ON THE PRIME IDEAL DIVISORS OF $(a^n - b^n)$

Edward H. Grossman

Let *a* and *b* denote nonzero elements of the ring of integers O_K of an algebraic number field *K*, such that ab^{-1} is not a root of unity and the principal ideals (*a*) and (*b*) are relatively prime.

DEFINITION 1. A prime ideal \mathfrak{p} is called a *primitive prime* divisor of $(a^n - b^n)$ if $\mathfrak{p}|(a^n - b^n)$ and $\mathfrak{p} \nmid (a^k - b^k)$ for k < n.

DEFINITION 2. An integer *n* is called *exceptional for* $\{a, b\}$ if $(a^n - b^n)$ has no primitive prime divisors.

The set of integers exceptional for $\{a, b\}$ is denoted by E(a, b). Using recent deep results of Baker, Schinzel [4] has proved that if $n > n_0(l)$ then $n \notin E(a, b)$, where l = [K : Q] and n_0 is an effectively computable integer. In particular card $E(a, b) \le n_0$. In this paper, using only elementary methods, upper bounds are obtained for card $\{n \in E(a, b) : n \le x\}$ which are independent of a and b.

1. Introduction. The prime divisors of the sequence of rational integers $x_n = a^n - b^n$ have been studied by Birkhoff and Vandiver. They showed [1, p. 177] that if a and b are positive and relatively prime, then for n > 6 there is a prime p which divides $a^n - b^n$ and does not divide $a^k - b^k$ for k < n. Postnikova and Schinzel [3] have investigated analogues of this result for the ring of integers O_K of an algebraic number field K.

To fix our notation and terminology, a and b will always denote nonzero elements of O_K such that ab^{-1} is not a root of unity, and the principal ideals (a) and (b) are relatively prime. Note then that all the ideals $(a^n - b^n)$ are nonzero.

DEFINITION 1. A prime ideal \mathfrak{p} is called a *primitive prime divisor of* $(a^n - b^n)$ if $\mathfrak{p}|(a^n - b^n)$ and $\mathfrak{p}^{\dagger}(a^k - b^k)$ for k < n.

DEFINITION 2. An integer *n* is called *exceptional for* $\{a, b\}$ if $(a^n - b^n)$ has no primitive prime divisors.

The set of integers exceptional for $\{a, b\}$ is denoted by E(a, b). Using a theorem of Gelfond it can be shown [3, p. 172] that card $(E(a, b)) < n_0(a, b)$. Recently, using deep methods, Baker [4] has improved Gelfond's theorem, and has shown that card $E(a, b) < n_0(l)$, where l = [K : Q]. In this paper we obtain by elementary methods upper bounds for card $\{n \in E(a, b) : n \le x\}$ which are independent of a and b. To state our theorem precisely we

introduce the following notation: If M = 1 we define $\log_1 x = \log x$ and if M > 1 is an integer we define $\log_M x = \log(\log_{M-1} x)$. The main result is

THEOREM 1. Let K be a finite extension of Q of degree l, a and b elements of O_K such that $(a, b) = O_K$ and a/b is not a root of unity. If $M \ge 1$ is an integer, there is an $x_0 = x_0(M, l)$ such that for $x > x_0$, card $\{n \in E(a, b) : n \le x\} \le \log_M x$.

The proof of Theorem 1 as well as related results will be found in §4. Sections 2 and 3 are preparatory.

2. Preliminary lemmas. Our first lemma provides an algebraic criterion for an integer *n* to be exceptional for $\{a, b\}$. Let $F_n(x, y)$ denote the *n*th homogeneous cyclotomic polynomial. We then have

LEMMA 1. Let l = [K:Q] and suppose $n > 2^{l}(2^{l} - 1)$. If the prime ideal $\mathfrak{p}|(a^{n} - b^{n})$ and is not a primitive prime divisor then $\operatorname{ord}_{\mathfrak{p}}(F_{n}(a, b)) \leq \operatorname{ord}_{\mathfrak{p}}(n)$. In particular if $n \in E(a, b)$ then $(F_{n}(a, b))|(n)$.

