
PACIFIC JOURNAL OF MATHEMATICS
Vol.54, No. 2, 1974

WALSH SERIES WITH COEFFICIENTS
TENDING MONOTONICALLY TO ZERO

J. E. COURY

Results concerning the Walsh-Fourier coefficients of contin-
uous functions are obtained which extend the work of Bockarev to
the case of nonabsolutely convergent Walsh series. Analogues of
results for trigonometric series with monotonically decreasing
coefficients are proved for the Walsh system. In particular, it is
shown that, unlike the trigonometric case, convexity of the
coefficients is not sufficient to guarantee that such series are
always nonnegative.

1. Introduction. In this paper we study series of the form S(x) =

Σ%Locnwn(x)9 where {wn(x)} denotes the Walsh system ordered according

to Paley's arrangement and {cn} is a sequence of real numbers tending to 0

whose terms satisfy some monotone condition. Bockarev [4] has shown that

if the coefficients of S(x) satisfy | c o | ^ \c{\ >: ... and S(x) is absolutely

convergent, then S(x) can be the Walsh-Fourier series of a continuous

function only if it is constant. In §3 this result is generalized to sequences

whose terms eventually satisfy a monotone condition in blocks of length 2W,

and we remove the strong hypothesis that S(x) be absolutely convergent. In

particular, it is shown that if c0 >: cλ > c2 ^ ... and 2nc2n—• 0 as n—* oo, then

S(x) can represent a continuous function/only if/is constant.

In §4 we consider the problem of finding a sufficient condition on

Walsh series whose coefficients decrease monotonically to 0 which guar-

antees that the series is everywhere nonnegative. In the case of trigonome-

tric series it is enough to suppose that the sequence {cn} is convex; for the

Walsh case, we show that convexity is not sufficient (cf. Yano [13]). We

prove, however, that S(x) is nonnegative on [0, 1[ if {cn} is assumed to be

completely monotone and show that this condition is sufficient that S(x) be

Lebesgue integrable.

The last two sections treat Walsh series with completely monotone

coefficients in more detail. In §5 sufficient conditions are found for S(x) to

be a strictly decreasing function on [0, 1[; it is shown, in particular, that for

any fixed 0 < r < 1/2, the series Σ™tnwn(x) is strictly decreasing. In §6 the

differentiability of such series is investigated. Sufficient conditions are

given that the series be differentiable almost everywhere, and it is shown

that if the derivative exists at a point, then it is necessarily 0. Thus we prove

that the only differentiable Walsh series with completely monotone coeffi-

cients are the constants.
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2. Preliminaries. The Rademacher system {rn(x)}£L0 on [0, 1[ is
defined as follows: if x G [0, 1[ has the dyadic development Σ<£=\Xn2~n,
where xn is 0 or 1, then rn(x) = (-l) X π + 1 . The Walsh system, ordered
according to Paley's arrangement (see [9]), is obtained by setting w0 (x) = 1
and defining wn(x) = rnι(x) rni(x) ... rΠv(*)for« > l,where« = 2m +
2nl + ... + 2nv and nx > n2 > ... > nv >: 0. The functions {wn (x)}T=o form
a complete orthonormal set on [0,1[; for n> 1, wn (x) is continuous at each
dyadic irrational.

Define the Dirichlet kernel for the Walsh system by Dk(x) =
Σ^Io>vn(jc). Then \Dk(x)\ < 2/x for all k and every x E ]0, 1[; also, for
eachk > 1, Z)2fc(;c) = 2*on[0,2-k[mdD2k(x) = 0on[2 '^ l[(seeFine[5,
pp. 386 and 391]).

3. The Walsh-Fourier coefficients of continuous functions. Let cn s
cΛ(/) denote the (n + l)st Walsh-Fourier coefficient of/(*). If /(x)
is continuous, then {cn} converges to 0. Bockarev [4] has shown the
following: the only continuous functions on [0, 1[ whose Walsh-Fourier
coefficients satisfy \c0 \ > \cx | >: \c2 \ > ... with Σ \cn \ < oo are the constants.
In this section, we generalize Bockarev's result and show that we need not
require the series of coefficients to be absolutely convergent. We begin with
a lemma.

