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ON (J, M, m)-EXTENSIONS OF BOOLEAN
ALGEBRAS

DwicHT W. READ

The class 2 of all (J, M, m)-extensions of a Boolean
algebra %7 can be partially ordered and always contains a
maximum and a minimal element, with respect to this partial
ordering. However, it need not contain a smallest element.
Should %~ contain a smallest element, then % has the struc-
ture of a complete lattice. Necessary and sufficient conditions
under which 2% does contain a smallest element are derived.
A Boolean algebra %7 is constructed for each cardinal m such
that the class of all m-extensions of % does not contain a
smallest element. One implication of this construction is that
if a Boolean algebra - is the Boolean product of a least
countably many Boolean algebras, each of which has more
than one m-extension, then the class of all m-extensions of
7 does not contain a smallest element. The construction
also has as implication that neither the class of all (m, 0)-
products nor the class of all (m, n)-products of an indexed
set {%},c, of Boolean algebras need contain a smallest
element.

1. Sikorski [2] has investigated the question of imbedding a
given Boolean algebra .&~ into a complete or m-complete Boolean
algebra <Z and has shown that in the case where the imbedding map
is not a complete isomorphism, the imbedding need not be unique up
to isomorphism. He further has shown that if .97 is the class of all
(J, M, m)-extensions of a Boolean algebra .o/ then .2 has a naturally
defined partial ordering on it and always contains a maximum and a
minimal element. He has left as an open question whether it always
contains a smallest element. La Grange [1] has given an example
which implies that 2% need not always contain a smallest element.
However, the question of when does .2 in fact contain a smallest
element is of interest as it turns out that should .2 contain a
smallest element, it has the structure of a complete lattice.

In §2, necessary and sufficient conditions are given for .5 to
contain a smallest element. In addition, the principle behind La
Grange’s example is generalized in Proposition 2.10 to show that if
¥ is not m-representable then the class .9 of all (J, M, m')-exten-
sion of .7 where J=, M < o and m’ > M, will not contain a smallest
element.

Since the proof of this result requires that J and M have cardi-
nality < o, it is of interest to ask if the class of all m-extensions
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contain a smallest element in general, and the answer is no.

In § 3, a Boolean algebra .7 is constructed for each cardinal m
such that the class 2% of all m-extensions of .2 does not contain
a smallest element. The construction has as implication (Theorems 3.1
and 3.2; Corollary 3.1) that for each algebra in a rather broad group
of Boolean algebras, the class of all m-extensions will not contain a
smallest element. In particular, this group includes all Boolean
algebras which are the Boolean product of at least countably many
Boolean algebras each of which has more than one m-extension.

Finally, in the last section, Sikorski’s result that there is an
equivalence between the class & of all (m, 0)-products of an indexed
set {9%},.r of Boolean algebras and the class of all (J, M, m)-exten-
sions of the Boolean product .&7 of {&/},.r, for suitably defined J
and M, is generalized to show there is an equivalence between the
class/\ﬁn of all (m, n)-products of {.94},., and all (J, M, m)-extensions
of .#, where .7 is the field of sets generated by a certain set &
for suitably defined J and M. Then the above results imply that
neither &2 nor .22, need contain a smallest element.

The notation throughout follows that of Sikorski [2].

2. Let m be the cardinality of a set of generators for the
Boolean algebra .7 let .%7,, be a free Boolean m-algebra with a
set of n free m-generators, let .94, be the free Boolean algebra
generated by this set of » free m-generators and let g be a homo-
morphism from .94, to .o~ Let 4, be the kernel of this homo-
morphism and let I be the set of all m-ideals 4 in .97, , such that:

a. 4N, = 4y

b. 4 contains all the elements

A, — U 4, A— A,
A€8; A€8,

Ao - n A ’ A - Ao ’
4eS, Ade Sy

where Aye .94, and &4, .94 are any subsets of .94, of cardinality
< m such that:

g(7)ed, 9(A,) =AU 9(4)

e

g(A)eM, g(A) =Aﬂ g(4) .

For each 4¢e1 let
& = ., /4
and
94[Als) = 9(4), for all Ae.of,.

Set 7, = g7'. We need the following results due to Sikorski.
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ProrosiTION 2.1. The ordered pair {i,;, &} s a (J, M, m)-
extension of the Boolean algebra & and if {i, &£} s a (J, M, m)-
extension of 7 there is a del such that {i. 7} is isomorphic to
{i, Z}. Further, if 4, 4’ €I then

(g, 7} = {14, 4} if, and only of, 424 .

LEMMA 2.1. If S s a set of elements in 55~ then the least upper
bound (lub) of S exists in 7.

Now let 2#(J, M, m) denote the class of all (J, M, m)-extensions
of o7

THEOREM 2.1. Let 5 be the class of all (J, M, m)-extensions of
a Boolean algebra &7 The following are equivalent:

1. 2% contains a smallest element;

2. 9% 1is a lattice;

3. ¥ is a complete lattice.

Proaof.

1. =3. It suffices to show that if S is a set of (J, M, m)-
extensions of .%7 then the greatest lower bound (glb) of S exists in
%, which follows from noting that if L is the set of all lower bounds
for the set S then L == 0 and by Lemma 2.1 the lub of L exists in
%, hence is in L.