Proof. See [3, p. 172]. We note without proof that the result also holds provided $n > 2l(2^l - 1)$.

From Lemma 1 if *n* is sufficiently large and $n \in E(a, b)$, then the ideal norm of $F_n(a, b)$ satisfies the inequality $N(F_n(a, b)) \leq n^l$. We will show that this can occur only if some conjugate of a/b is "very close" to a primitive *n*th root of unity; moreover the set of integers *n* for which this holds must be spaced very far apart.

We consider K as imbedded in some fixed manner in the field of complex numbers. ζ_n will denote the *n*th root of unity $e^{2\pi i/n}$. If a and b are any complex numbers such that a/b is not a root of unity, we let $\zeta_n^*(a, b)$ (or simply ζ_n^* if a and b are understood) denote an *n*th root of unity closest to a/b. For some *n* and complex numbers a and b, ζ_n^* is a primitive *n*th root of unity, for others it is not. Moreover, if there is no unique *n*th root of unity closest to a/b, ζ_n^* will denote a fixed nearest one. Thus

$$|a - b\zeta_n^*| = \min \{ |a - b\zeta_n^v| : v = 1, ..., n \}.$$

LEMMA 2. Let m > n and suppose that ζ_n^* and ζ_m^* are primitive nth and mth roots of unity satisfying

$$|a - b\zeta_n^*| < \max(|a|, |b|) \exp(-n^{1/2})/n$$

and

 $|a - b\zeta_m^*| < \max(|a|, |b|) \exp(-m^{1/2})/m$,

then $m \ge 2 \exp(n^{1/2})$.

Proof. If max (|a|, |b|) = |b| then we have $4/mn \le |\zeta_n^* - \zeta_m^*| \le \exp(-n^{1/2})/n + \exp(-m^{1/2})/m \le 2\exp(-n^{1/2})/n$ and so $m \ge 2\exp(n^{1/2})$. If max (|a|, |b|) = |a| then a similar estimate holds for $|\zeta_n^* - \zeta_m^*|$.

LEMMA 3. Let A be a subset of the positive integers such that whenever $n, m \in A$ and m > n, then $m > \exp(n^{1/2})$. If M is any positive integer there is an x_M depending only on M such that for $x \ge x_M$, $\operatorname{card}\{n \in A : n \le x\} \le \log_M x$.

Proof. Let $k = \text{card } \{n \in A : n \le x\}$. If $n_1 < n_2 < \cdots < n_k \le x$ are the k elements of A less than x, then for any integer j < k

$$(1) n_{k-i} \le (3\log_i x)^2$$

if $\log_i x > 2 \log 3$.

We first assume k > M + 1. Then taking j = M + 1 in (1) and x large enough so that $\log_{M+1} x > 2 \log 3$ we have that $n_{k-M-1} \le (3 \log_{M+1} x)^2$; in particular $k - M - 1 \le (3 \log_{M+1} x)^2$ and so $k < (M + 1) + (3 \log_{M+1} x)^2$. Since this inequality also holds when $k \le M + 1$ and $(M + 1) + (3 \log_{M+1} x)^2 = o(\log_M x)$ the lemma is proven.

Denoting by E'(a, b) the set of *n* such that ζ_n^* is a primitive *n*th root of unity and such that $|a - b\zeta_n^*| < \max(|a|, |b|) \exp((-n^{1/2})/n)$. Theorem 1 will follow from Lemma 3 if it is shown that if *n* is sufficiently large and is not in $\bigcup E'(a^{(\nu)}, b^{(\nu)})$, where $a^{(\nu)}$ and $b^{(\nu)}$ denote the conjugates of *a* and *b*, then $n \notin E(a, b)$.

To perform the analysis we first break up $Z^+ - E'(a, b)$ into two disjoint sets:

$$S_1 = \{n : |a - b\zeta_n^*| > \max(|a|, |b|) \exp((-n^{1/2})/n)\}$$

$$S_2 = \{n : |a - b\zeta_n^*| \le \max(|a|, |b|) \exp(-n^{1/2})/n, \text{ and } \zeta_n^* \text{ not a primitive } n \text{th root of unity} \}.$$

Before continuing we note that if n is an integer for which there is no unique closest nth root of unity to a/b then $n \in S_1$.