LEMMA 1. Let {cn} be a sequence of real numbers and N a fixed but
arbitrary positive integer. Then the following inequality holds for each n> N
and every x G [2~N, 1[:

ckwk(x)
2 n + 1 - 2

ϊ\ck-ck+ι\

Proof Using Abel's transformation we obtain

2"+ J~I 2 f f + 1 - 2

K — 2. K—2.

The functions D2n(x) and D2*+ι(x) are 0 on [2~N, l[ for every n > N; also,
\Dm(x)\ < 2/x < 2N+ι on [2-*, 1[ for each m. Thus the inequality in the
lemma is valid for each n > N and every x G [2"^, 1[,

THEOREM 1. Let f(x) be continuous on [0, 1[ (except possibly at
x = 0)5 and let {ck } denote the Walsh-Fourier coefficients off Define
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Ό _ γ 2 / π + 1 - 2 ι

if
2PY°° Rm-+0 as

Lm p mm
m

thenf(x) is constant.

Proof. Let S(x) = Σf=0 ck wk (x). By [5, p. 373], S2n(x) -»/(x) at each
point of continuity of/ Define Sk(x + 0) = lime l0Sk(x + ε) and

if x is a point of continuity of/([11, p. 12]). Since S>(x) is constant on
intervals of the form 1/2~N, (i + 1)2"* [, we have

f((i+l)l2N) -f(iJ2N) = I [S2^((i+l)J2N-0) - S2k((i+l)ι

oo

lS2k+ι{ιl2 + 0) - S2k(ιj2 + 0)J

hence

|/(( / '+l)/2 )-/(//2 ) | < 2! I J] ckwk(0
m = N k = 2m

Set MN = 2^+1 then for ι > 1, Lemma 1 implies that

|/((/+l)/2") -fψN)\ < 2 I MNRm = 2MN I Rm,
m=N m=N

and so, for every i,j >: 1:

\fUl2N)-/(il2N)\ <2N+ιMN lRm.
m = N

Similarly, for any r > N and any / for which i/2r >: 1/2̂ , we have:

and thus for every i andy for which i/2r,j/2r > 1/2N we obtain
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By hypothesis, the right side of the last inequality tends to 0 as r —• oo. Thus
given any ε > 0, \f(j/2r) - /(//2r)| < ε for sufficiently large r and all i,/for
which i/2rJ/2r G [2~N, 1[. The set of all such dyadic rationals is dense in
[2~N, 1[, and since/is continuous, |/(JC) -f(y)\ < ε for all*,7 G [2~N

9 1[.
Since ε and iV are arbitrary, it follows that | f(x) —f(y)\ =0 for every
x, y G ] 0, 1[ , and so/is constant.

COROLLARY 1. Lei {cn} denote the Walsh-Fourier coefficients of a
function f(x) which is continuous on ]0, 1[. Suppose that
2/?Σ*°== 2p\Ck — c* + 11 —* 0 as1/? —>oo (in particular, {<:„} must be of bounded

variation). Thenf(x) is constant.

COROLLARY 2. Suppose that ck = ck (/) satisfies 2P Σf= y> \ck | -* 0 as
• oo, and suppose thatf(x) is continuous. Thenfix) must be constant.

Proof
0 0

2" l R
oo

< 2p y
2 m + ι - 2

Σ

and thus Theorem 1 applies.

We prove next an analogue of Bockarev's result which holds for series
whose coefficients are eventually monotone decreasing in blocks of length
2n. More precisely, we have the following.

THEOREM 2. Suppose that c2n > c2n+\ ̂  •• ̂  c2«+i_i holds for
sufficiently large values ofny where {cn } are the Walsh-Fourier coefficients of
a continuous function f(x)9 and suppose that

oo

2" Σ (C2m~ C2"+ 1-l) •* ° 0S P-* °°
m = p

Thenf(x) is constant.

Proof.

2" Σ 2Y\ck-ck+ι\ = 2" I (c2.-c2.+ 1 ,) - 0,

and therefore Theorem 1 applies.
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C O R O L L A R Y 3. (Cf. B o c k a r e v [4]). Suppose cni0 and 2nc2n —> 0 as
n —> oo (this holds, for example, ifΣcn < oo). Then f(x) continuous on
]0, 1[ implies thatf(x) is constant.