3.=2. By definition.

2.=1. If {7, <&} is an m-completion of .&7 {j, €} € 2%, and 2%~
a lattice, then there is an element {j’, €’} € .2 such that

i,z =0, &} .

Thus

{0,z =1{i, Z},
)

U, et =4, Z},
implying

{o, Zy = (), &} .
Hence {i, <Z'} is a smallest element in %7
COROLLARY 2.1. If J' 2 J and M' 2 M then the following are

equivalent:
1. 27(J, M, m) contains a smallest element;
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2. 22(J', M', m) is a sublattice of 2£(J, M, m);
3. Z(J', M', m) is a complete sublattice of Z(J, M, m).

Proof.

1.=38. Since .%(J', M’, m) contains a smallest element, so does
Z(J, M, m) hence Z(J, M’,m) and 2¢(J, M, m) are complete
lattices. If {{i;, Fi}}ier = S is a set of elements in ZZ(J', M, m),
{i, €} is the lub of S in .27(J, M, m) and {#/, €’} is the lub of S in
£ (J', M', m), then there is an m-homomorphism A mapping %’ onto
& such that hi’ = 4. Hence 7 is a (J', M’, m)-isomorphism. Thus
{1, }e 22(J', M', m), implying

i, ) =1, €7} .

If {¢, &} is the glb of S in (J, M, m) and {¢, "} €S, then
by a similar argument, ¢ is a (J’, M’, m)-isomorphism, which implies
{t, &} is the glb of S in 2#°(J', M’, m).

3. =2. By definition.

2.=1. The proof is the same as that for showing 2.=1, in
Theorem 2.1.

Thus it is of particular interest to know whether 2Z(J, M, m)
contains a smallest element, in general. Although, as it turns out,
% (J, M, m) need not contain a smallest element in general, a minimal
(J, M, m)-extension is always an m-completion, hence there is always
a unique minimal (J, M, m)-extension in 2" (J, M, m).

PROPOSITION 2.2. An m-completion {i, &'} of the Boolean algebra
7 1s @ unique minimal element in 7

Proof. That a minimal element in 2" is an m-completion is
clear.

If {#/, &£’} is another minimal element in 9%, there are 4, 4'e I
such that
i, Z} = {is, A}
and
W, 2" = {is, S} .

Now {i, &£} and {i, &&’} minimal in %  imply 4 and 4’ are maximal
m-ideals in I, but if 4 is a maximal m-ideal in I then 95(57,) is
dense in .%%;. The ideal 4’ ={4, A) in .7, is an m-ideal and
4" e I, contradicting the maximality of 4. So {#/, £’} is an m-com-
pletion of .97 hence isomorphic to {¢, <%}, implying
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{r, #"} = {i, Z} .

ProprosITION 2.3. If %7 is a Boolean m-algebra that satisfies
the m-chain condition and

U 4.

tel

1s the jown of an indexed set {A}icr i 7 then there is an indexed
set {Al}icr of disjoint elements of .57 such that

1. Uad=U A4,
teT teTl
2. AiS A, for all teT.

Proof. Let & be the collection of all sets S of disjoint elements
in .97 such that for each s€ S there is a te T with s € 4,. If

Slgszg'g&g-

is a chain of sets in . indexed by I and ordered by set theoretical
inclusion, then

iel

By Zorn’s lemma there is a maximal set in &4 say S’ = {4,},cz and
it immediately follows that

U4d, =4.

TER

Now let
.S — T
be a mapping such that if 4,¢ S’ then
A, S Ay, -
For each te T define
Ai=U{4,eS8: 94, =t}
if there is an A, e S’ such that @(4,) = ¢, otherwise define

Al = A .
Then
{A}ier

is the desired set.

PROPOSITION 2.4. Let &7 be a Boolean algebra. The following
are equivalent:
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1. .7 satisfies the m-chain condition:
2. for all sets S in 7 such that ,.ss exists,

Us=Us

sesS se§’

Jor some set S’ = Swith S’ < m; and dually for meets.

Proof.
1. =2. Suppose .o~ satisfies the m-chain condition. It suffices
to show that if

S:{At}teT andv:tUTAt’ 1="’:m'>m,

< m, such that

then there is a set "= T, T
Ud =V.
teTl’

Let {¢, &£} be an m’-completion of .97 Then <7 satisfies the m-chain
condition and

Vﬁ = 'L(v..v)
= U (4, .
tel
By Proposition 2.3, there is a set {<Z,},., of disjoint elements in

% such that
B, i(4,) and UZB,=U"i4).
teT

teT

Since this set contains at most m-distinct elements,

UA@ Bt — U.é? Bt ,

teT teT
T"<Tand T <m. Thus

Ve = U7 i)
or

V. =U~ 4.

2.=1. Suppose {A}..r is an m'-indexed set of disjoint elements
of % m' > m. It may be assumed that {A4,};.r is a maximal set of
disjoint elements of .%Z Then for some T" < T, T' < m,

Ve=U"A4,.
ter”

Since T = T, there is a t,€ T — T" such that
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A e{A}ier — {Athierr and A, +# As-
Thus

U 4= Vo,

a contradiction. Hence T < m.