It will be convenient to have the following notation. For any ζ_n^* let k

be the divisor of n such that ζ_n^* is a primitive kth root of unity. If d|n define

(2)
$$[a^d - b^d] = \begin{cases} a^d - b^d & \text{if } k \nmid d \\ \frac{a^d - b^d}{a - b\zeta_n^*} & \text{if } k \mid d. \end{cases}$$

In terms of this notation we have the following easy but basic lemma.

LEMMA 4. If ζ_n^* is a primitive kth root of unity and k < n then

$$F_n(a,b) = \prod_{d|n} [a^d - b^d]^{\mu(n|d)}$$

Proof.

$$\prod_{d|n} [a^{d} - b^{d}]^{\mu(n/d)} = \prod_{\substack{d|n \\ k \nmid d}} (a^{d} - b^{d})^{\mu(n/d)} \prod_{\substack{d|n \\ k \mid d}} \left(\frac{a^{d} - b^{d}}{a - b\zeta_{n}^{*}} \right)^{\mu(n/d)}$$
$$= F_{n}(a, b) (a - b\zeta_{n}^{*})^{-L}, \text{ where}$$

 $L = \sum_{d|n, k|d} \mu(n/d)$. Setting n' = n/k > 1, d' = d/k we have $L = \sum_{d'|n'} \mu(n'/d') = 0$.

3. Bounds for $|a^{d} - b^{d}|$ and $|[a^{d} - b^{d}]|$.

The representation of $F_n(a, b)$ given in Lemma 4 as well as the usual product formula

$$F_n(a,b) = \prod_{d|n} (a^d - b^d)^{\mu(n/d)}$$

will be used to provide lower bounds for $N(F_n(a, b))$. In this section we derive the necessary estimates for $|a^d - b^d|$ and $||a^d - b^d||$.

LEMMA 5. For all $d \ge 1$

(3)
$$|a^d - b^d| \le 2d \max(|a|, |b|)^d$$

(4)
$$|[a^d - b^d]| \leq \begin{cases} 2d\max(|a|, |b|)^d & \text{if } k = \operatorname{order} \zeta_n^* | d \\ 2d\max(|a|, |b|)^{d-1} & \text{if } k = \operatorname{order} \zeta_n^* | d \end{cases}$$

Proof. Inequality (3) and (4) in the case $k^{\frac{1}{d}}$ follow from $|a^d - b^d| \le 2 \max(|a|, |b|)^d$. If k|d then from (2)

$$|[a^{d} - b^{d}]| = \left| \frac{a^{d} - b^{d}}{a - b\zeta_{n}^{*}} \right| = |a^{d-1} + a^{d-2}(b\zeta_{n}^{*}) + ... + (b\zeta_{n}^{*})^{d-1}|$$

$$\leq d \max(|a|, |b|)^{d-1}.$$

Lower Bound Estimates: We first prove a preliminary lemma.

LEMMA 6. Let z be a complex number such that $|z| \le 1$ and $|z - \zeta_n^*(z, 1)| > |\zeta_n - 1| = \lambda_n$. Then n > 6 and $1 - |z| > (\sqrt{3}/2)\lambda_n$.

Proof. Recall that $\zeta_n^*(z, 1)$ is a closest *n*th root of unity to *z*. First we show that if $z = re^{i\theta}$, where $1 \ge r \ge \max(0, \cos \pi/n - \sqrt{3} \sin \pi/n)$ and $|\theta| \le \pi/n$, then $|z - 1| \le \lambda_n$. We have in fact

$$|z-1|^2 - \lambda_n^2 \leq (r - (\cos \pi/n - \sqrt{3} \sin \pi/n))(r - (\cos \pi/n + \sqrt{3} \sin \pi/n)) \leq 0.$$

By rotation it now follows that if $1 \ge |z| \ge \max(0, \cos \pi/n - \sqrt{3} \sin \pi/n)$ there is an *n*th root of unity ζ_n^v such that $|z - \zeta_n^v| \le \lambda_n$. Finally if $n \le 6$ we have $\cos \pi/n - \sqrt{3} \sin \pi/n \le 0$ and so the condition $|z| \le 1$, $|z - \zeta_n^*| > \lambda_n$ is impossible. If n > 6 then $1 - |z| \ge 1 - \cos \pi/n + \sqrt{3} \sin \pi/n > (\sqrt{3}/2)\lambda_n$.

