ON (J, M, m)-EXTENSIONS OF BOOLEAN ALGEBRAS

Dwight W. Read

Abstract

The class \mathscr{K} of all (J, M, m)-extensions of a Boolean algebra \mathscr{A} can be partially ordered and always contains a maximum and a minimal element, with respect to this partial ordering. However, it need not contain a smallest element. Should \mathscr{K} contain a smallest element, then \mathscr{K} has the structure of a complete lattice. Necessary and sufficient conditions under which \mathscr{K} does contain a smallest element are derived. A Boolean algebra \mathscr{A} is constructed for each cardinal m such that the class of all m-extensions of \mathscr{A} does not contain a smallest element. One implication of this construction is that if a Boolean algebra \mathscr{A} is the Boolean product of a least countably many Boolean algebras, each of which has more than one m-extension, then the class of all m-extensions of \mathscr{A} does not contain a smallest element. The construction also has as implication that neither the class of all $(m, 0)$ products nor the class of all (m, n)-products of an indexed set $\left\{\mathscr{A}_{t}\right\}_{t \in T}$ of Boolean algebras need contain a smallest element.

1. Sikorski [2] has investigated the question of imbedding a given Boolean algebra \mathscr{A} into a complete or m-complete Boolean algebra \mathscr{B} and has shown that in the case where the imbedding map is not a complete isomorphism, the imbedding need not be unique up to isomorphism. He further has shown that if \mathscr{K} is the class of all (J, M, m)-extensions of a Boolean algebra \mathscr{A}, then \mathscr{K} has a naturally defined partial ordering on it and always contains a maximum and a minimal element. He has left as an open question whether it always contains a smallest element. La Grange [1] has given an example which implies that \mathscr{K} need not always contain a smallest element. However, the question of when does \mathscr{K} in fact contain a smallest element is of interest as it turns out that should \mathscr{C} contain a smallest element, it has the structure of a complete lattice.

In § 2, necessary and sufficient conditions are given for \mathscr{K} to contain a smallest element. In addition, the principle behind La Grange's example is generalized in Proposition 2.10 to show that if \mathscr{A} is not m-representable then the class \mathscr{K} of all $\left(J, M, m^{\prime}\right)$-extension of \mathscr{A}, where $\overline{\bar{J}}, \overline{\bar{M}}<\sigma$ and $m^{\prime}>M$, will not contain a smallest element.

Since the proof of this result requires that J and M have cardinality $\leqq \sigma$, it is of interest to ask if the class of all m-extensions
contain a smallest element in general, and the answer is no.
In § 3, a Boolean algebra \mathscr{A} is constructed for each cardinal m such that the class \mathscr{K} of all m-extensions of \mathscr{A} does not contain a smallest element. The construction has as implication (Theorems 3.1 and 3.2; Corollary 3.1) that for each algebra in a rather broad group of Boolean algebras, the class of all m-extensions will not contain a smallest element. In particular, this group includes all Boolean algebras which are the Boolean product of at least countably many Boolean algebras each of which has more than one m-extension.

Finally, in the last section, Sikorski's result that there is an equivalence between the class \mathscr{P} of all ($m, 0$)-products of an indexed set $\left\{\mathscr{A}_{t}\right\}_{t \in T}$ of Boolean algebras and the class of all (J, M, m)-extensions of the Boolean product \mathscr{A}_{0} of $\left\{\mathscr{A}_{t}\right\}_{t \in T}$, for suitably defined J and M, is generalized to show there is an equivalence between the class \mathscr{P}_{n} of all (m, n)-products of $\left\{\mathscr{A}_{t}\right\}_{t \in T}$ and all (J, M, m)-extensions of $\hat{\mathscr{F}}$, where $\hat{\mathscr{F}}$ is the field of sets generated by a certain set \mathscr{S}, for suitably defined J and M. Then the above results imply that neither \mathscr{P} nor \mathscr{P}_{n} need contain a smallest element.

The notation throughout follows that of Sikorski [2].
2. Let n be the cardinality of a set of generators for the Boolean algebra \mathscr{A}, let $\mathscr{A}_{m, n}$ be a free Boolean m-algebra with a set of n free m-generators, let $\mathscr{A}_{0, n}$ be the free Boolean algebra generated by this set of n free m-generators and let g be a homomorphism from $\mathscr{A}_{0, n}$ to \mathscr{A}. Let J_{0} be the kernel of this homomorphism and let I be the set of all m-ideals Δ in $\mathscr{A}_{m, n}$ such that:
a. $\Delta \cap \mathscr{A}_{0, n}=\Delta_{0}$;
b. Δ contains all the elements

$$
\begin{array}{lc}
A_{0}-\bigcup_{A \in S_{1}} A, & \bigcup_{A \in S_{1}} A-A_{0} \\
A_{0}-\bigcap_{A \in S_{2}} A, & \bigcap_{A \in S_{2}} A-A_{0}
\end{array}
$$

where $A_{0} \in \mathscr{A}_{0, n}$ and $\mathscr{S}_{1}, \mathscr{S}_{2}$ are any subsets of $\mathscr{A}_{0, n}$ of cardinality $\leqq m$ such that:

$$
\begin{array}{ll}
g\left(\mathscr{S}_{1}\right) \in J, & g\left(A_{0}\right)=\bigcup_{A \in \mathscr{S}_{1}} g(A) \\
g\left(\mathscr{S}_{2}\right) \in M, & g\left(A_{0}\right)=\bigcap_{A \in \mathscr{S}} g(A) .
\end{array}
$$

For each $\Delta \in I$ let

$$
\mathscr{A}_{\Delta}=\mathscr{A}_{m, n} / \Delta
$$

and

$$
g_{\Delta}\left([A]_{\Lambda}\right)=g(\Delta), \quad \text { for all } A \in \mathscr{A}_{0, n}
$$

Set $i_{\Delta}=g_{\Delta}^{-1}$. We need the following results due to Sikorski.

Proposition 2.1. The ordered pair $\left\{i_{\perp}, \mathscr{A}_{4}\right\}$ is a (J, M, m)extension of the Boolean algebra \mathscr{A} and if $\{i, \mathscr{B}\}$ is a (J, M, m) extension of \mathscr{A} there is a $\Delta \in I$ such that $\left\{i_{2}, \mathscr{A}_{4}\right\}$ is isomorphic to $\{i, \mathscr{B}\}$. Further, if $\Delta, \Delta^{\prime} \in I$ then

$$
\left\{i_{\Delta}, \mathscr{A}_{A}\right\} \leqq\left\{i_{\Delta^{\prime}}, \mathscr{A}_{A^{\prime}}\right\} \quad \text { if, and only if, } \Delta \supseteqq \Delta^{\prime}
$$

Lemma 2.1. If S is a set of elements in \mathscr{K} then the least upper bound (lub) of S exists in \mathscr{K}.

Now let $\mathscr{K}(J, M, m)$ denote the class of all (J, M, m)-extensions of \mathscr{A}.

Theorem 2.1. Let \mathscr{K} be the class of all (J, M, m)-extensions of a Boolean algebra \mathscr{A}. The following are equivalent:

1. \mathscr{K} contains a smallest element;
2. \mathscr{K} is a lattice;
3. \mathscr{K} is a complete lattice.

Proof.
$1 . \Rightarrow 3$. It suffices to show that if S is a set of (J, M, m) extensions of \mathscr{A} then the greatest lower bound (glb) of S exists in \mathscr{K}, which follows from noting that if L is the set of all lower bounds for the set S then $L \neq 0$ and by Lemma 2.1 the lub of L exists in \mathscr{K}, hence is in L.
$3 . \Rightarrow 2$. By definition.
2. $\Rightarrow 1$. If $\{i, \mathscr{B}\}$ is an m-completion of $\mathscr{A},\{j, \mathscr{C}\} \in \mathscr{K}$, and \mathscr{K} a lattice, then there is an element $\left\{j^{\prime}, \mathscr{C}^{\prime}\right\} \in \mathscr{K}$ such that

$$
\left\{j^{\prime}, \mathscr{C}^{\prime}\right\} \leqq\{j, \mathscr{C}\}
$$

Thus

$$
\left\{j^{\prime}, \mathscr{C}^{\prime}\right\} \leqq\{i, \mathscr{B}\}
$$

so

$$
\left\{j^{\prime}, \mathscr{C}^{\prime}\right\}=\{i, \mathscr{B}\}
$$

implying

$$
\{i, \mathscr{B}\} \leqq\{j, \mathscr{C}\}
$$

Hence $\{i, \mathscr{B}\}$ is a smallest element in \mathscr{K}.
Corollary 2.1. If $J^{\prime} \supseteq J$ and $M^{\prime} \supseteq M$ then the following are equivalent:

1. $\mathscr{K}(J, M, m)$ contains a smallest element;
2. $\mathscr{K}\left(J^{\prime}, M^{\prime}, m\right)$ is a sublattice of $\mathscr{\mathscr { C }}(J, M, m)$;
3. $\mathscr{K}\left(J^{\prime}, M^{\prime}, m\right)$ is a complete sublattice of $\mathscr{K}(J, M, m)$.