This gives, as an immediate corollary, the following result due
to Sikorski [2].

COROLLARY 2.2. If . s a Boolean m-algebra and satisfies the
m-chain condition, it is a complete Boolean algebra.

PrROPOSITION 2.5. The class 22(J, M, m’) contains a smallest
element if 22(J, M, m) contains a smallest element, m’ < m.

Proof. Let {i, <&} be the smallest element in ZZ(J, M, m). If
{0, &'t e 22(J, M, m'), let {k, €} be an m-completion of &”’. Then
ki, ©}e 22(J, M, m).

By the fact that {¢, <&} is the smallest element in .22(J, M, m),
there is an m-homomorphism h such that

h:&——>F and hkj=1.

Also {1, &} an m-completion of . implies that there is an m’-
completion {i, <&’} of .o such that &' < <& Thus hk(%’) is an
m-subalgebra of <Z, hence 2’ = hk(%”’) and is an m-subalgebra of
z.

Now kj() m-generates k(%¥’) in & and kj(¥) S h ('),
hence

Wi(Z') 2 K(Z) ,

or
Mr™(Z") 2 h(Z) .
But
W (Z") = F',
thus
Z' 2 hi(Z7) ,
s0

B = hi(Z) .
Since hkj = 1,
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{1, Z'} = {ks, K(Z")} .
But k a complete isomorphism implies that
{kg, K(Z")} = {1, €7},
and since isomorphic elements in 22(J, M, m) have been identified,
i, Z"} =5, €%} .
LEMMA 2.2. If J<o0 and M <0 then there is a (J, M, m)-

isomorphism 1 of o Boolean algebra .7 into the field Z of all
subsets of a space.

PROPOSITION 2.6. If the Boolean algebra .o is m-representable
but not m*-representable, m* the smallest cardinal greater than m,
then 22 (J, M, m™) does mot contain a smallest element if

5, M, mY) = & .
o, M < o then 2, M, m™) #+ @.

i
IIA

If

Proof. Suppose {j, €} e %,(J, M, m*). Then & is m-represen-
table and if an m*-completion {i, £&} of . is a smallest element in
2(J, M, m™"), there is a surjective m*-homomorphism

h s — Z&,

which implies <Z is m*-representable, hence .&7 is m*-representable,
a contradiction. Thus 2£7(J, M, m*) does not contain a smallest
element if ZZ3(J, M, m*) # @.

If J<o and M<o then .o~ is (J, M, m*)-representable by
Lemma 2.2, hence 27,(J, M, m*) = .

The next proposition is an easy generalization of Sikorski’s [2]
Proposition 25.2 and will be needed for the last theorem in this section.

PROPOSITION 2.7. A Boolean algebra &7 is completely distribu-
tive, if, and only if, it is atomic.

COROLLARY 2.3. A Boolean algebra &7 is completely distributive,
if, and only if, & is m-distributive, m = YA

The following proposition is due to Sikorski [2] and will be given
without proof.

ProrosiTiON 2.8. If the Boolean algebra &7 is m-distributive,
then 2¢7(J, M, m) contains a smallest element for arbitrary J and M.
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LEMMA 2.3. If {i, &} is an m-extension of the Boolean algebra
& and & is m-representable, then 7 is m-representable.

Proof. This follows immediately from the fact that &7 is
m-regular in <Z.

Now to prove the main theorem of this section.

THEOREM 2.2. Let .o~ be a Boolean algebra. Then the following
are equivalent:

1. 2% contains a smallest element for arbitrary J, M, and m;
&7 18 m-representable for all m;
7 1s completely distributive;
&7 18 atomic;
an m-completion of & 1is atomic for all m;

6. an m-completion of 7 is in 2Z,(J, M, m) for arbitrary J, M,
and m;

7. 2Z(J, M, 2™) contains a smallest element, where J =M = @
and 7= m*.

Gl o

Proof.

1.=2. If .&7 is m-representable but not m*-representable, then
Proposition 2.6 implies .77(J, M, m*) does not contain a smallest element
if J, M < o.

2.=3. This follows from the fact that if a Boolean algebra
&7 is 2™-representable, it is m-distributive.

3. = 4. This follows from Proposition 2.7.

3.=1. This follows from Proposition 2.8.

4. =5, If {1, &} is an m-completion of .o then i(.o7) is dense
in &, so & is atomic, and conversely.

2. = 6. This follows from noting that 2. = 3. and . completely
distributive implies an m-completion of .o~ is completely distributive,
hence m-representable for all cardinals m.

6. = 2. This follows from Lemma 2.3.

3.=7. If J=M= @ and 2(J, M, 2™) contains a smallest
element, then by Proposition 2.6, .o~ is 2™-representable, hence
m*-distributive. Since m* = & . is completely distributive, by
Corollary 2.3. The converse is clear.
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3. The example in §2 of a Boolean algebra .&~ such that the
class of all (J, M, m)-extensions of .57 does not contain a smallest

element depends on the assumption that Jz, M < o. Thus it is of
interest to know whether an example can be found showing that the
class of all m-extensions of .o~ does not contain a smallest element,
since this corresponds to the case where J and M are as large as
possible. As it turns out, there are Boolean algebras .& such that
the class of all m-extensions 5 does not contain a smallest element.
In this section such an example will be constructed for each infinite
cardinal m and several general types of Boolean algebras such that
2" does not contain a smallest element will be given.