LEMMA 7. If $n \in S_1$ and d|n then

(5)
$$|a^d - b^d| \ge \max(|a|, |b|)^d \exp(-n^{1/2})/n$$
 or

(6)
$$|a^d - b^d| \ge \max(|a|, |b|)^d \left(\prod_{\zeta_d^{\nu} \neq \zeta_d^*(z, 1)} |z - \zeta_d^{\nu}|\right) \exp(-n^{1/2})/n,$$

in which case d > 1 and $|z| \le 1$ satisfies $|z - \zeta_d^*(z, 1)| \le \lambda_d$.

Proof. Since $n \in S_1$ we can write

(7)
$$|a^d - b^d| = \max(|a|, |b|)^d |z^d - 1|$$

where z = a/b or z = b/a satisfies $|z| \le 1$ and

(8)
$$|z - \zeta_n^*(z, 1)| > \exp(-n^{1/2})/n.$$

If $n \ge 1$ and d = 1 then (5) is immediate. If n > 1 and d > 1 we distinguish two cases accordingly as $|z - \zeta_n^*| > \lambda_n$ or $|z - \zeta_n^*| \le \lambda_n$. In the former case Lemma 6 gives $1 - |z| > (\sqrt{3}/2)\lambda_n > 2\sqrt{3}/n$; hence $|z^d - 1| \ge 1 - |z| > 2\sqrt{3}/n > \exp(-n^{1/2})/n$, which when combined with (7) gives (5).

If $|z - \zeta_n^*| \le \lambda_n$ then we must also have $|z - \zeta_d^*| \le \lambda_d$. Otherwise Lemma 6 gives $(\sqrt{3}/2)\lambda_d < 1 - |z| \le |z - \zeta_n^*| \le \lambda_n$ which is impossible since $n/d \ge 2$. Observing now that (6) follows immediately from (7) and (8), the proof is complete.

LEMMA 8. If $n \in S_2$ and d|n, then if order $\zeta_n^* = k+d$

(9)

$$|[a^d - b^d]| \ge \max(|a|, |b|)^d \exp(-n^{1/2})/n$$
 or

(10)
$$|[a^d - b^d]| \ge \max(|a|, |b|)^d \left(\prod_{\zeta_d^{\nu} \neq \zeta_d^*(z, 1)} |z - \zeta_d^{\nu}|\right) \exp(-n^{1/2})/n$$

in which case d > 1 and $|z| \le 1$ satisfies $|z - \zeta_d^*| \le \lambda_d$. If order $\zeta_n^* = k|d$

(11)
$$|[a^d - b^d]| \ge \max(|a|, |b|)^{d-1} \prod_{\zeta_d^{\nu} \neq \zeta_d^*} |z - \zeta_d^{\nu}|,$$

where for d = 1 the product on the right side of (11) is one and if d > 1, $|z| \le 1$ satisfies $|z - \zeta_d^*| \le \lambda_d$.

Proof. Since $n \in S_2$, with z = a/b or b/a we have $|z| \le 1$,

(12)
$$|z - \zeta_n^*| \le \exp(-n^{1/2})/n$$

and order $\zeta_n^* = k < n$.

If k+d we have n > 1 and since ζ_n^* is not a dth root of unity (12) implies

$$|z - \zeta_d^*| \ge |\zeta_d^* - \zeta_n^*| - |z - \zeta_n^*| > \exp(-n^{1/2})/n.$$

We can now argue as in the previous lemma.