Proof.

1. $\Rightarrow 3$. Since $\mathscr{K}\left(J^{\prime}, M^{\prime}, m\right)$ contains a smallest element, so does $\mathscr{K}(J, M, m)$ hence $\mathscr{K}\left(J^{\prime}, M^{\prime}, m\right)$ and $\mathscr{K}(J, M, m)$ are complete lattices. If $\left\{\left\{i_{t}, \mathscr{B}_{t}\right\}\right\}_{t \in T}=S$ is a set of elements in $\mathscr{K}\left(J^{\prime}, M^{\prime}, m\right)$, $\{i, \mathscr{C}\}$ is the lub of S in $\mathscr{K}(J, M, m)$ and $\left\{i^{\prime}, \mathscr{C}^{\prime}\right\}$ is the lub of S in $\mathscr{K}\left(J^{\prime}, M^{\prime}, m\right)$, then there is an m-homomorphism h mapping \mathscr{C}^{\prime} onto \mathscr{C} such that $h i^{\prime}=i$. Hence i is a $\left(J^{\prime}, M^{\prime}, m\right)$-isomorphism. Thus $\{i, \mathscr{C}\} \in \mathscr{K}\left(J^{\prime}, M^{\prime}, m\right)$, implying

$$
\{i, \mathscr{C}\}=\left\{i^{\prime}, \mathscr{C}^{\prime}\right\}
$$

If $\{i, \mathscr{C}\}$ is the glb of S in $\mathscr{K}^{\prime}(J, M, m)$ and $\left\{i^{\prime}, \mathscr{C}^{\prime}\right\} \in S$, then by a similar argument, i is a ($J^{\prime}, M^{\prime}, m$)-isomorphism, which implies $\{i, \mathscr{C}\}$ is the glb of S in $\mathscr{K}\left(J^{\prime}, M^{\prime}, m\right)$.
$3 . \Rightarrow 2$. By definition.
$2 . \Rightarrow 1$. The proof is the same as that for showing $2 . \Rightarrow 1$, in Theorem 2.1.

Thus it is of particular interest to know whether $\mathscr{K}(J, M, m)$ contains a smallest element, in general. Although, as it turns out, $\mathscr{K}(J, M, m)$ need not contain a smallest element in general, a minimal (J, M, m)-extension is always an m-completion, hence there is always a unique minimal (J, M, m)-extension in $\mathscr{K}(J, M, m)$.

Proposition 2.2. An m-completion $\{i, \mathscr{B}\}$ of the Boolean algebra \mathscr{A} is a unique minimal element in \mathscr{K}.

Proof. That a minimal element in \mathscr{K} is an m-completion is clear.

If $\left\{i^{\prime}, \mathscr{B}^{\prime}\right\}$ is another minimal element in $\mathscr{\mathscr { K }}$, there are $\Delta, \Delta^{\prime} \in I$ such that

$$
\{i, \mathscr{B}\}=\left\{i_{\Delta}, \mathscr{A}_{\Delta}\right\}
$$

and

$$
\left\{i^{\prime}, \mathscr{B}^{\prime}\right\}=\left\{i_{\Lambda^{\prime}}, \mathscr{A}_{A^{\prime}}\right\}
$$

Now $\{i, \mathscr{B}\}$ and $\left\{i^{\prime}, \mathscr{B}^{\prime}\right\}$ minimal in \mathscr{K} imply Δ and Δ^{\prime} are maximal m-ideals in I, but if $\hat{\Delta}$ is a maximal m-ideal in I then $g_{\hat{\Delta}}^{(}\left(\mathscr{A}_{0, n}\right)$ is dense in $\mathscr{A}_{\hat{\jmath}}$. The ideal $\hat{\Delta}^{\prime}=\langle\hat{\Delta}, A\rangle$ in $\mathscr{A}_{m, n}$ is an m-ideal and $\hat{\Delta}^{\prime} \in I$, contradicting the maximality of $\hat{\Delta}$. So $\left\{i^{\prime}, \mathscr{B}^{\prime}\right\}$ is an m-completion of \mathscr{A}, hence isomorphic to $\{i, \mathscr{P}\}$, implying

$$
\left\{i^{\prime}, \mathscr{B}^{\prime}\right\}=\{i, \mathscr{B}\}
$$

Proposition 2.3. If \mathscr{A} is a Boolean m-algebra that satisfies the m-chain condition and

$$
\bigcup_{t \in T} A_{t}
$$

is the join of an indexed set $\left\{A_{t}\right\}_{t \in T}$ in \mathscr{A}, then there is an indexed set $\left\{A_{t}^{\prime}\right\}_{t \in T}$ of disjoint elements of \mathscr{A} such that
1.

$$
\bigcup_{t \in T} A_{t}^{\prime}=\bigcup_{t \in T} A_{t} ;
$$

2.

$$
A_{t}^{\prime} \cong A_{t} \quad \text { for all } \quad t \in T
$$

Proof. Let \mathscr{S} be the collection of all sets S of disjoint elements in \mathscr{A} such that for each $s \in S$ there is a $t \in T$ with $s \cong A_{t}$. If

$$
S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{i} \subseteq \cdots
$$

is a chain of sets in \mathscr{S} indexed by I and ordered by set theoretical inclusion, then

$$
\bigcup_{i \in I} S_{i}=S \in \mathscr{S}
$$

By Zorn's lemma there is a maximal set in \mathscr{S}, say $S^{\prime}=\left\{A_{r}\right\}_{r \in R}$, and it immediately follows that

$$
\bigcup_{r \in R} A_{r} \neq A
$$

Now let

$$
\varphi: S^{\prime} \longrightarrow T
$$

be a mapping such that if $A_{r} \in S^{\prime}$ then

$$
A_{r} \subseteq A_{\varphi\left(A_{r}\right)}
$$

For each $t \in T$ define

$$
A_{t}^{\prime}=\bigcup\left\{A_{r} \in S^{\prime}: \varphi\left(A_{r}\right)=t\right\}
$$

if there is an $A_{r} \in S^{\prime}$ such that $\varphi\left(A_{r}\right)=t$, otherwise define

$$
A_{t}^{\prime}=\Lambda
$$

Then

$$
\left\{A_{t}^{\prime}\right\}_{t \in T}
$$

is the desired set.
Proposition 2.4. Let \mathscr{A} be a Boolean algebra. The following are equivalent:

1. \mathscr{A} satisfies the m-chain condition:
2. for all sets S in \mathscr{A} such that $\bigcup_{s \in S} s$ exists,

$$
\bigcup_{s \in S} s=\bigcup_{s \in S^{\prime}} s
$$

for some set $S^{\prime} \subseteq S$ with $S^{\prime} \leqq m$; and dually for meets.
Proof.
$1 . \Rightarrow 2$. Suppose \mathscr{A} satisfies the m-chain condition. It suffices to show that if

$$
S=\left\{A_{t}\right\}_{t \in T} \text { and } \mathbf{V}=\bigcup_{t \in T} A_{t}, \quad \overline{\bar{T}}=m^{\prime}>m
$$

then there is a set $T^{\prime} \cong T, \overline{\bar{T}}^{\prime} \leqq m$, such that

$$
\bigcup_{t \in \mathbb{T}^{\prime}} A_{t}=\mathrm{V}
$$

Let $\{i, \mathscr{B}\}$ be an m^{\prime}-completion of \mathscr{A}. Then \mathscr{B} satisfies the m-chain condition and

$$
\begin{aligned}
\mathbf{V}_{\mathscr{A}} & =i\left(\mathbf{V}_{\mathscr{A}}\right) \\
& =\bigcup_{t \in T}^{\mathscr{A}} i\left(A_{t}\right) .
\end{aligned}
$$