Throughout this section .2~ will denote the class of all m-
extensions of a Boolean algebra .7 and 227°(J, M, m) the class of all
(J, M, m)-extensions.

If .o~ is a Boolean algebra and {i, &} e 2%(J, M, m), let

K@w)={Cez:if (A)=C, Ac .o then A=A},
and
K(w)={Cew:if P={Ac.v:i1(4) 2C} then A[;]:’A = Ast.

Note that K(%¥) & K(%).

LEMMA 3.1. The set K (&) is an ideal and K(%) = Ku(%), if,
and only if, K(Z) is an ideal.

Proof. 1t follows easily that K,(Z") is an ideal.
If K(%) is an ideal and &c K(%¥") let
P={Aec.v:i(A)=2C}.
If A’e v and A’ S A for all Ae P, then
(A — CeK(%) .
Now i(4") N Ce K(¥), hence
t(A") = (1(4") — CO)U (((A) N C)e K(¥) ,
which implies 9(4") = A or A’ = A.. Thus
n“ A= A;f ’
AeP
so Ce K,(%), and
K. (%) = K(%) .

Since K,(%’) is an ideal, the converse is true.
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ProrosITION 3.1. If .57 s a Boolean algebre the following are
equivalent:

1. 22(J, M, m) contains a smallest element;

2. K(%¥) = Kp(%) for all {1, &} e 2%(J, M, m);

3. K(©)=Kp(¥) if {t, €} is the maximum element in
(S, M, m).

Proof.
1.=2. Suppose Z(J, M, m) contains a smallest element {i, Z'},

and there is an element
{0, e ZJ, M, m)
with the property that
K(%) = Kp(%) .

Let & be the unique m-homomorphism mapping & onto <Z such that
hj = i. Let ker i be the kernel of this mapping. Then

K. ()& kerh & K(%),
and
ker h = K(%) .
Pick v € K(%) — ker I and let
4 =<{x),
850 4 is a complete ideal. Thus
(v, €/4te Z2°(J, M, m) ,
where
?:_4: &7 — g/d
is defined by
14(4) = [«(4)], .

Consequently, there are unique homomorphisms A, and A#’ mapping
% onto &/4, /4 onto <7, and satisfying h,j = ¢, h't, = i, respec-
tively. Hence

Why=MWi,=1
and by the uniqueness of &,
h - h’hd .

This implies
h(z) = W'hi@) = N>,
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a contradiction. Thus

K@) = Ko (%) -
2. = 3. Obvious.

3.=1. To show that .9¢(J, M, m) contains a smallest element,
let {j, €’} be the largest element in .2#7(J, M, m) and suppose {j’, &'} €
Z(J, M, m). Let {i, <#} be an m-completion of .o Then there is
an m-homomorphism 2’ mapping & onto &’ such that »’j = j and
an m-homomorphism & mapping & onto <& such that sj = 4. Thus

K. (z)<S kerh & K(%),
which implies, by assumption, that
K (%) =kerh = K(%),
so K (%) and K(%) are m-ideals in &. Further,
W(K(Z) & Kn(T") & K(Z") & W(K(Z)) .
This implies that
W(K(?)) = Ko(Z7) = K(Z") = W(K(Z))
hence K(%”) is an m-ideal. Let
4 =K(Z").
Then &’/4 is an m-algebra and
JU() = {[7/(A)]s Ae 7}

m-generates z”’/4. Finally, j4(.57) is dense in &’/4. Thus {j’, €’/ 4}
is an m-completion of .o/ hence is equal to {7, &}, as isomorphic
elements of 27(J, M, m) have been identified. The m-homomorphism

hy: &' — &'/4
defined by
hi(C") = [C']4
has the property that
hg =17y for all Aec. o7,
implying that
(i, 14 =7, €'} .
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Hence 27(J, M, m) contains a smallest element.

This, then, gives a way to construct a Boolean algebra .o~ such
that 2" does not contain a smallest element. Namely, by finding a
Boolean algebra .o with an m-extension {7, €} such that K,(¥) =
K(%). The next task is to construct such a Boolean algebra.

If T=m and .= .o for all te T, the Boolean product of
{4 }ier Will be called the m-fold product of &7 Note that if .o is
a subalgebra of the Boolean algebra .o7’, & is the m-fold product
of & and &’ is the m-fold product of .&7’, then & < & .

LEMMA 3.2. If &7 s an m-regular subalgebra of the Boolean
algebra &' then the Boolean m-fold product F of &7 is isomorphic
to an m-regular subalgebra of the Boolean m~fold product F ' of o7,

Proof. Since .o~ is a subalgebra of &', < F#'. Let A&
be the set of all ¢,(4), Ae. . and te T(Ae.&r’ and te T). Then
Fe SA(Fes”) implies —Fe A (—Fe.&) and (') are sets of
generators for . # (& ’). For elements F'e &# ' of the form

F=QF, Fes,

define
N(F) = {z,(x): e 6 F} .