If k | d then we have

(13)
$$|[a^d - b^d]| = \max(|a|, |b|)^{d-1} \left| \frac{z^d - 1}{z - \zeta_n^*(z, 1)} \right|$$

where $|z| \leq 1$ satisfies (12). If d = 1 then since $k|d, \zeta_n^* = 1$ and (13) is

precisely (11). For d > 1, (11) and the condition $|z - \zeta_d^{\nu}| \le \lambda_d$ follow from (12) and (13) in view of $\zeta_n^* = \zeta_d^*$.

In order to complete the lower bound estimates we must obtain lower bounds for $\prod_{\zeta_d^v \neq \zeta_d^*} |z - \zeta_d^v|$, where d > 1 and $|z| \le 1$ satisfies $|z - \zeta_d^*| \le \lambda_d$. We first prove

LEMMA 9. Let d > 1 be an integer and r a real number satisfying $0 \le r \le 1$ and $|r - 1| \le \lambda_d$, then

(14)
$$\prod_{\nu=1}^{d-1} |r - \zeta_d^{\nu}| \geq d^{-3\tau+1}$$

where $\tau = \tau_d = [\sqrt{\pi d/2}] + 1$.

Proof. Since *r* is real we have

(15)
$$\prod_{\nu=1}^{d-1} |r - \zeta_d^{\nu}| \ge (1/2) \prod_{\nu=1}^{\lfloor d/2 \rfloor} |r - \zeta_d^{\nu}|^2.$$

We give a lower bound for the latter product. From $|r - 1| \le \lambda_d$ we obtain

(16)
$$|r - \zeta_d^{\nu}| \ge |1 - \zeta_d^{\nu}| - |1 - r| \ge |1 - \zeta_d^{\nu}| - \lambda_d.$$

Let $\tau = \tau_d = [\sqrt{\pi d/2}] + 1$ and suppose first that $[d/2] > \tau_d$ and v satisfies $[d/2] \ge v > \tau_d$. Then

(17)
$$|1 - \zeta_d^{\nu}| - |\zeta_d^{\nu} - \zeta_d^{\tau}| = 4 \sin(\pi \tau/2d) \cos \pi(\nu/d - \tau/2d)$$

 $\ge (4\tau/d) (d - 2\nu + \tau)/d \ge 4\tau^2/d^2 \ge 2\pi/d \ge \lambda_d.$

Thus from (16), $|r - \zeta_d^{\nu}| \ge |\zeta_d^{\nu} - \tau - 1|$ and so

(18)
$$\prod_{\nu=1}^{\lfloor d/2 \rfloor} |r - \zeta_d^{\nu}| \ge \prod_{\nu=1}^{\tau} |r - \zeta_d^{\nu}| \prod_{\nu=\tau+1}^{\lfloor d/2 \rfloor} |1 - \zeta_d^{\nu-\tau}|$$

$$= \frac{\prod_{\nu=1}^{\tau} |r - \zeta_d^{\nu}| \prod_{\nu=1}^{[d/2]} |1 - \zeta_d^{\nu}|}{\prod_{\nu=[d/2]-\tau+1}^{[d/2]} |1 - \zeta_d^{\nu}|}.$$

Since $r \ge 0$ we have

(19)
$$|r-\zeta_d^{\nu}| \ge |r-\zeta_d| > 2/d$$

if $d \ge 4$ and the same inequality $(|r - \zeta_d^{\nu}| \ge 2/d)$ holds for d < 4. Observing finally that $|1 - \zeta_d^{\nu}| \le 2$ and

$$\prod_{\nu=1}^{\lfloor d/2 \rfloor} |1 - \zeta_d^{\nu}|^2 \ge \prod_{\nu=1}^{d-1} |1 - \zeta_d^{\nu}| = d$$

we obtain (14) from (15) and (18).

Now if $\tau_d \ge [d/2]$ we have from (19)

$$\prod_{\nu=1}^{d-1} |r - \zeta_d^{\nu}| \ge (2/d)^{d-1} \ge (2/d)^{2[d/2]} \ge d^{-2\tau} 2^{2\tau} \ge d^{-3\tau+1}$$

and so (14) is also proven in this case.

