π k-f/l2.

v=l v = i

We give a lower bound for the latter product. From |r — 11 < λ̂  we obtain

(16) \r - ξ/\ ^ |1 ~ ί/| ~ |1 - r| > |1 - ζj\ - λ,.

Let T = τd= [^πd/2] + 1 and suppose first that [d/2] > r^and v satisfies
[d/2] > v > τd. Then

(17) 11 - ζ/1 - |f/ - ζj I = 4 sin (<nτ/2d) cos τr(v/rf - τ

> (4τ/έ/) (έ/ - 2v + τ)/d > 4τ 2 /^ 2 S: 2π/d

Thus from (16), \r - ?/1 > |?/ " τ - 11 and so

[d/2] T M

(is) Π k-tfl* Π |r-cy| Π
v=l v=l v = τ + l

r [rf/2]

Πk-C/I ΠU-

ίΦl
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Since r > 0 we have

(19) \r-ζj\>\r-ζd\>2/d

if d > 4 and the same inequality (\r - ξj\ > 2/d) holds for d < 4.
Observing finally that |1 - ξJ| < 2 and

[rf/2] rf-1

Π i w i2^ Πiw;ι = <*
v = l v = l

we obtain (14) from (15) and (18).
Now if τd > [d/2] we have from (19)

d-l

π
v = l

Π \r-ζj\ > {2jd)d-χ > (2jd)2ίdl2] > <Γ2τ22τ >

and so (14) is also proven in this case.

LEMMA 10. Ifd > 1 and \z\ < 1 satisfies \z -ζd*\< λd then

(20) Π \z-C;\ ϊd~3τ

where τ = τd = [yJ πd/2] + 1.

Proof. We may assume that ζd* = 1 and z — re'0, where 0 < θ <
π/d; thus we must prove the lower bound (20) for JJJ ~ \ \z — ζd |. Let z' =
re2iti/d. T h e n i f 1 < v < [d/2], \z - Π \ > \z' - UI a n d i f [d/2] < v < d -
1> \z — U\ — V — ϋ I Combining these results and using \z — ξd\ > λd/2
> 2/d we obtain

rf-i u _ / | rf1

π \ n\ > ' rf Γί r -

(21) d-ι

Π I C f l
v = l

Since |r - 1| < |z - 1| < λrf, (20) follows from Lemma 9 and (21).
From Lemmas 7, 8 and 10 we arrive at our final lower bound esti-

mates.

LEMMA 11. Ifn G Sx andd\n then
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(22) \ad-bd\ >

where r = τd = [ Λ / ^ / 2 ] + 1.
//« G 5 2 , φ , /ΛCT //order £*(α, 6) = jfcf<£ (22) holds for | [ ^ - tf% Ifk\d
we have

(23) | [ ^ - bd]\ > max (|α|, l ^ " * <Γ3τ.

4 Main theorem and related results. The proof of Theorem 1 will
follow easily from the following lemma.

LEMMA 12. There is an integer n'o such that ifn > «'o and n E S\ U S2

then

(24) log\Fn(a,b)\ > φ(n)πmx(log\allog\b\)-2v{n)n51*.

Proof. If n E S{ we use Lemmas 5 and 11 and the formula Fn {a, b) =
iμd - 6 ^ ) ^ ^ to obtain (24).
If n G S2 then (24) follows from Lemma 4 and the estimates of

Lemmas 5 and 11.

Proof of Theorem 1. Recall that Sx U S2 is the complement of the set
E\a, fc) = { « G Z + : | α - fe?Λ*| < max (|α|, |fc|) exp (-n{/2)/n and f • a
primitive nth root of unity}. Let E = U /=j f V ^ 6(v)), where / = [K: Q]
and α(v), ό(v) denote the conjugates of a and b. If n £ E then the lower
bound (24) is valid for all v provided n> n'o. Thus

(25>

> Aφ{n) - /2v("V/8 where

A = ^ max(log|a(v)|,log|i>(l>)|)

(26)

/
= log|iV(ή)| + J max(logv=l

,0).

If |ΛΓ(6)| = 1, then α/ό is in 0# and there is a constant cκ, depending only
on [K : Q\ such that \a(v)/b{v)\ > c^ for some v. Thus A > min(log2,
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logcκ) = Cκ. Using the well-known [2, p. 114] estimates φ(n) >
d n/log log /i and 2Kn) < c2(€)«€ (with e = 1/8), (25) gives

\og\N(FUb))\ > CκU - c2lnW > /log/i for
log log n

n > no(l) and so from Lemma 1, n $~ E(a, b).
Thus E(a, b) C E U {/? < w0} and the density estimate for E(a, b)

follows in view of Lemmas 2 and 3.
We can extract additional quantitative information from the above

proof. Let us write (μn - bn) = 2t33where3t + 33 = Oκ and $|2ί if and only
if Ĵ is a primitive prime divisor of (</ — bn). We call 21 the primitive part of
(αw — 6n) and denote it by Pn (a, b). Then we have

LEMMA 13. Ifn > no(K) andn φ. E then

(27) log\N(Pn(a,b))\ = Aφ{n) + O(«3/4)

w defined by (26) an J ίΛe constant implied by O depends only on K.

Proof. Lemma 1 implies that for n > 21 (2ι - 1)

-/log/i < log\N(Pn(a,b))\ < log\N{Fn(a,b))\.

If n G Si U S2 the left side can be bounded from below using (24).
Moreover, as in Lemma 12 one shows that for n sufficiently large, n E Sx U

S2

log\Fn(a,b)\ < ^(/

Using these estimates we immediately obtain (27).

Lemma 13 and the density estimate for E enable us to derive both a
normal order and average order for log|Λ^(Pw(α, b))\. The proofs are
straightforward and are omitted.

THEOREM 2. log \N(Pn (a, b))\ has φ{n)A as a normal order, i.e. for any
e>0if

T(ε,x) = [n < x:\log\N(Pn(a,b))\ - φ{n)A\ < εφ(n)A),

then card T(e, x)/x -* 1 as x -*oo.
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THEOREM 3. Σlog\ N(Pn(a,b))\ = ~x2 + O(AxΊl*)
π

where the constant implied by O( ) depends only on K.
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