Note that if Fe.o”” and teT is such that N(F) = V.. then
P(N(F)) = F.

In order to show & is m-regular in &', it suffices to prove
that if {F};cr is an m-indexed set of elements of &# such that

ﬂ Ft = A;:'
teT
then
h F, = Af’ .
teT
Now F,e.# so F, may be rewritten as
Pt Qt
Fc = nUFp,q,t ’

p=1 ¢=1

where P, @, are finite numbers and F,,.c.> for all pe P, qcQ,,
and te T. Thus
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I
o
S

I
-

Fp,q,t

1

A~

||

-
®

N
=
[l

-

q

Fa)
@

I
D
3

'q

©
o
(7]
Y
|

-

after a suitable re-indexing, where S < m and F,, = F,,, for suitable
peP,teT. Without loss of generality, assume that for each
se S, M(FL,) = A implies N(F, ) = V.. for all te T and ¢ = g,
and that F,,# V. for all ¢, 1 <¢=<@Q, and all s€S. Suppose
F'e " and F' S F, for all teT. Then

M N
F=UNF.,.,, F..es,

m=1ln=1

S0

L)

3

N
an’n,ng Fs,q

n=1 g=1

for 1 <m < M, and all se S. Thus to show F'= A, it suffices to
prove that if

Il

N Qs
n F;L ..(;' U Fs,q ’
n=1 g=1
for all se S, where F!ec.&”’, then
N
Ql Fo=As.

It may be assumed that for each n, 1 < n < N, M (F)) # A implies
M(F,) = V. for all te T and »n’ + n, and that F, # VY for all
n,1<n<N.

Now

=

s

F.q

1

in

N
n&er,

Q
Il

implies
N Qs
O}F'rznql.:Jl_Fs,q = Aé" ’

and as each F, and —F,, is of the form @,(A4) for some Aec .o/
and te T, the independence of the indexed set {P,(.%7")}:cr of sub-
algebras of &' implies that for some 7, 1 <mu, <N, and some

qs 1 =q = st
F,0N—=Feo,= Asr s

which implies ¥, & F,,. This argument may be repeated for each
sesS.



ON (J, M, m)-EXTENSIONS OF BOOLEAN ALGEBRAS 263

The set {n,:se€S} is finite so let {n,:seS}={n:1<1< N}
Let S, ={seS: F, & F,,}. If t,e T is such that

Ne(Foo) # Vs for all seS
then N, (F%,q,) € % and
.4
AN(Fur) # A -
Thus

RYd
Q 7\‘ts(F’a:,qs) # Ax/' ’
8esS;

or

7
SQ_M‘,(Fs,qS) # Ao s
hence there is an A,e .o A, # A, with
A, =N (F,,) forall seSs;.

Let A, be the set of all xe€ X such that m, (v) e 4;. Thus A,,e. 5
and this argument may be repeated for each 7,1 <7 < N'. Now

As ,;énA“
and
N’ Qs
nAm% FQS
t=1 q=1
for all se S. But then
= Qe
NAENUF. = A

a contradiction. Thus & is m-regular in & .

The next lemma assumes there is a Boolean algebra .o such that
an m-extension is not an m-completion. Sikorski [2] cites an example
due to Katétov of such a Boolean algebra for the case m = 0. As
Lemmas 3.5 and 3.6 imply, there is such an .o for all infinite cardinal
numbers m.

Assume for the moment that .o~ is a Boolean algebra such that
%~ contains more than one element and {7, <&} € 27" is an m-extension
that is not an m-completion. Thus there is a Be <z such that
#A) & B, Ac &7 implies A = A.. Let &' be the Boolean m-fold
product of <& h, an isomorphism of <£Z onto the Stone space % of
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<, X the Cartesian product of & with itself m times and indexed
by T, and

B, = p,h(B) for all teT.
Let
Bo :t!’Jp Bt ’

where 7" is a fixed, but arbitrary subset of T such that T = o,
and define

F=<(F", By .
Since T' = o, .7 = .

LeEMMA 3.3. If & 14s the Boolean m-fold product of &7 then
18 1somorphic to an m-regular subalgebra of F..

Proof. It may be assumed, without loss of generality, that
e & Thus & Z,. Let $9(S”') be a generating set for & (F ).
Let

*—%:y,U{BO},

so .54 is a generating set for #,. As in the previous lemma, to
prove . is m-regular in &, it suffices to show that if

hY Qs
Nr.csUFr.,
n=1 g=1

for all seS, S < m; and

Since F, e &4, there is an », 1 < n < N, such that F, = B, or F, =
— B,, otherwise there is nothing to prove. This may be reduced to
two cases:
Case 1.
v Qs
NF,NB,sUF,,
n=1 g=1

for all se S, where F,ec &’ and F,,€ .S~
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Case 2.
N Qs
('—Bo)ﬂ nFéE UFs,q
n=1 g=1
for all se S, where F,e .’ and F,,c .~

Proof of Case 1. If for each se S there is an #,, 1 <n,< N,
such that there is a ¢,, 1 =¢, = @Q,, with F, & F,,, then