EXAMPLES. 1. If cn = l/(/ι + l)α, then 2nc2«-* 0 if and only if a > 1.
Thus, Σ£°= o (n + l)~αwΛ (x) cannot represent a continuous function for any
a > 1. It is also true that Σ™=0(n + l ) " 1 ^ * ) is not continuous, but we
defer the proof of this fact until §6.

2. The following shows that Corollary 3 extends Bockarev's result to
cases where Σ|cn I = oo. For 2n < k < 2n + 1 define ck = 1/Λ2". It is clear that
the hypotheses of Corollary 3 are satisfied, but Σ\cn | = Σl/n = oo.

3. The hypotheses of Theorem 1 may be satisfied without satisfying
those of Theorem 2: for example, for each n define Cin = — \/n2n and let
ck = l/rt2nfor2n < k < 2* + ! - 1.

4. To show that there exist absolutely convergent series which satisfy
the hypothesis of Theorem 2 but not of Bockarev's Theorem, define
ck = 0 for 2n < k < 2n + ι - 1 and c2n+ι_ι = - l / ( n - 1)2Λ~I. Then
c2n > ... > c2Λ+,_! holds for every «, and 2pΣ%=p(c2m - c^+i-i)-* 0 since

2p Σ l^. i^l < - + - ^ 7 - 0.
J J9 P I

However, |c o | > |ct | >: ... is not satisfied.

4. Sufficient conditions for a nonnegative sum. In the trigonometric
case, it is known that if cn I 0 and the sequence {cn } is convex, then ιΔc0 +
ΣjfcLi ck cos kx converges (except possibly at x = 0) to a nonnegative and
integrable sum/(x) and is the Fourier series of/(x) (see [14, vol. I, p. 183]).
Yano [13] has proved a similar result for the Walsh system but fails to get
nonnegativity of such series. This is due in part to the fact that the Fejέr
kernel for the trigonometric system is positive, whereas for the Walsh
system it is not (see [5]).

We will show that for a Walsh series S(x) = Σcn wn (x) with cn 10, {cn }
convex is not sufficient to prove that S(x) is nonnegative; to obtain suffi-
cient conditions for a nonnegative sum, we will work instead with the
Abel kernel. We begin with the definition of a completely monotone
sequence.
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DEFINITION. (See Lorentz [7, p. 58], Widder [12, p. 108].) Given a
sequence {cn }?=0 whose terms tend to 0, define

for n, k = 0, 1,.... The sequence {cn} is called completely monotone if
Δkcn > 0 for all n, k = 0, 1,.... (Thus, for example, {\/{n + l)}^Lo and
[f }™=0 for 0 < t < 1 are completely monotone.)

In particular, if {cn } is completely monotone, then cn I 0 and {cn} is
convex.

The moment problem for the space C[0, 1] consists in finding a func-
tion g(x) of bounded variation for which fltndg(t) = cn for every n > 0,
where {cΛ } is given. The proof of the following result may be found in
Lorentz [7, p. 59] or Widder [12, p. 108].

THEOREM 3. The moment problem has a nondecreasing and bounded

solution g(x) if and only if{cn } is completely monotone.

LEMMA 2. Suppose cn I 0. Then S(x) = Σ^Locnwn(x) converges uni-
formly on [δ, \\for every δ > 0. S(x) is continuous except possibly at dyadic
rationals.

Proof Use Abel's transformation, noting that D(x) = Σ*°=o wk (x) has

uniformly bounded partial sums on every [δ, 1[ (in fact, \D(x)\ < 2/δ).

Since the Walsh functions are continuous at dyadic irrationals, so therefore

is S(x).

LEMMA 3. For 0 < t < 1, let P(x, t) = Σ™=ofwn(x) denote the Abel
kernel and Pk{xy t) = Σ*zι

ot
nwn(x) its kth partial sum. Then:

(i) />U0« Πd + ^.W);

k-l

(ii) P2k(x,ή = Π <

(iii) P ( A ; 0 > 0 αnέ/ P 2,(x,r)>0 /or 0 < x < 1, 0 < t < 1.