LEMMA 10. If d > 1 and $|z| \le 1$ satisfies $|z - \zeta_d^*| \le \lambda_d$ then

(20)
$$\prod_{\zeta_d^{\nu} \neq \zeta_d^*} |z - \zeta_d^{\nu}| \geq d^{-3\tau}$$

where $\tau = \tau_d = [\sqrt{\pi d/2}] + 1$.

Proof. We may assume that $\zeta_d^* = 1$ and $z = re^{i\theta}$, where $0 \le \theta \le \pi/d$; thus we must prove the lower bound (20) for $\prod_{\nu=1}^{d-1} |z - \zeta_d^{\nu}|$. Let $z' = re^{2\pi i/d}$. Then if $1 \le \nu \le [d/2]$, $|z - \zeta_d^{\nu}| > |z' - \zeta_d^{\nu}|$ and if $[d/2] < \nu \le d - 1$, $|z - \zeta_d^{\nu}| \ge |r - \zeta_d^{\nu}|$. Combining these results and using $|z - \zeta_d| \ge \lambda_d/2 \ge 2/d$ we obtain

$$\prod_{\nu=1}^{d-1} |z - \zeta_d^{\nu}| \ge \frac{|z - \zeta_d|}{|r - \zeta_d^{\lfloor d/2 \rfloor}|} \prod_{\nu=1}^{d-1} |r - \zeta_d^{\nu}|$$
$$\ge d^{-1} \prod_{\nu=1}^{d-1} |r - \zeta_d^{\nu}|.$$

(21)

Since $|r - 1| \le |z - 1| \le \lambda_d$, (20) follows from Lemma 9 and (21).

From Lemmas 7, 8 and 10 we arrive at our final lower bound estimates.

LEMMA 11. If $n \in S_1$ and d|n then

(22)
$$|a^{d} - b^{d}| \geq \max(|a|, |b|)^{d} d^{-3\tau} \exp(-n^{1/2})/n$$

where $\tau = \tau_d = [\sqrt{\pi d/2}] + 1$.

If $n \in S_2$, d|n, then if order $\zeta_n^*(a, b) = k d$, (22) holds for $|[a^d - b^d]|$. If k|d we have

(23)
$$|[a^d - b^d]| \ge \max(|a|, |b|)^{d-1} d^{-3\tau}.$$

4. Main theorem and related results. The proof of Theorem 1 will follow easily from the following lemma.

LEMMA 12. There is an integer n'_0 such that if $n > n'_0$ and $n \in S_1 \cup S_2$ then

(24)
$$\log |F_n(a,b)| \ge \varphi(n) \max (\log |a|, \log |b|) - 2^{\nu(n)} n^{5/8}.$$

Proof. If $n \in S_1$ we use Lemmas 5 and 11 and the formula $F_n(a, b) = \prod_{d|n} (a^d - b^d)^{\mu(n/d)}$ to obtain (24).

If $n \in S_2$ then (24) follows from Lemma 4 and the estimates of Lemmas 5 and 11.

Proof of Theorem 1. Recall that $S_1 \cup S_2$ is the complement of the set $E'(a, b) = \{n \in Z^+ : |a - b\zeta_n^*| \le \max(|a|, |b|) \exp((-n^{1/2})/n)$ and $\zeta_n^* a$ primitive *n*th root of unity $\}$. Let $E' = \bigcup_{\nu=1}^{l} E'(a^{(\nu)}, b^{(\nu)})$, where l = [K : Q] and $a^{(\nu)}$, $b^{(\nu)}$ denote the conjugates of *a* and *b*. If $n \notin E'$ then the lower bound (24) is valid for all ν provided $n > n'_0$. Thus

(25)
$$\log |N(F_n(a,b))| = \sum_{\nu=1}^{l} \log |F_n(a^{(\nu)}, b^{(\nu)})|$$
$$\geq A\varphi(n) - l2^{\nu(n)} n^{5/8} \quad \text{where}$$

$$A = \sum_{\nu=1}^{l} \max(\log |a^{(\nu)}|, \log |b^{(\nu)}|)$$

(26)

$$= \log |N(b)| + \sum_{\nu=1}^{l} \max \left(\log \left| \frac{a^{(\nu)}}{b^{(\nu)}} \right|, 0 \right).$$

If |N(b)| = 1, then a/b is in O_K and there is a constant c_K , depending only on [K:Q], such that $|a^{(v)}/b^{(v)}| > c_K$ for some v. Thus $A \ge \min(\log 2, \log 2)$.