N , Qs
n Fn ‘-g U Fs,q
n=1 q=1

for all se S, and

N
NF,es’
n=1

implies
X !
NF:= A

Thus it may be assumed there is an s, such that
L Qs
Qan % qLJﬂFso,q .
Hence for all n, F, & F, , for some g, is false. If
N
NF.NB,# A=,
n=1

let xe X be defined as follows. Let ¢, ---,¢t,€T be such that
M(FY) # Va1 =9 < N. Choose an ¥ € X such that it satisfies the
following conditions:

(a)

Ne(FY) i N(Fod) = Vo for all ¢, 1< ¢ = Q,
ht,(Ff-’) - )\'t;(Fso»QO) if 7\’ti(-lr'iio,llo) #* Va

for 171 N;

(b) m.(s)e —\(F,,) for each t,e T such that \, (Fy,,) # V=,
1=¢=Q,and ¢, #¢,1 <1< m;

(¢) m(x)ehyB) forall t#t;1 <1< N,1<q=Q,,.

Now « is well defined,

mi(x) €

xeB, and =z¢ []'V]F;,

n=1

by its definition. But xz¢ F),, for all ¢,1 < ¢ < Q,,, hence
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Qs
xe ULFSQ;Q ’
q=

a contradiction.
Proof of Case 2. If
~B,N A Fi# A
and N, (F,) = V., t,eT, let A, =9, (—B,),1<n=N. Then
AFiN(=B) =N Fin4)n(-B)
and
NEFna)es".
As before, an s,€ S may be found such that

N Qs
AFNA)EUF.,,.

n=1 =

Define ¢, -++, ty as before so that N\ (FiNA4)#=V. 1=<i=<N.
Choose z € X satisfying the following conditions:

(2)
Xz;(Fi’ N4, if )“ti(Fso,Q) =Vs1=2¢= Qso

T,(x)€E .
t’( ) Xti(Fi’ nAa,— 7\ft.;(-l'—'ao,q) if Xt.;(Fso,qo)"é "

for 1<+t N.

(b) m () e — N (Fy,q) for each ¢, € T such that A, (Fy,0) * V3
1=9¢=Q., and t, #¢t,1=7=N.

(c) m@)en(—B)if t#t,t51=<1=n,1=q=Q,.
Now z is well defined and

N N
eve(=B)NNF.N4)=—-BNnNF,

SO
Qsp
X e U Fs,q ’
7=1

a contradiction.
Consequently, in either case

X ’
nFnzAf"

n=1
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LEMMA 3.4. If j is the identity isomorphism of F into F,
and {i, €} is an m-completion of F,, then {ij, &} is an m-extension

of F.

Proof. All that needs to be shown is that ¢j(#) m-generates
. But this follows immediately from the fact that .97 m-generates
&% and the definition of &% and .7,.

THEOREM 3.1. If .o m-generates <& then % (F ) does not
contain a smallest element.

Proof. Fe.% and F 2 B, then F'=YV ., by definition of B,.
Thus if j and {i, ¥} are defined as in Lemma 3.4, {ij, €} is an
m-extension of & and ¢j(B,) € K(¥). By Proposition 3.1, Z(F)
does not contain a smallest element.

The results of this theorem may be generalized as follows. Let
{.%%},er be an infinite indexed set of Boolean algebras and {{1};.,, Z'}
be the Boolean product of {94};.r. Let T' be the set of all te T
such that 27(.2%) contains more than one element.

THEOREM 3.2. The class of m-extensions 27 (<Z) does not contain
a smallest element if T' = o.

Proof. Define &’ to be the Boolean product of {{j,, FZ}}icrs
where {j, )} e 2% (7) for all te T and {j, <%} is not an m-com-
pletion of .4 for all te T". For each =%, te T, there is a B, € .7,
such that j(4) & B, Ae .7, implies A = A.,. Let o, map <7 into
Z and set

Z
B, = U #(B)

and
Fo=(F", By .

Then by an argument similar to the proofs of Lemmas 3.2, 3.3, and
3.4, and Theorem 3.1, .7%(<%) does not contain a smallest element.

COROLLARY 3.1. If .oF=.%7 for all t, t' € T then 27 (<2) contains
o smallest element if, and only if, an m-extension of Z 1is an
m~-completion.

Proof. 1f 22(<Z) contains an m-extension which is not an m-
completion, let <& play the role of .o in Lemmas 3.2, 3.3, and 3.4.
By Theorem 3.1, 2#(% ) does not contain a smallest element. As
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the m-fold product & of <7 is isomorphic to B, 7 (<Z) does not
contain a smallest element. The converse is clear.
Now to prove the assumption on which these results are based.

LEMMA 3.5. For each infinite cardinal number m there is a
Boolean algebra &7 such that an m-completion {i, &'} of & contains
an element B with

B+ U

wel v

)

AM)’U ?

@
<

for all m-indexed sets {A, }uevver M

Proof. The proof will be by constructing such an .9 for each
m. Let S be an indexing set of cardinality m. Let <, be the
Cartesian product of S with itself m times and indexed by 7. Define

D,,={de Z2,:n(d) = s}.
Fix s, s;€ 5, 81 # 55, and set 8'= 8 — {s], sj}. Let D= U.er(D,5; U

D..). Thus D=2 and de 2, — D implies 7(d) # s}, k = 1, 2, for
all te T.