Proof Part (ϋ) follows by expanding the given product, and hence (i)

is true since P2k(x, t) —• P(x9 i). Since each term in the product is positive

and since the infinite product cannot diverge to 0, (iii) follows.
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We prove next the Walsh analogue of Theorem (1.5) in Zygmund [14,
p. 183].

THEOREM 4. Let {cn } be a completely monotone sequence. Then the
series Σ£L0 Cn wn (*) converges, except possibly at 0, to a positive and integra-
ble function S(x) and is the Walsh-Fourier series ofS(x).

Proof. By Lemma 2, S(x) converges save possibly at 0. Let Sn denote
the nth partial sum of S. Since {Sn } is uniformly convergent to S on every
[δ, 1[, we have S = lim S2n. Writing cn = \lfdg(t), we have:

S2Λx) = Σ cnwn(x) = J1 ( I t»wn(x))dg(t) = \\PlN{*,t)dg{t).
w = 0 υ \ /z = 0 /

If x is a dyadic rational, then the factors 1 + t2nrn{x) in the infinite
product P{x, t) are eventually equal to 1 + t2". Hence {P2N(X, O}^=O is
eventually monotone increasing and so the Monotone Convergence
Theorem implies that S(x) = J JP(x, /) rfg(0 Now for arbitrary x in ]0, 1[,
let AT be the least positive integer for which the Kth dyadic digit of x is 1.
Then {PIN(X, t)} is bounded by

and this infinite product is plainly P(z, t) for a suitable dyadic rational
z Φ 0. By the previous remark, S(z) = IQP(Z, i)dg(t) and so P{z9 t) is
integrable; thus by the Lebesgue Dominated Convergence Theorem we
have

S(x) = limS^x) = lim

Appealing to the previous lemma, we conclude that S(x) > 0 on [0, 1[.
Since S>(jt) = IQP2N(X, t)dg{t) > 0 for every N, Fatou's Lemma gives

H\S(x)\dx = $ls(x)dx < lim $l

QS2N(x)dx = lim c0 = c 0,

and hence S(x) is integrable.
Let N be fixed but arbitrary; in view of Lemma 2 and the fact that
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wN(x) = 1 in a neighborhood of 0, it follows that the partial sums of
(1 — ^(x))Σ^°=ocπwrt(x) converge uniformly to (1 — wN(x)) S(x) on
[0, 1[. Hence

<** = l i m ίnU - wN(x))S2n(x)dx = co-cN.
Λ-»oo

Integrating the left side gives

where the latter integral is, by definition, the Mh Walsh-Fourier coefficient
of S(x). Passing to the limit as N -» oo and noting that the Walsh-Fourier
coefficients of an integrable function converge to 0 ([11, p. 14]), we con-
clude that J" ι

0S(x) dx = c0. Thus we also have cN = foS(x)wN(x) dx for
every value of N, and hence Σcn wn (x) is the Walsh-Fourier series of S(x).

REMARK. It is not necessary that {cn} be completely monotone in
order for S(x) to be positive on [0,1[. To show this, let {cn } be any sequence
for which cn 10 and ck > Σ£L*+x cn for every k > 0. Plainly S(x) is positive,
but {cn} need not be completely monotone. Take, for example,
c0 = 4/3, cx = 5/6, and cn = l/2rt for A* > 2; then {crt } is not even convex.

To show, however, that there exist convex sequences for which S{x) is
not positive requires a more delicate argument.

PROPOSITION 1. There exist convex sequences {cn} for which

S(x) = Σ™=ocnwn(x) assumes negative values.

Proof Define dg(t) = - 1 for 0 < * < 1/2 and dg(t) = 1 for 1/2 < t
< 1. Setαn = Sotndg(t) = (1 - 1/2") ~ (« + 1); it is easily checked that
{tfΛ }£L2 is convex. Let cn = ΛΛ + 2 for w >: 0. We will show that S(\ - 0) =
limei0 5(1 - ε) is negative. Since 5(1 - 0) = / J ί2P(l - 0, ί) dg(t\ where
i>(l - 0, /) = Π^°=0(l - ί2"), it suffices to show that "

- ft 0 ^ > J ^ 2 P ( 1 - ft t)dt9

or equivalently, adding fot2P(l — 0, f)A to each side of this inequality,
that

2ShλP(\ - ft /)Λ > SU2P(\ - ft /)Λ.