 $\log c_K$ = C'_K . Using the well-known [2, p. 114] estimates $\varphi(n) > c_1 n/\log \log n$ and $2^{\nu(n)} < c_2(\epsilon) n^{\epsilon}$ (with $\epsilon = 1/8$), (25) gives

$$\log|N(F_n(a,b))| \ge \frac{C_K n}{\log \log n} - c_2 l n^{3/4} > l \log n \text{ for}$$

 $n > n_0(l)$ and so from Lemma 1, $n \notin E(a, b)$.

Thus $E(a, b) \subset E' \cup \{n \le n_0\}$ and the density estimate for E(a, b) follows in view of Lemmas 2 and 3.

We can extract additional quantitative information from the above proof. Let us write $(a^n - b^n) = \mathfrak{AB}$ where $\mathfrak{A} + \mathfrak{B} = O_K$ and $\mathfrak{B}|\mathfrak{A}$ if and only if \mathfrak{B} is a primitive prime divisor of $(a^n - b^n)$. We call \mathfrak{A} the *primitive part* of $(a^n - b^n)$ and denote it by $P_n(a, b)$. Then we have

LEMMA 13. If $n > n_0(K)$ and $n \notin E'$ then

(27)
$$\log |N(P_n(a,b))| = A\varphi(n) + O(n^{3/4})$$

where A is defined by (26) and the constant implied by O depends only on K.

Proof. Lemma 1 implies that for $n > 2^{l} (2^{l} - 1)$

$$\log |N(F_n(a,b))| - I \log n \le \log |N(P_n(a,b))| \le \log |N(F_n(a,b))|.$$

If $n \in S_1 \cup S_2$ the left side can be bounded from below using (24). Moreover, as in Lemma 12 one shows that for *n* sufficiently large, $n \in S_1 \cup S_2$

$$\log |F_n(a,b)| \le \varphi(n) \max (\log |a|, \log |b|) + 2^{\nu(n)} n^{5/8}$$

Using these estimates we immediately obtain (27).

Lemma 13 and the density estimate for E' enable us to derive both a normal order and average order for $\log |N(P_n(a, b))|$. The proofs are straightforward and are omitted.

THEOREM 2. $\log |N(P_n(a, b))|$ has $\varphi(n)A$ as a normal order, i.e. for any $\epsilon > 0$ if

$$T(\varepsilon, x) = \{n \leq x : |\log|N(P_n(a, b))| - \varphi(n)A| < \varepsilon \varphi(n)A\},\$$

then card $T(\epsilon, x)/x \rightarrow 1$ as $x \rightarrow \infty$.

ON THE IDEAL DIVISORS OF $(a^n - b^n)$

THEOREM 3.
$$\sum_{n \le x} \log |N(P_n(a, b))| = \frac{3A}{\pi^2} x^2 + O(Ax^{7/4})$$

where the constant implied by O() depends only on K.

References

1. G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^n - b^n$, Ann. of Math., 5 (1902-03), 173-180.

W. J. LeVeque, Topics in Number Theory, vol. 1, Addison Wesley, Reading, Mass., 1956.
 L. P. Postnikova and A. Schinzel, Primitive divisors of the expression aⁿ - bⁿ in algebraic number fields, Math. U.S.S.R.-Sbornik, 4 (1968), No. 2, 153-159.

4 A. Schinzel, Primitive divisors of the expression $A^n - B^n$ in algebraic number fields, J. Reine Angew. Math., 268/269 (1974), 27-33.

Received July 23, 1973.

CITY COLLEGE OF CUNY