By Proposition 2.3, there is a set $\left\{\mathscr{B}_{t}\right\}_{t \in T}$ of disjoint elements in \mathscr{B} such that

$$
B_{t} \cong i\left(A_{t}\right) \quad \text { and } \quad \bigcup_{t \in T}^{\ngtr} B_{t}=\bigcup_{t \in T}^{\circledast} i\left(A_{t}\right)
$$

Since this set contains at most m-distinct elements,

$$
\bigcup_{t \in T}^{\infty} B_{t}=\bigcup_{t \in T^{\prime}}^{\infty} B_{t}
$$

$T^{\prime} \subseteq T$ and $\overline{\bar{T}}^{\prime} \leqq m$. Thus

$$
\mathbf{V}_{\mathscr{B}}=\bigcup_{t \in T^{\prime}}^{\mathscr{E}} i\left(A_{t}\right)
$$

or

$$
\mathbf{V}=\mathbf{U}_{t \in \mathbb{T},} A_{t} A_{t}
$$

2. $\Rightarrow 1$. Suppose $\left\{A_{t}\right\}_{t \in T}$ is an m^{\prime}-indexed set of disjoint elements of $\mathscr{A}, m^{\prime}>m$. It may be assumed that $\left\{A_{t}\right\}_{t \in T}$ is a maximal set of disjoint elements of \mathscr{A}. Then for some $T^{\prime} \leqq T, \overline{\bar{T}}^{\prime \prime} \leqq m$,

$$
\mathrm{V}_{\star}=\bigcup_{t \in \mathbb{T}^{\prime}}^{\diamond} A_{t} .
$$

Since $\overline{\overline{T^{\prime}}} \neq \overline{\bar{T}}$, there is a $t_{0} \in T-T^{\prime}$ such that

$$
A_{t_{0}} \in\left\{A_{t}\right\}_{t \in T}-\left\{A_{t}\right\}_{t \in T}, \quad \text { and } \quad A_{t_{0}} \neq \Lambda_{\mathscr{A}}
$$

Thus

$$
\mathrm{U}_{t \in T^{\prime}}^{\star} A_{t} \neq \mathrm{V}{ }_{\infty},
$$

a contradiction. Hence $\overline{\bar{T}} \leqq m$.
This gives, as an immediate corollary, the following result due to Sikorski [2].

Corollary 2.2. If \mathscr{A} is a Boolean m-algebra and satisfies the m-chain condition, it is a complete Boolean algebra.

Proposition 2.5. The class $\mathscr{K}\left(J, M, m^{\prime}\right)$ contains a smallest element if $\mathscr{K}(J, M, m)$ contains a smallest element, $m^{\prime}<m$.

Proof. Let $\{i, \mathscr{B}\}$ be the smallest element in $\mathscr{K}(J, M, m)$. If $\left\{j^{\prime}, \mathscr{C}^{\prime}\right\} \in \mathscr{K}\left(J, M, m^{\prime}\right)$, let $\{k, \mathscr{C}\}$ be an m-completion of \mathscr{C}^{\prime}. Then $\{k j, \mathscr{C}\} \in \mathscr{K}(J, M, m)$.

By the fact that $\{i, \mathscr{B}\}$ is the smallest element in $\mathscr{\mathscr { L }}(J, M, m)$, there is an m-homomorphism h such that

$$
h: \mathscr{C} \longrightarrow \mathscr{B} \quad \text { and } \quad h k j=i
$$

Also $\{i, \mathscr{B}\}$ an m-completion of \mathscr{A} implies that there is an m^{\prime} completion $\left\{i, \mathscr{B}^{\prime}\right\}$ of \mathscr{A} such that $\mathscr{B}^{\prime} \subseteq \mathscr{B}$. Thus $h k\left(\mathscr{C}^{\prime}\right)$ is an m-subalgebra of \mathscr{B}, hence $\mathscr{B}^{\prime} \subseteq h k\left(\mathscr{C}^{\prime}\right)$ and is an m-subalgebra of \mathscr{C}.

Now $k j(\mathscr{A})$ m-generates $k\left(\mathscr{C}^{\prime}\right)$ in \mathscr{C} and $k j(\mathscr{A}) \subseteq h^{-1}\left(\mathscr{B}^{\prime}\right)$, hence

$$
h^{-1}\left(\mathscr{B}^{\prime}\right) \supseteqq k\left(\mathscr{C}^{\prime}\right),
$$

or

$$
h\left(h^{-1}\left(\mathscr{B}^{\prime}\right)\right) \supseteqq h k\left(\mathscr{C}^{\prime}\right)
$$

But

$$
h\left(h^{-1}\left(\mathscr{B}^{\prime}\right)\right)=\mathscr{B}^{\prime},
$$

thus

$$
\mathscr{B}^{\prime} \supseteqq h k\left(\mathscr{C}^{\prime}\right),
$$

so

$$
\mathscr{B}^{\prime}=h k\left(\mathscr{C}^{\prime}\right)
$$

Since $h k j=i$,

$$
\left\{i, \mathscr{B}^{\prime}\right\} \leqq\left\{k j, k\left(\mathscr{C}^{\prime}\right)\right\} .
$$

But k a complete isomorphism implies that

$$
\left\{k j, k\left(\mathscr{C}^{\prime}\right)\right\} \cong\left\{j, \mathscr{C}^{\prime}\right\}
$$

and since isomorphic elements in $\mathscr{K}(J, M, m)$ have been identified,

$$
\left\{i, \mathscr{B}^{\prime}\right\}=\left\{j, \mathscr{C}^{\prime}\right\}
$$

Lemma 2.2. If $\overline{\bar{J}} \leqq \sigma$ and $\overline{\bar{M}} \leqq \sigma$ then there is a (J, M, m) isomorphism i of a Boolean algebra \mathscr{A} into the field \mathscr{F} of all subsets of a space.

Proposition 2.6. If the Boolean algebra \mathscr{A} is m-representable but not m^{+}-representable, m^{+}the smallest cardinal greater than m, then $\mathscr{K}\left(J, M, m^{+}\right)$does not contain a smallest element if

$$
\mathscr{K}_{r}\left(J, M, m^{+}\right) \neq \varnothing .
$$

If $\overline{\bar{J}} \leqq \sigma, \overline{\bar{M}} \leqq \sigma$ then $\mathscr{K}_{r}\left(J, M, m^{+}\right) \neq \varnothing$.
Proof. Suppose $\{j, \mathscr{C}\} \in \mathscr{K}_{r}\left(J, M, m^{+}\right)$. Then \mathscr{C} is m-representable and if an m^{+}-completion $\{i, \mathscr{B}\}$ of \mathscr{A} is a smallest element in $\mathscr{K}\left(J, M, m^{+}\right)$, there is a surjective m^{+}-homomorphism

$$
h: \mathscr{C} \longrightarrow \mathscr{B},
$$

which implies \mathscr{B} is m^{+}-representable, hence \mathscr{A} is m^{+}-representable, a contradiction. Thus $\mathscr{K}\left(J, M, m^{+}\right)$does not contain a smallest element if $\mathscr{K}_{r}\left(J, M, m^{+}\right) \neq \varnothing$.

If $\overline{\bar{J}} \leqq \sigma$ and $\overline{\bar{M}} \leqq \sigma$ then \mathscr{A} is $\left(J, M, m^{+}\right)$-representable by Lemma 2.2, hence $\mathscr{K}_{r}\left(J, M, m^{+}\right) \neq \varnothing$.

The next proposition is an easy generalization of Sikorski's [2] Proposition 25.2 and will be needed for the last theorem in this section.

Proposition 2.7. A Boolean algebra \mathscr{A} is completely distributive, if, and only if, it is atomic.