ForίG[0, 1/2] we have
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P(l - 0, 0 = 1 - t - ? + t3 ... > 1 - t - t2 + t3 - (t4 + /5 + ...)

> 1 - t - ί2

thus

p(i-o,o = Π (i - n - (l - 0 Π (i -12") = (i - 0/ U-α*2)

> (1 - 0 (1 - t2 - t4) = 1 - / -t1 + t3 - t4 + ί5;

hence

2ί0

1/V/>(l - 0 , 0 * ^ 2jo

1/2(/2 - t3 - t4 + ί5 - r6 + ί 7)Λ

=* .043536... > .0435.

Also,

= l - t - ? + t3 - t4 + t5 + t6 - f;

hence

^ .043254... < .0433.

(The author wishes to thank Professor D. Boyd for the above estimates

We close this section with the Walsh analogues of two results that hold
for trigonometric series whose coefficients tend monotonically to 0.

PROPOSITION 2. There exist Walsh-Fourier series with coefficients de-
creasing monotonically to 0 arbitrarily slowly.

Proof. In view of Yano's result [13, p. 235] that {cn} convex guar-
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antees the integrability of S(x), it is enough to show that given an arbitrary
sequence of positive numbers εn —* 0, there exists a convex sequence {cn }
with cn >: εn and cn -* 0. Such a series can easily be constructed geometri-
cally (see, for example, Bary [3, vol. II, p. 203]).

PROPOSITION 3. (Cf. Zygmund [14, vol. I, p. 184].) There exists a
Walsh series S(x) = Σcnwn(x) with cn I 0 such that S(x) is not Lebesgue

integrable.

The proof of this result is essentially the same as in the trigonometric
case: it relies on the fact that the Lebesgue constants Lk = J o | At (x)\dx for
the Walsh system satisfy Lk = 0(log k) ([5, p. 391]).

The proof of Proposition 3 may also be modified to show that con-
vexity of {cn} is not necessary for the integrability of S(x): for any fixed
x Φ 0, summation by parts gives

oo

S(x) = l(ck-ck+1)Dk+ι(x)9
k = 0

where Dk(x) denotes the &th partial sum of the Dirichlet kernel. If the
sequence {cn} is chosen so that ck I 0 and is constant for 2n < k < 2Π+1

(n > 0), we obtain

Since D2k(x) equals 2k on [0, 2~*[ and is 0 on [2~k, 1[, follows that S(x) is
nonnegative. Hence, by the Monotone Convergence Theorem:

H\S(x)\dx = yoS(x)dx = Σ (c2*_j - c2k) γQD2k{x)dx

K — U

oo

= Σ {C k - C k ) = C

Thus S(x) is integrable, but the sequence {cn} is plainly not convex.

5. Strictly decreasing series. In this section we will find sufficient
conditions on the coefficients of S(x) to ensure that S(x) is a strictly
decreasing function on [0, 1[. We begin with the following result. (Cf.
Balasov [1].)
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THEOREM 5. Let S(x) = Σcnwn(x) with cn I 0, and suppose that

cn > Σ%Ln+ιCkfor every n > 0. Then S(x) is strictly decreasing on [0, 1[.

Proof. Suppose that x < y and that the first dyadic digit in which x

andy differ is the (M + l)st. Since x a n d / coincide in the first M positions,

wn{x) = wn(y)ϊoιn = 0, 1, ... ,2M — 1. Also,* < y implies that x M + 1 = 0

andjv+i = 1, and hence W2Λ/ (JC) = 1, W2Λ/ (y) = —1. Thus the hy-

pothesis that cn > Σ^=n+ιck for each n guarantees that S(x) is at least

monotone nonincreasing. To show that it is strictly decreasing, it is enough

to prove the sequence {wn (x)}T=ocan never be eventually equal to 1 unless

JC = O.

We will show, in fact, that if two sequences {wn(x)}™ and {wΛ(/)}o°

coincide in all but finitely many terms, then x = y. Let N be such that wn (x)

= wn (y) f°Γ every n > N. For m> N — 1, we have w2m(x) = w2m(j) since

2W > TV; hence rm(x) = r m ( j ) and thus xm+λ = ym+ι for every m > TV - 1.