Let
F={{d:de 2} U{D,.:te T, seS}.

Let .o~ be generated by & in &, and let <& be the m-field of sets
m-generated by & in &,. Then .o is dense in <& and m-generates
%, so if 1 is the identity map of %7 into <Z, {i, &&'} is an m-comple-
tion of .o

Let
B==2,-D.

Suppose
B=ynA.,

{A. Juev,ver an m-indexed set in . This can be written in the form

U 4ions

uelU veV medy 4

A ymor —A, ,.€S JlTv < 0.

Let B ={deZ,:{d} = A,,,,n, for some ue U, veV, and me M,}.
Then B’ < m, so if

M,,={meM,, A,,, is not of the form {d}, de =,)}, it follows
that
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B-UNU A4,,..sm.

uel veV meM;L,H

It will now be shown that in fact

B-UN U A4,,.>m,

pd ’
uel veV meMuw

a contradiction. Hence it may be assumed that A,,. is not of the
form {d}, d€ =, for all ue U,ve V, and me M,,.
If A,,.= —{d}, de =, for some m € M, ,, then either

( 1 ) melffj Au,v,m = - {d}
or
(2) meLMJ Au,v,m = v .

It (1) oceurs, it may be assumed that M,, = {1} and 4,,, = —{d}.
If (2) occurs, the term U,.. sy, Auo,m may be dropped. Thus for all
ue U, V may be written as V,U V,, where (1) V,.nN V.= ; (2
Avom = —{du.}, du€ =,, for all veV,; and (38) A,,. is either of
the form —D,, or D,, for all ve V.. Consequently, for all we U,

n U Au,v,m = n - {du,v} N n U Au'v,m .

. y
VeV meMy o vEV, veVy meM, ,

Let
C.u = n U Au,v,m .

velV medy, ,

Suppose U is the set of all ordinals # < @, where a = U. Let
D ={de =z, n(d) =s], s}). Now D, = 2™ implies there is a d, e D
such that

d,e N —{d.,.}.

veV)

Since d,¢ B, this implies
de N U 4w,

1eVimeM; ,

hence for some v, ¢ V),

de¢ U A

meMy vy

Also, D, —D,, for all te T and s¢ S, hence

A =D

Lv.m t,mr881,m

forsome ¢, , € Tands, €8, forallmeM,,. Let T.={t, ,:mel,}



270 DWIGHT W. READ

and pick s, €S’ such that s, # 8, for all meM,,. Define
@(t) =8

for all te T,. Let B, = @ and define B, = {de 2,:n(d) = ®() for
all te T}.

Note that B,NC, = @&.

Suppose ¢ >1 and a finite set 7T, has been defined for each
<14 so that T, NT, =@ if ¢,1" <1,7 #1";8,€S has been
chosen; @ has been defined on each T, i’ < 4, so that @(f) = s, for
all te T,; and if

B, ={de g9,:n(d) = o(t) for all te L<J T.)

then
Biﬂg.C"= @ .

Let

and note that 171 < m. Let

D, = {de Z,:(d) = p(t) for all te T,
and 7(d) = s, k=1,2, if teT— T}.

Then D, S D and D, = 2", hence there is a d,€ D, such that
die n - {di,v} .

veV;

Since d;¢ B, this implies

hence for some v, € V/,

di e U Ai,v,‘-,m

MEM; .
LY

If B.NC, =@ set T.,=@. If not, there is a di;c B, such that
dieC;, so

d: e U Ai,vi,m

Note that 7,(d}) = m,(d,) for all te ’IA’@..
It immediately follows that if
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d: S U A-i,v,:,m

mell .
then
Aon = Doy per

where t;,,, ¢ T, and

Teon(d) = 50, »
for some m € M,,,,.

Let
T.={t,mecT— T A = D‘i,m'sti,m for some m e M,,;}
and pick s, €S’ such that if ¢,,€ T, then
8; # Siy s
for all me M,,,. Now define
o(t) =s, for all teT,;.
Thus T, N T, = @ which implies T, N T, = @ for all ¢ < i. If
B, = {de 9,:7(d) = () for all tc T,U T)

then it is clear that

Bi+l N U Cz = Q.

3<%
Now let T = U, T; and set

B={de g,:7(d) = p(t) for all te T
and 7 (d) = s, s, if te T — T}.

Then B = @ and B< B. But BN U..; C. = @ which implies
B-UC.# 0.

uel
If B = B — ..y C. then for each be B,
b= ﬂDt,st,b ’
tel

for some m-indexed set {s;;,};.r in S’. Thus

B=UN U 4unUUND.,.

uelU veV meMy 4 €B’ teT

but the above construction shows that

271
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-B - (U U Au,v;,m U U n Dt,s,,b) +* @
beB' teT

weU veV meMy 4

if B <m. Hence

B—uLeJUcu>m.

LEMMA 38.6. If {t, &} is an m-completion of the Boolean algebra
&7 and there is a Be <& such that

74

B= U Ni4.,.)