Corollary 2.3. A Boolean algebra \mathscr{A} is completely distributive, if, and only if, \mathscr{A} is m-distributive, $m=\overline{\overline{\mathscr{A}}}$.

The following proposition is due to Sikorski [2] and will be given without proof.

Proposition 2.8. If the Boolean algebra \mathscr{A} is m-distributive, then $\mathscr{K}(J, M, m)$ contains a smallest element for arbitrary J and M.

Lemma 2.3. If $\{i, \mathscr{B}\}$ is an m-extension of the Boolean algebra \mathscr{A} and \mathscr{B} is m-representable, then \mathscr{A} is m-representable.

Proof. This follows immediately from the fact that \mathscr{A} is m-regular in \mathscr{B}.

Now to prove the main theorem of this section.
THEOREM 2.2. Let \mathscr{A} be a Boolean algebra. Then the following are equivalent:

1. \mathscr{K} contains a smallest element for arbitrary J, M, and m;
2. \mathscr{A} is m-representable for all m;
3. \mathscr{A} is completely distributive;
4. \mathscr{A} is atomic;
5. an m-completion of \mathscr{A} is atomic for all m;
6. an m-completion of \mathscr{A} is in $\mathscr{K}_{r}(J, M, m)$ for arbitrary J, M, and m;
7. $\mathscr{K}\left(J, M, 2^{m^{*}}\right)$ contains a smallest element, where $J=M=\varnothing$ and $\overline{\mathscr{A}}=m^{*}$.

Proof.
$1 . \Rightarrow 2$. If \mathscr{A} is m-representable but not m^{*}-representable, then Proposition 2.6 implies $\mathscr{K}^{\prime}\left(J, M, m^{*}\right)$ does not contain a smallest element if $\overline{\bar{J}}, \overline{\bar{M}}<\sigma$.
$2 .=3$. This follows from the fact that if a Boolean algebra \mathscr{A} is 2^{m}-representable, it is m-distributive.
$3 . \Leftrightarrow 4$. This follows from Proposition 2.7.
$3 . \Rightarrow 1$. This follows from Proposition 2.8.
4. $\Leftrightarrow 5$. If $\{i, \mathscr{B}\}$ is an m-completion of \mathscr{A} then $i(\mathscr{A})$ is dense in \mathscr{B}, so \mathscr{B} is atomic, and conversely.
$2 . \Rightarrow 6$. This follows from noting that $2 . \Rightarrow 3$. and \mathscr{A} completely distributive implies an m-completion of \mathscr{A} is completely distributive, hence m-representable for all cardinals m.
$6 . \Rightarrow 2$. This follows from Lemma 2.3.
3. $\Leftrightarrow 7$. If $J=M=\varnothing$ and $\mathscr{K}\left(J, M, 2^{m^{*}}\right)$ contains a smallest element, then by Proposition 2.6, \mathscr{A} is $2^{m^{*}}$-representable, hence m^{*}-distributive. Since $m^{*}=\mathscr{\mathscr { A } , \mathscr { A }}$ is completely distributive, by Corollary 2.3. The converse is clear.
3. The example in $\S 2$ of a Boolean algebra \mathscr{A} such that the class of all (J, M, m)-extensions of \mathscr{A} does not contain a smallest element depends on the assumption that $\overline{\bar{J}}, \overline{\bar{M}} \leqq \sigma$. Thus it is of interest to know whether an example can be found showing that the class of all m-extensions of \mathscr{A} does not contain a smallest element, since this corresponds to the case where J and M are as large as possible. As it turns out, there are Boolean algebras \mathscr{A} such that the class of all m-extensions \mathscr{K} does not contain a smallest element. In this section such an example will be constructed for each infinite cardinal m and several general types of Boolean algebras such that \mathscr{K} does not contain a smallest element will be given.

Throughout this section \mathscr{K} will denote the class of all m extensions of a Boolean algebra \mathscr{A} and $\mathscr{K}(J, M, m)$ the class of all (J, M, m)-extensions.

If \mathscr{A} is a Boolean algebra and $\{i, \mathscr{C}\} \in \mathscr{K}(J, M, m)$, let

$$
K(\mathscr{C})=\{C \in \mathscr{C}: \text { if } i(A) \subseteq C, A \in \mathscr{A}, \text { then } A=\Lambda
$$

and

$$
K_{P}(\mathscr{C})=\left\{C \in \mathscr{C}: \text { if } P=\{A \in \mathscr{A}: i(A) \supseteqq C\} \text { then } \bigcap_{A \in P}^{\otimes} A=\Lambda_{\mathscr{A}}\right\}
$$

Note that $K_{P}(\mathscr{C}) \subseteq K(\mathscr{C})$.
Lemma 3.1. The set $K_{P}(\mathscr{C})$ is an ideal and $K(\mathscr{C})=K_{P}(\mathscr{C})$, if, and only if, $K(\mathscr{C})$ is an ideal.

Proof. It follows easily that $K_{P}(\mathscr{C})$ is an ideal.
If $K(\mathscr{C})$ is an ideal and $\mathscr{C} \in K(\mathscr{C})$ let

$$
P=\{A \in \mathscr{A}: i(A) \supseteqq C\}
$$

If $A^{\prime} \in \mathscr{A}$ and $A^{\prime} \cong A$ for all $A \in P$, then

$$
i\left(A^{\prime}\right)-C \in K(\mathscr{C})
$$

Now $i\left(A^{\prime}\right) \cap C \in K(\mathscr{C})$, hence

$$
i\left(A^{\prime}\right)=\left(i\left(A^{\prime}\right)-C\right) \cup\left(i\left(A^{\prime}\right) \cap C\right) \in K(\mathscr{C})
$$

which implies $i\left(A^{\prime}\right)=\Lambda_{\odot}$ or $A^{\prime}=\Lambda_{\mathscr{r}}$. Thus

$$
\bigcap_{A \in P}^{\infty} A=\Lambda \propto
$$

so $C \in K_{P}(\mathscr{C})$, and

$$
K_{P}(\mathscr{C})=K(\mathscr{C})
$$

Since $K_{P}(\mathscr{C})$ is an ideal, the converse is true.

Proposition 3.1. If \mathscr{A} is a Boolean algebra the following are equivalent:

1. $\mathscr{K}(J, M, m)$ contains a smallest element;
2. $K(\mathscr{C})=K_{P}(\mathscr{C})$ for all $\{i, \mathscr{C}\} \in \mathscr{K}(J, M, m)$;
3. $K(\mathscr{C})=K_{P}(\mathscr{C})$ if $\{i, \mathscr{C}\}$ is the maximum element in $\mathscr{K}(J, M, m)$.

Proof.

1. \Rightarrow 2. Suppose $\mathscr{K}(J, M, m)$ contains a smallest element $\{i, \mathscr{B}\}$, and there is an element

$$
\{j, \mathscr{C}\} \in \mathscr{K}(J, M, m)
$$

with the property that

$$
K(\mathscr{C}) \neq K_{P}(\mathscr{C})
$$

Let h be the unique m-homomorphism mapping \mathscr{C} onto \mathscr{B} such that $h j=i$. Let ker h be the kernel of this mapping. Then

$$
K_{P}(\mathscr{C}) \subseteq \operatorname{ker} h \subseteq K(\mathscr{C})
$$

and

$$
\operatorname{ker} h \neq K(\mathscr{C})
$$

Pick $x \in K(\mathscr{C})-\operatorname{ker} h$ and let

$$
\Delta=\langle x\rangle,
$$

so Δ is a complete ideal. Thus

$$
\left\{i_{\perp}, \mathscr{C} \mid \Delta\right\} \in \mathscr{N}(J, M, m),
$$

where

$$
i_{\Delta}: \mathscr{A} \rightarrow \mathscr{C} \mid \Delta
$$

is defined by

$$
i_{\lrcorner}(A)=[i(A)]_{\lrcorner} .
$$

Consequently, there are unique homomorphisms h_{\lrcorner}and h^{\prime} mapping \mathscr{C} onto $\mathscr{C} / \Delta, \mathscr{C} / \Delta$ onto \mathscr{B}, and satisfying $h_{\Delta} j=i_{\Delta}, h^{\prime} i_{\Delta}=i$, respectively. Hence