For a fixed but arbitrary m > N - 1, set A: = 2m + V, where

0 < y < N - 2. Then w*(x) = rm(x) ry(x) and wk(y) = rm(y) ry(/), and

hence ry(x) = r y(j), from which we conclude that xJ+ί = yj+\. Since

y E {0, 1, . . . , N — 2} was arbitrary, it follows that xn — yn for every n and

hence that x — y.

COROLLARY 4. Suppose that {cn} is a completely monotone sequence

whose associated measure is supported on [0, 1/2]. Then S(x) = Σcnwn(x) is

strictly decreasing on [0, 1[.

Proof. For each n > 0,

Since the integrand in the last expression is nonnegative for 0 < t < 1/2,

the conclusion follows from Theorem 5.

Since the sequence {an }̂ °=0 is completely monotone, dg{t) being the

point mass concentrated at a, we have the following result.

COROLLARY 5. Let 0 < a < 1/2 be fixed. Then the series

Σ™=oa
n wn (x) is strictly decreasing on [0, 1[.

6. Differentiable sums. Let S(x) be a Walsh series whose coefficients

form a completely monotone sequence. In this section we give sufficient
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conditions for S(x) to possess a derivative at almost all points of [0, 1[, and
we show that the only such series that are differentiable tfre the constants.
We begin with a definition.

DEFINITION. Let μ be a measure on [0, 1[ with support P. Define the
essential supremum of the support of μ by

Ω(P) = inf {λ : μ(P Π [λ, 1[) = 0}.

The next proposition shows that if the support of the measure for a
completely monotone sequence is bounded away from 1, then the series
cannot be continuous.

PROPOSITION 4. Let {cn} be a completely monotone sequence whose
corresponding measure is supported on a set E, and suppose that Ω(E) < 1.
Then Σcn is convergent and hence S(x) = Σcnwn(x) cannot be continuous
unless it is constant.

Proof. By the Monotone Convergence Theorem,

That iS(jc) is not continuous now follows from Corollary 3.

COROLLARY 6. Let {cn} be completely monotone with Ω(£) < 1, and
suppose that S{x) = Σcπ wn (x) is not constant. Then S(x) is not differentiable.

In the case where Ω(£) = 1, it may still happen that S(x) is discon-
tinuous and hence nondifferentiable, as shown by the next result.

PROPOSITION 5. The series S(x) = Σ^=o(« + \)~ιwn(x) is not con-
tinuous.

Proof. We show that 5(1/2 - 0) > 5(1/2 + 0). Since [\/{n + 1)}§°
corresponds to the distribution function g(t) = u we have:
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(1 - 0 Π ( l + / 2 " ) * = ln2 ~ .69.

We may estimate 5(1/2 - 0) as follows:

5(1/2 - 0) = J JP(l/2 - 0, ήdt = J J(l + 0(1 -

Thus S(x) is discontinuous at x = 1/2.

For a suitable restriction, however, on Ώ(E) or on the coefficients of
5(x), we do get differentiability of S(x) almost everywhere.

THEOREM 6. Suppose that {cn} satisfies one of the following:
(i) c > ΣT=n+ιckforevery n > 0;
(ii) {cn} w completely monotone with Ω (Is) < 1.

Γλew S(x) = Σcrt wn (x) is differentiate at almost all points of[0, 1[. Further,

if(iϊ) holds, then S"(x) = 0 a.e.

Proof If (i) holds, Theorem 5 implies that S(x) is monotone and
hence has a derivative almost everywhere.

Suppose now that (ii) is satisfied. By the strong law of large numbers,
l i n v ^ x j + x2 + ... + xk)/k = 1/2 for almost all x — Σf=xxk2~~k in
[0, 1[. Denote by Γthe set of all points for which this relation holds, and let
x belong to T. Then for all sufficiently large values of k, there exists an
integer / such that k/3 < i < k and xt = 0: for otherwise,

2/3 as k

contrary to our assumption that x G Γ.
Let x G Γ be fixed; for h > 0, denote by N(x, h) the largest integer

such that x + h and x coincide in the first N(x, h) coordinates. Let M(Λ)
denote the first coordinate of h in which a 1 appears. If xn = 0 for some n <
M(Λ), then evidently N(x, h)>n— 1. In view of the preceding paragraph,
if A is sufficiently small (so that M{h) is sufficiently large), we can find an
integer i such that Af(A)/3 < / < Af(A) and x, = 0. Thus for fixed but
arbitrary x G Γ, we have N(x, h) > M(A)/3. (This is hardly a precise
estimate oίN(x, h), but it is sufficient for our purposes.)