-
teT seS

for all m-indexed sets {Ai.}ierses M 7 then there is an m-ideal
4 in F such that {j, By} is an m-extension of 1,.7) but not an
m-completion, where i,(A) = [i(A)]s for all Ae ] &)= F[4 and
J s the identity map of 1,.%) into .

Proof. Let

4 ={Be: B <Band B =Nid),

teT

for some m-indexed set {A;};.r in &7}

and let 4 = {(4'),. Then if 6e4,0< B, so Bgd. If Ae. ¥ and
[{(4)], & [B]l, then 4(A) — Bed so i(A) — B< B which implies
1(A) & B, hence i(A)e 4 and [i(4)], = A, implying i,(.7) is not
dense in <Z.

It only remains to show that 7,.%) is m-regular in <z, If

14(.87)

N AL = A,
then #(4) & i(4,) for all te T implies i(A)e 4, so i(4) & B. If
ﬁ .
Ni4) £ B,
then there is an A # A. in % such that
i(A) s Ni4) - B,
teT

contradicting the above statement. Thus

9

(4) & B
T

t

m

50

z
(A)e 4

te
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and
As, = (DA, = QA

Thus if &7 is the Boolean algebra constructed in Lemua 3.5,
1457) is a Boolean algebra such that .277(¢,(.%)) contains more than
one element. Hence it is justified to assume that for each infinite
cardinal m there is a Boolean algebra .o such that .o~ has an m-
extension which is not an m-completion.

4. Let {54}, be a (fixed) indexed set of Boolean algebras.
Let h, be an isomorphism of .27 onto the field .#,; of all open-closed
subsets of the Stone space X, of .%. Let X denote the Cartesian
product of all the spaces X,. Let w, be the projection of X onto 7,
and define

P F— X
by:
if Fe &, then 9(F) = {xe X:n(x)e F}.

Let .# be the Boolean product of {.94},.,. Define A} = C,Z)t_}_tt and
let & k}g the set of all sets Nierhi(A); Aic g, T'S T, T < n.
Define % to be the field of sets generated by &2 Let J be the set
of all sets S& Lﬁ/} such that

1. S=<m;

2. there is a te T such that S & h}(.%);

3. the join UfA’esA exists.
Let M’ be the set of all sets S < 7 such that

1. S =m;

2. there is a te T such that S & ¥ (.o%);

3. the meet ﬂ;ﬁsA exists.
Let M” be the set of all sets S < 7 such that

1. S<u;

2. if AeS then Aehf(.84) for some te T;

3. if A, BeS, A+ B, then Ach?(.%) implies B¢ hf(.%7). Let
M=MuUM". :

The following lemma is due to La Grange [1] and will be given
without proof.

LemMmA 4.1. If {i}icr, F}e F0 /t\hen there is one and only one
(J, M, m)-isomorphism h mapping & into <& such that

hhf =1, for all teT.
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THEOREM 4.1. If {{i}icr, Z} € P, then there is a mapping h
of F into F such that (h, £7) is a (J, M, m)-extension of . If
{h, 2} 1s a (J, M, m)-extension of F then the ordered pair
{(hhi}icr, Z) € .

Proof. Let h be the (J, M, m)-isomorphism from & into &
such that ik} = i, for all te T. Then {h, <Z} is a (J, M, m)-extension
of j’

Conversely, if {h, <7} is a (J, M, m)-extension of ﬁ% it follows
immediately that {{hhi},cs., <&} is an (m, n)-product of {&%},cz-

THEOREM 4.2. If {{i.}icr, 2}, {il}icr, B} are two (m, n)-products
of {7 }ier then

{edicr, Z} = {lil}ier, 2}
if, and only if,
v, Z} = (v, &'}

where {1, Z} and {i', 2"} are the (J, M, m)-extensions of j\‘ nduced
by the (J, M, m)-isomorphisms i and i of Z into &' and Z,
respectively, given by Lemma 4.1.

Proof. Now
{idier, &} = {{ilier, 27}
if, and only if, there is an m-homomorphism % such that
h: B —— F
and A1, = 7, for all te T. Similarly,
i, Z} =, 2"}
if, and only if, there is an m-homomorphism
h: Z'—— F

such that A'¢ = 4. Thus it suffices to show that hi =1, if, and
only if, hi; = 4,. Let hf be defined as above. Then thf = 7, and
vhi = 1), so if At = 1,

hi, = hi'hf = thf = 1, ,
and if A4, = 7,, then

hi' = hithi™ = 4, = 1.
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La Grange [1] has given an example of an (m, 0)-product for
which & does not contain a smallest element and an example of an
(m, n)-product for which .27, does not contain a smallest element.
Theorem 4.2 extends this result by showing that the question whether
Z or &, contains a smallest element reduces to asking whether the
class of all (J, M, m)-extensions of .& or ﬁ contains a smallest
element for J and M defined appropriately in each case, where .97
and ﬁA" are defined as above. Now the class of all (J, M, m)-exten-
sions of .97 contains a smallest element only if the class of all m-
extensions of . contains a smallest element and Theorem 3.2 shows
that the class of all m-extensions of .97 need not contain a smallest
element, which implies the same is true for .Z%. Since Theorem 3.2
may be extended to Boolean algebras of the form ﬂ/'? it follows that
2, need not contain a smallest element.
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