$$
h^{\prime} h_{A} j=h^{\prime} i_{A}=i
$$

and by the uniqueness of h,

$$
h=h^{\prime} h_{\Delta}
$$

This implies

$$
h(x)=h^{\prime} h_{\Delta}(x)=\Lambda,
$$

a contradiction. Thus

$$
K(\mathscr{C})=K_{P}(\mathscr{C})
$$

2. $\Rightarrow 3$. Obvious.
3. $\Rightarrow 1$. To show that $\mathscr{K}(J, M, m)$ contains a smallest element, let $\{j, \mathscr{C}\}$ be the largest element in $\mathscr{\mathscr { L }}(J, M, m)$ and suppose $\left\{j^{\prime}, \mathscr{C}^{\prime}\right\} \in$ $\mathscr{K}(J, M, m)$. Let $\{i, \mathscr{B}\}$ be an m-completion of \mathscr{A}. Then there is an m-homomorphism h^{\prime} mapping \mathscr{C} onto \mathscr{C}^{\prime} such that $h^{\prime} j=j^{\prime}$ and an m-homomorphism h mapping \mathscr{C} onto \mathscr{B} such that $h j=i$. Thus

$$
K_{P}(\mathscr{C}) \cong \operatorname{ker} h \cong K(\mathscr{C}),
$$

which implies, by assumption, that

$$
K_{P}(\mathscr{C})=\operatorname{ker} h=K(\mathscr{C})
$$

so $K_{P}(\mathscr{C})$ and $K(\mathscr{C})$ are m-ideals in \mathscr{C}. Further,

$$
h^{\prime}\left(K_{P}(\mathscr{C})\right) \subseteq K_{P}\left(\mathscr{C}^{\prime}\right) \subseteq K\left(\mathscr{C}^{\prime}\right) \cong h^{\prime}(K(\mathscr{C}))
$$

This implies that

$$
h^{\prime}\left(K_{P}(\mathscr{C})\right)=K_{P}\left(\mathscr{C}^{\prime}\right)=K\left(\mathscr{C}^{\prime}\right)=h^{\prime}(K(\mathscr{C})),
$$

hence $K\left(\mathscr{C}^{\prime}\right)$ is an m-ideal. Let

$$
\Delta=K\left(\mathscr{C}^{\prime}\right)
$$

Then $\mathscr{C}^{\prime} / \Delta$ is an m-algebra and

$$
j_{\Delta}^{\prime}(\mathscr{A})=\left\{\left[j^{\prime}(A)\right]_{\Delta}: A \in \mathscr{A}\right\}
$$

m-generates $\mathscr{C}^{\prime} / \Delta$. Finally, $j_{4}^{\prime}(\mathscr{A})$ is dense in $\mathscr{C}^{\prime} \mid \Delta$. Thus $\left\{j_{0}^{\prime}, \mathscr{C}^{\prime} / \Delta\right\}$ is an m-completion of \mathscr{A}, hence is equal to $\{i, \mathscr{B}\}$, as isomorphic elements of $\mathscr{K}(J, M, m)$ have been identified. The m-homomorphism

$$
h_{\Delta}: \mathscr{C}^{\prime} \longrightarrow \mathscr{C}^{\prime} / \Delta
$$

defined by

$$
h_{\Delta}\left(C^{\prime}\right)=\left[C^{\prime}\right]_{\Delta}
$$

has the property that

$$
h_{\Delta} j=j^{\prime} \text { for all } A \in \mathscr{A},
$$

implying that

$$
\left\{i_{A}, \mathscr{C}^{\prime} \mid \Delta\right\} \leqq\left\{j^{\prime}, \mathscr{C}^{\prime}\right\}
$$

Hence $\mathscr{K}(J, M, m)$ contains a smallest element.
This, then, gives a way to construct a Boolean algebra \mathscr{A} such that \mathscr{K} does not contain a smallest element. Namely, by finding a Boolean algebra \mathscr{A} with an m-extension $\{i, \mathscr{C}\}$ such that $K_{P}(\mathscr{C}) \neq$ $K(\mathscr{C})$. The next task is to construct such a Boolean algebra.

If $\overline{\bar{T}}=m$ and $\mathscr{A}=\mathscr{A}_{t}$ for all $t \in T$, the Boolean product of $\left\{\mathscr{A}_{t}\right\}_{t \in T}$ will be called the m-fold product of \mathscr{A}. Note that if \mathscr{A} is a subalgebra of the Boolean algebra $\mathscr{A}^{\prime}, \mathscr{F}$ is the m-fold product of \mathscr{A} and \mathscr{F}^{\prime} is the m-fold product of \mathscr{A}^{\prime}, then $\mathscr{F} \subseteq \mathscr{F}^{\prime}$.

Lemma 3.2. If \mathscr{A} is an m-regular subalgebra of the Boolean algebra \mathscr{A}^{\prime} then the Boolean m-fold product \mathscr{F} of \mathscr{A} is isomorphic to an m-regular subalgebra of the Boolean m-fold product \mathscr{F}^{\prime} of \mathscr{A}^{\prime}.

Proof. Since \mathscr{A} is a subalgebra of $\mathscr{A}^{\prime}, \mathscr{F} \cong \mathscr{F}^{\prime}$. Let $\mathscr{S}\left(\mathscr{S}^{\prime}\right)$ be the set of all $\varphi_{t}(A), A \in \mathscr{A}$ and $t \in T\left(A \in \mathscr{A}^{\prime}\right.$ and $\left.t \in T\right)$. Then $F \in \mathscr{S}\left(F \in \mathscr{S}^{\prime}\right)$ implies $-F \in \mathscr{S}\left(-F \in \mathscr{S}^{\prime}\right)$ and $\mathscr{S}\left(\mathscr{S}^{\prime}\right)$ are sets of generators for $\mathscr{F}\left(\mathscr{F}^{\prime}\right)$. For elements $F \in \mathscr{F}^{\prime}$ of the form

$$
F=\bigcap_{i=1}^{N} F_{i}, \quad F_{i} \in \mathscr{S}
$$

define

$$
\lambda_{t}(F)=\left\{\pi_{t}(x): x \in \bigcap_{i=1}^{N} F_{i}\right\} .
$$

Note that if $F \in \mathscr{S}^{\prime}$ and $t \in T$ is such that $\lambda_{t}(F) \neq \mathrm{V}_{x^{\prime}}$ then $\varphi_{t}\left(\lambda_{t}(F)\right)=F$.

In order to show \mathscr{F} is m-regular in \mathscr{F}^{\prime}, it suffices to prove that if $\left\{F_{t}\right\}_{t \in T}$ is an m-indexed set of elements of \mathscr{F} such that

$$
\bigcap_{t \in T}^{F} F_{t}=\Lambda_{F}
$$

then

$$
\bigcap_{t \in T}^{T^{\prime}} F_{t}=\Lambda^{\prime}
$$

Now $F_{t} \in \mathscr{F}$ so F_{t} may be rewritten as

$$
F_{t}=\bigcap_{p=1}^{P_{t}} \bigcup_{q=1}^{q_{t}} F_{p, q, t}
$$

where P_{t}, Q_{t} are finite numbers and $F_{p, q, t} \in \mathscr{S}$, for all $p \in P_{t}, q \in Q_{t}$, and $t \in T$. Thus

$$
\begin{aligned}
\Lambda_{\mathcal{F}} & =\bigcap_{t \in T_{p=1}^{S}}^{P_{t}} \bigcup_{\eta=1}^{Q_{t}} F_{p, q, t} \\
& =\bigcap_{s \in S}^{S} \bigcup_{q=1}^{Q_{\mathcal{S}}} F_{s, q}
\end{aligned}
$$

after a suitable re-indexing, where $\overline{\bar{S}} \leqq m$ and $F_{s, q}=F_{p, q, t}$ for suitable $p \in P_{t}, t \in T$. Without loss of generality, assume that for each $s \in S, \lambda_{t}\left(F_{s, q}\right) \neq \Lambda_{\infty}$ implies $\lambda_{t}\left(F_{s, q}\right)=\bigvee_{\Omega}$, for all $t \in T$ and $q^{\prime} \neq q$, and that $F_{s, q} \neq \mathrm{V}_{5}$, for all $q, 1 \leqq q \leqq Q_{s}$, and all $s \in S$. Suppose $F^{\prime} \in \mathscr{F}$, and $F^{\prime \prime} \cong F_{t}$ for all $t \in T$. Then

$$
F^{\prime}=\bigcup_{m=1 n=1}^{M} \bigcup_{n, n}^{N} F^{\prime}, \quad F_{m, n}^{\prime} \in \mathscr{S}^{\prime},
$$

so

$$
\bigcap_{n=1}^{N} F_{m, n}^{\prime} \cong \bigcup_{q=1}^{Q_{s}} F_{s, q}
$$

for $1<m \leqq M$, and all $s \in S$. Thus to show $F^{\prime}=\Lambda_{\text {r }}$, it suffices to prove that if