We now show that S'(x) exists and equals 0 for every x G T. To
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simplify notation, we will write N for N(x, h). Then

dg{t)
N

The expression in braces may be estimated by

OO 00 00 OO

Π ( l + ί2Vπ(* + Λ ) ) - Π ( l + ' 2 V n ( * ) ) < Π <
N N N

Π
N

= 2 - f

I - /
2"

Define C = P(0, 0(£)) = ΠΓ=O(1 + Ω(^)2"); assuming Ω(£) < 1, we then
have:

S(x+h) -S{x) SHE) N-l

1 -

2 C

We show that this last expression tends to 0 as h I 0. By the previous
paragraph, iV = N(x, h) > M(Λ)/3. Since M{h) is asymptotically equal to
log2 I/A as Λ i 0, it follows that Ω(£)2^/A — 0 as h i 0. Also, since N(x, h) —
oo as Λ i 0, we have 1/(1 - Ω(£)2Λf) ~> 1 as h I 0. Thus we conclude S'+ (x)
is 0 at each point of T.



WALSH SERIES WITH COEFFICIENTS 15

Similarity, we show S'_ ( c) is 0 on the set - T. Hence S'(x) exists and is
0 at every point of T Π (—7), that is, at every point of T.

REMARKS. 1. It should be noted that the set Γin the preceding proof
contains no dyadic rationals, and neither does it contain every dyadic
irrational (Γis in fact a set of the first category; see [8, p. 85]). However, as
shown in the next result, if Ω(£) < 1 and the derivative of S(x) exists at any
point, then it is necessarily 0 at that point.

2. While the preceding proof does not give differentiability almost
everywhere for the case in which Ω(J£) = 1, a similar approach can be'used
to show that, except possibly at dyadic rationals, the derivative of S(x) is 0
whenever it exists.

LEMMA 4. Let {cn} be completely monotone.
(i) Suppose Ω(£) < 1. Then S\x) = 0 whenever the derivative exists.
(ii) Suppose Ώ(E) = 1. If S'(x) exists, then S\x) <0.If, in addition, x

is a dyadic irrational, then S'(x) = 0.

Proof. If S'(xQ) exists, it may be expressed as

5 ' ( * o ) = £ n M 2 " J o L < - o ^

f0N J ^ ( + t*\(x0))dg(t),
nΦN-l

where eN is + 1 or — 1 according as JC0 has 1 or 0 in its Mh coordinate.
If x0 is a dyadic irrational, there are infinitely many 0's and Γs in its

dyadic expansion; thus, since the limit is assumed to exist, it must equal 0. If
x0 is a dyadic rational, then ε^ is eventually - 1 , and hence S'(x0) ^ 0.

Now suppose that Ω(E) < 1. From the above expression for Sf(xQ), it
follows that

o
nΦN-l

< c0 Π (1 + Ω(-£)2" )lim2N+ιΩ(E)2N-1 = 0,

since Ω(£)< 1.
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COROLLARY 7. The only absolutely continuous functions whose

Walsh-Fourier series have completely monotone coefficients are the con-

stants.

THEOREM 7. Let S(x) be a Walsh series with completely monotone

coefficients, and suppose that S(x) is differentίable on ]0, 1[. Then S(x) is

constant on ]0, 1[.

Proof Suppose S(x) is differentiable on ]0, 1[. Then S(x) is contin-
uous on ]0, 1[ and also, by Lemma 4, S'(x) = 0 at every dyadic irrational.
Since S'(x) is integrable, it follows that S(x) is absolutely continuous, and
therefore constant, on every closed subinterval of ]0, 1[ (see [6, (18.41)]).
Hence S(x) is constant on ]0, 1[.
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