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \subseteq \bigcup_{q=1}^{Q_{s}} F_{s, q},
$$

for all $s \in S$, where $F_{n}^{\prime} \in \mathscr{S}^{\prime}$, then

$$
\bigcap_{n=1}^{N} F_{n}^{\prime}=\Lambda_{\Omega} .
$$

It may be assumed that for each $n, 1 \leqq n \leqq N, \lambda_{t}\left(F_{n}^{\prime}\right) \neq \Lambda_{\infty}$ implies $\lambda_{t}\left(F_{n^{\prime}}^{\prime}\right)=\mathrm{V}_{\infty}$, for all $t \in T$ and $n^{\prime} \neq n$, and that $F_{n}^{\prime} \neq \mathrm{V}_{\Im}$, for all $n, 1 \leqq n \leqq N$.

Now

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \cong \bigcup_{q=1}^{Q s} F_{s, q}
$$

implies

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \cap \bigcup_{\eta=1}^{Q_{s}}-F_{s, q}=\Lambda \Omega^{\prime},
$$

and as each F_{n}^{\prime} and $-F_{s, q}$ is of the form $\varphi_{t}(A)$ for some $A \in \mathscr{A}^{\prime}$ and $t \in T$, the independence of the indexed set $\left\{\varphi_{t}\left(\mathscr{A}^{\prime}\right)_{t \in T}\right.$ of subalgebras of \mathscr{F}^{\prime} implies that for some $n_{s}, 1 \leqq n_{\mathrm{s}} \leqq N$, and some $q_{s}, 1 \leqq q_{s} \leqq Q_{s}$,

$$
F_{n_{s}^{\prime}}^{\prime} \cap-F_{e, q_{s}}=\Lambda_{\sigma^{\prime}},
$$

which implies $F_{n_{s}}^{\prime} \subseteq F_{s, q_{s}}$. This argument may be repeated for each $s \in S$.

The set $\left\{n_{s}: s \in S\right\}$ is finite so let $\left\{n_{s}: s \in S\right\}=\left\{n_{i}: 1 \leqq i \leqq N^{\prime}\right\}$. Let $S_{i}=\left\{s \in S: F_{n_{i}}^{\prime} \subseteq F_{s, q_{s}}\right\}$. If $t_{s} \in T$ is such that

$$
\lambda_{t_{s}}\left(F_{s, q_{s}}\right) \neq \mathrm{V}_{\mathscr{\Omega}} \quad \text { for all } s \in S
$$

then $\lambda_{t_{s}}\left(F_{s, q_{s}}\right) \in \mathscr{A}$ and

$$
\bigcap_{s \in S_{i}}^{\infty} \lambda_{t_{s}}\left(F_{s, q_{s}}\right) \neq \Lambda_{\Omega r}
$$

Thus

$$
\bigcap_{s \in S_{i}}^{x_{s}^{\prime}} \lambda_{t_{s}}\left(F_{s, q_{s}}\right) \neq \Lambda_{\mathscr{P}}
$$

or

$$
\bigcap_{s \in S_{i}}^{\infty} \lambda_{t_{s}}\left(F_{s, q_{s}}\right) \neq \Lambda_{\mathscr{r}},
$$

hence there is an $A_{i} \in \mathscr{A}, A_{i} \neq \Lambda_{\mathscr{r}}$, with

$$
A_{i} \cong \lambda_{t_{s}}\left(F_{s, q_{s}}\right) \quad \text { for all } s \in S_{i}
$$

Let $A_{t, i}$ be the set of all $x \in X$ such that $\pi_{t_{s}}(x) \in A_{i}$. Thus $A_{t, i} \in \mathscr{F}$ and this argument may be repeated for each $i, 1 \leqq i \leqq N^{\prime}$. Now

$$
\Lambda_{\sigma} \neq \bigcap_{i=1}^{N^{\prime}} A_{t, i}
$$

and

$$
\bigcap_{i=1}^{N^{\prime}} A_{t, i} \subseteq \bigcup_{q=1}^{Q_{s}} F_{q, s}
$$

for all $s \in S$. But then

$$
\bigcap_{i=1}^{N^{\prime}} A_{t, i} \subseteq \bigcap_{s \in S} \bigcup_{q=1}^{Q_{s}} F_{q, s}=\Lambda_{\sigma},
$$

a contradiction. Thus \mathscr{F} is m-regular in \mathscr{F}^{\prime}.
The next lemma assumes there is a Boolean algebra \mathscr{A} such that an m-extension is not an m-completion. Sikorski [2] cites an example due to Katětov of such a Boolean algebra for the case $m=\sigma$. As Lemmas 3.5 and 3.6 imply, there is such an \mathscr{A} for all infinite cardinal numbers m.

Assume for the moment that \mathscr{A} is a Boolean algebra such that \mathscr{K} contains more than one element and $\{i, \mathscr{B}\} \in \mathscr{K}$ is an m-extension that is not an m-completion. Thus there is a $B \in \mathscr{B}$ such that $i(A) \subseteq B, A \in \mathscr{A}$, implies $A=\Lambda_{\infty}$. Let \mathscr{F}^{\prime} be the Boolean m-fold product of \mathscr{B}, h_{0} an isomorphism of \mathscr{B} onto the Stone space \mathscr{F} of
\mathscr{B}, X the Cartesian product of \mathscr{F} with itself m times and indexed by T, and

$$
B_{t}=\varphi_{t} h_{0}(B) \quad \text { for all } t \in T
$$

Let

$$
B_{0}=\bigcup_{t \in T^{\prime}} B_{t}
$$

where $T^{\prime \prime}$ is a fixed, but arbitrary subset of T such that $\bar{T}^{\prime \prime} \geqq \sigma$, and define

$$
\mathscr{F}_{0}=\left\langle\mathscr{F}^{\prime}, B_{0}\right\rangle .
$$

Since $\overline{\bar{T}}^{\prime} \geqq \sigma, \mathscr{F}_{0} \neq \mathscr{F}^{\prime}$.
Lemma 3.3. If \mathscr{F} is the Boolean m-fold product of \mathscr{A} then \mathscr{F} is isomorphic to an m-regular subalgebra of \mathscr{F}_{0}.

Proof. It may be assumed, without loss of generality, that $\mathscr{A} \subseteq \mathscr{B}$. Thus $\mathscr{F} \subseteq \mathscr{F}_{0}$. Let $\mathscr{S}\left(\mathscr{S}^{\prime}\right)$ be a generating set for $\mathscr{F}\left(\mathscr{F}^{\prime}\right)$. Let

$$
\mathscr{S}_{0}=\mathscr{S}^{\prime} \cup\left\{B_{0}\right\}
$$

so \mathscr{S}_{0} is a generating set for \mathscr{F}_{0}. As in the previous lemma, to prove \mathscr{F} is m-regular in \mathscr{F}_{0} it suffices to show that if

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \subseteq \bigcup_{q=1}^{Q_{s}} F_{s, q}
$$

for all $s \in S, \overline{\bar{S}} \leqq m$; and

$$
\bigcap_{s \in S} \bigcup_{q=1}^{a_{s}} F_{s, q}=\Lambda
$$

$F_{s, q} \in \mathscr{S}$ for all $s \in S$ and $1 \leqq q \leqq Q_{s}, F_{n}^{\prime} \in \mathscr{S}_{0}, 1 \leqq n \leqq N$; then

$$
\bigcap_{n=1}^{N} F_{n}^{\prime}=\Lambda_{\sigma}
$$

Since $F_{n}^{\prime} \in \mathscr{S}_{0}$, there is an $n, 1 \leqq n \leqq N$, such that $F_{n}^{\prime}=B_{0}$ or $F_{n}^{\prime}=$ $-B_{0}$, otherwise there is nothing to prove. This may be reduced to two cases:

Case 1.

$$
\bigcap_{n=1}^{\mathrm{V}} F_{n}^{\prime} \cap B_{0} \subseteq \bigcup_{q=1}^{Q_{s}} F_{s, q}
$$

for all $s \in S$, where $F_{n}^{\prime} \in \mathscr{S}^{\prime}$ and $F_{s, q} \in \mathscr{S}$.

Case 2.

$$
\left(-B_{0}\right) \cap \bigcap_{n=1}^{N} F_{n}^{\prime} \subseteq \bigcup_{q=1}^{Q_{s}} F_{s, q}
$$

for all $s \in S$, where $F_{n}^{\prime} \in \mathscr{S}^{\prime}$ and $F_{s, q} \in \mathscr{S}$.
Proof of Case 1. If for each $s \in S$ there is an $n_{s}, 1 \leqq n_{s} \leqq N$, such that there is a $q_{s}, 1 \leqq q_{s} \leqq Q_{s}$, with $F_{n_{s}}^{\prime} \subseteq F_{s, q_{s}}$, then

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \subseteq \bigcup_{q=1}^{Q_{s}} F_{s, q}
$$

for all $s \in S$, and

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \in \mathscr{F}
$$

implies

$$
\bigcap_{n=1}^{N} F_{n}^{\prime}=\Lambda_{\mathscr{F}}
$$

Thus it may be assumed there is an s_{0} such that

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \not \equiv \bigcup_{q=1}^{q_{s_{0}}} F_{s_{0}, q}
$$

Hence for all $n, F_{n}^{\prime} \cong F_{s_{0}, q}$ for some q, is false. If

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \cap B_{0} \neq \Lambda_{\mathscr{F}}^{\prime},
$$

let $x \in X$ be defined as follows. Let $t_{1}, \cdots, t_{n} \in T$ be such that $\lambda_{t_{i}}\left(F_{i}^{\prime}\right) \neq \mathrm{V}_{\mathscr{G}}, 1 \leqq i \leqq N$. Choose an $x \in X$ such that it satisfies the following conditions:
(a)

$$
\pi_{i}(x) \in\left\{\begin{array}{l}
\lambda_{t_{i}}\left(F_{i}^{\prime}\right) \text { if } \lambda_{t_{i}}\left(F_{s_{0}, q}\right)=\mathrm{V}_{\mathscr{G}} \text { for all } q, 1 \leqq q \leqq Q_{s_{0}} \\
\lambda_{t_{i}}\left(F_{i}^{\prime}\right)-\lambda_{t_{i}}\left(F_{s_{0}, q_{0}}\right) \text { if } \lambda_{t_{i}}\left(F_{s_{0}, q_{0}}\right) \neq \mathrm{V}_{\mathscr{A}}
\end{array}\right.
$$

for $1 \leqq i \leqq N$;
(b) $\pi_{t_{q}}(s) \in-\lambda_{t_{q}}\left(F_{s_{0}, q}\right)$ for each $t_{q} \in T$ such that $\lambda_{t_{q}}\left(F_{s_{0}, q}\right) \neq \mathrm{V}_{\mathscr{Q}}$, $1 \leqq q \leqq Q_{s_{0}}$ and $t_{q} \neq t_{i}, 1 \leqq i \leqq n$;
(c) $\pi_{t}(x) \in h_{0}(B)$ for all $t \neq t_{q} ; 1 \leqq i \leqq N, 1 \leqq q \leqq Q_{s_{0}}$.

Now x is well defined,

$$
x \in B_{0} \quad \text { and } \quad x \in \bigcap_{n=1}^{N} F_{n}^{\prime},
$$

by its definition. But $x \notin F_{s_{0}, q}$ for all $q, 1 \leqq q \leqq Q_{s_{0}}$, hence

$$
x \notin \bigcup_{q=1}^{Q s_{0}} F_{s_{0}, q}
$$

a contradiction.

Proof of Case 2. If

$$
-B_{0} \cap \bigcap_{n=1}^{N} F_{n}^{\prime} \neq \Lambda_{F}
$$

and $\lambda_{t_{n}}\left(F_{n}^{\prime}\right) \neq \mathrm{V}_{\mathscr{B}}, t_{n} \in T$, let $A_{n}=\varphi_{t_{n}}\left(-B_{0}\right), 1 \leqq n \leqq N$. Then

$$
\bigcap_{n=1}^{N} F_{n}^{\prime} \cap\left(-B_{0}\right)=\bigcap_{n=1}^{N}\left(F_{n}^{\prime} \cap A_{n}\right) \cap\left(-B_{0}\right)
$$

and

$$
\bigcap_{n=1}^{N}\left(F_{n}^{\prime} \cap A_{n}\right) \in \mathscr{F}^{\prime}
$$

As before, an $s_{0} \in S$ may be found such that

$$
\bigcap_{n=1}^{N}\left(F_{n}^{\prime} \cap A_{n}\right) \nsubseteq \bigcup_{q=1}^{Q_{s_{0}}} F_{s_{0}, q}
$$

Define t_{1}, \cdots, t_{N} as before so that $\lambda_{t_{i}}\left(F_{i}^{\prime} \cap A_{i}\right) \neq \mathrm{V}_{\mathfrak{S}}, 1 \leqq i \leqq N$. Choose $x \in X$ satisfying the following conditions:
(a)

$$
\pi_{t_{i}}(x) \in\left\{\begin{array}{l}
\lambda_{t_{i}}\left(F_{i}^{\prime} \cap A_{i}\right) \text { if } \lambda_{t_{i}}\left(F_{s_{0}, q}\right)=\mathbf{V}_{\mathscr{B}}, 1 \leqq q \leqq Q_{s_{0}} \\
\lambda_{t_{i}}\left(F_{i}^{\prime} \cap A_{i}\right)-\lambda_{t_{i}}\left(F_{s_{0}, q}\right) \text { if } \lambda_{t_{i}}\left(F_{s_{0}, q_{0}}\right) \neq \mathbf{V}_{\mathscr{s}}
\end{array}\right.
$$

for $1 \leqq i \leqq N$.
(b) $\pi_{t_{q}}(x) \in-\lambda_{t_{q}}\left(F_{s_{0}, q}\right)$ for each $t_{q} \in T$ such that $\lambda_{t_{q}}\left(F_{s_{0}, q}\right) \neq \mathrm{V}_{\mathscr{G}}$; $1 \leqq q \leqq Q_{s_{0}}$, and $t_{q} \neq t_{i}, 1 \leqq i \leqq N$.
(c) $\pi_{t}(x) \in \lambda_{t}\left(-B_{0}\right)$ if $t \neq t_{i}, t_{q} ; 1 \leqq i \leqq n, 1 \leqq q \leqq Q_{s_{0}}$.

Now x is well defined and

$$
x \in\left(-B_{0}\right) \cap \bigcap_{n=1}^{N}\left(F_{n}^{\prime} \cap A_{n}\right)=-B_{0} \cap \bigcap_{n=1}^{N} F_{n}^{\prime}
$$

so

$$
x \notin \bigcup_{q=1}^{Q_{s_{0}}} F_{s, q}
$$

a contradiction.
Consequently, in either case

$$
\bigcap_{n=1}^{N} F_{n}^{\prime}=\Lambda_{\mathscr{F}}
$$

Lemma 3.4. If j is the identity isomorphism of \mathscr{F} into \mathscr{F}_{0} and $\{i, \mathscr{C}\}$ is an m-completion of \mathscr{F}_{0}, then $\{i j, \mathscr{C}\}$ is an m-extension of \mathscr{F}.

Proof. All that needs to be shown is that $i j(\mathscr{F}) m$-generates \mathscr{C}. But this follows immediately from the fact that $\mathscr{A} m$-generates \mathscr{B} and the definition of \mathscr{F} and \mathscr{F}_{0}.

THEOREM 3.1. If \mathscr{A} m-generates \mathscr{B} then $\mathscr{K}(\mathscr{F})$ does not contain a smallest element.

Proof. $F \in \mathscr{F}$ and $F \supseteqq B_{0}$ then $F=\mathrm{V}{ }_{0}$, by definition of B_{0}. Thus if j and $\{i, \mathscr{C}\}$ are defined as in Lemma 3.4, $\{i j, \mathscr{C}\}$ is an m-extension of \mathscr{F} and $i j\left(B_{0}\right) \in K(\mathscr{C})$. By Proposition 3.1, $\mathscr{K}(\mathscr{F})$ does not contain a smallest element.

The results of this theorem may be generalized as follows. Let $\left\{\mathscr{A}_{t}\right\}_{t \in T}$ be an infinite indexed set of Boolean algebras and $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\}$ be the Boolean product of $\left\{\mathscr{A}_{t}\right\}_{t \in T}$. Let T^{\prime} be the set of all $t \in T$ such that $\mathscr{K}\left(\mathscr{A}_{t}\right)$ contains more than one element.

Theorem 3.2. The class of m-extensions $\mathscr{L}(\mathscr{B})$ does not contain a smallest element if $\overline{\bar{T}}^{\prime} \geqq \sigma$.

Proof. Define \mathscr{F}^{\prime} to be the Boolean product of $\left\{\left\{j_{t}, \mathscr{B}_{t}\right\}\right\}_{t \in T}$, where $\left\{j_{t}, \mathscr{B}_{t}\right\} \in \mathscr{K}\left(\mathscr{A}_{t}\right)$ for all $t \in T$ and $\left\{j_{t}, \mathscr{B}_{t}\right\}$ is not an m-completion of \mathscr{A}_{t} for all $t \in T^{\prime \prime}$. For each $\mathscr{B}_{t}, t \in T^{\prime}$, there is a $B_{t} \in \mathscr{B}_{t}$ such that $j_{t}(A) \cong B_{t}, A \in \mathscr{A}_{t}$, implies $A=\Lambda_{\mathscr{c}_{t}}$. Let φ_{t} map \mathscr{B}_{t} into \mathscr{B} and set

$$
B_{0}=\bigcup_{t \in T}, \varphi_{t}\left(B_{t}\right)
$$

and

$$
\mathscr{F}_{0}=\left\langle\mathscr{F}^{\prime}, B_{0}\right\rangle .
$$

Then by an argument similar to the proofs of Lemmas 3.2, 3.3, and 3.4, and Theorem 3.1, $\mathscr{K}(\mathscr{B})$ does not contain a smallest element.

Corollary 3.1. If $\mathscr{A}_{t}=\mathscr{A}_{t^{\prime}}$ for all $t, t^{\prime} \in T$ then $\mathscr{K}(\mathscr{B})$ contains a smallest element if, and only if, an m-extension of \mathscr{B} is an m-completion.

Proof. If $\mathscr{\mathscr { L }}(\mathscr{B})$ contains an m-extension which is not an m completion, let \mathscr{B} play the role of \mathscr{A} in Lemmas 3.2, 3.3, and 3.4. By Theorem 3.1, $\mathscr{I}(\mathscr{F})$ does not contain a smallest element. As
the m-fold product \mathscr{F} of \mathscr{B} is isomorphic to $\mathscr{B} \mathscr{K}(\mathscr{B})$ does not contain a smallest element. The converse is clear.

Now to prove the assumption on which these results are based.
Lemma 3.5. For each infinite cardinal number m there is a Boolean algebra \mathscr{A} such that an m-completion $\{i, \mathscr{B}\}$ of \mathscr{A} contains an element B with

$$
B \neq \bigcup_{u \in U}^{\mathscr{S}} \bigcap_{v \in V}^{\mathscr{B}} A_{u, v}
$$

for all m-indexed sets $\left\{A_{u, v}\right\}_{u \in U, v \in V}$ in \mathscr{A}.
Proof. The proof will be by constructing such an \mathscr{A} for each m. Let S be an indexing set of cardinality m. Let \mathscr{D}_{m} be the Cartesian product of S with itself m times and indexed by T. Define

$$
D_{t, s}=\left\{d \in \mathscr{D}_{m}: \pi_{t}(d)=s\right\}
$$

Fix $s_{1}^{\prime}, s_{2}^{\prime} \in S, s_{1}^{\prime} \neq s_{2}^{\prime}$, and set $S^{\prime}=S-\left\{s_{1}^{\prime}, s_{2}^{\prime}\right\}$. Let $D=\bigcup_{t \in T}\left(D_{t, s_{1}^{\prime}} \cup\right.$ $\left.D_{t, s_{2}}\right)$. Thus $\overline{\bar{D}}=2^{m}$ and $d \in \mathscr{D}_{m}-D$ implies $\pi_{t}(d) \neq s_{k}^{\prime}, k=1,2$, for all $t \in T$.

Let

$$
\mathscr{S}=\left\{\{d\}: d \in \mathscr{D}_{m}\right\} \cup\left\{D_{t, s}: t \in T, s \in S^{\prime}\right\}
$$

Let \mathscr{A} be generated by \mathscr{S} in \mathscr{D}_{m} and let \mathscr{B} be the m-field of sets m-generated by \mathscr{S} in \mathscr{D}_{m}. Then \mathscr{A} is dense in \mathscr{B} and m-generates \mathscr{B}, so if i is the identity map of \mathscr{A} into $\mathscr{B},\{i, \mathscr{B}\}$ is an m-completion of \mathscr{A}.

Let

$$
B=\mathscr{D}_{m}-D
$$

Suppose

$$
B=\bigcup_{u \in U} \bigcap_{v \in V} A_{u, v}
$$

$\left\{A_{u, v}\right\}_{u \in U, v \in V}$ an m-indexed set in \mathscr{A}. This can be written in the form

$$
\begin{gathered}
\bigcup_{u \in U} \bigcap_{v \in V} \bigcup_{m \in M_{u, v}} A_{u, v, m} ; \\
A_{u, v, m} \text { or }-A_{u, v, m} \in \mathscr{S}, \quad \overline{\overline{M_{u, v}}}<\sigma
\end{gathered}
$$

Let $B^{\prime}=\left\{d \in \mathscr{D}_{m}:\{d\}=A_{u, v, m}\right.$ for some $u \in U, v \in V$, and $\left.m \in M_{u, v}\right\}$. Then $\overline{\bar{B}}^{\prime} \leqq m$, so if
$M_{u, v}^{\prime}=\left\{m \in M_{u, v}: A_{u, v, m}\right.$ is not of the form $\left.\{d\}, d \in \mathscr{D}_{m}\right\}$, it follows that

$$
\overline{\overline{B-\bigcup_{u \in U}} \bigcap_{v \in V} \bigcup_{m \in M_{u, v}^{\prime}} A_{u, v, m}} \leqq m
$$

It will now be shown that in fact

$$
\overline{\overline{B-\bigcup_{u \in E}} \bigcap_{v \in V} \bigcup_{m \in M I_{u}^{\prime}, v} A_{u, v, m}}>m
$$

a contradiction. Hence it may be assumed that $A_{u, v, m}$ is not of the form $\{d\}, d \in \mathscr{D}_{m}$, for all $u \in U, v \in V$, and $m \in M_{u, v}$.

If $A_{u, v, m}=-\{d\}, d \in \mathscr{D}_{m}$, for some $m \in M_{u, v}$, then either

$$
\begin{equation*}
\bigcup_{m \in M u, v} A_{u, v, m}=-\{d\} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\bigcup_{m \in M_{u, v}} A_{u, v, m}=\mathrm{V} . \tag{2}
\end{equation*}
$$

If (1) occurs, it may be assumed that $M_{u, v}=\{1\}$ and $A_{u, v, 1}=-\{d\}$. If (2) occurs, the term $\bigcup_{m \in M_{u, v}} A_{u, v, m}$ may be dropped. Thus for all $u \in U, V$ may be written as $V_{u} \cup V_{u}^{\prime}$, where (1) $V_{u} \cap V_{u}^{\prime}=\varnothing$; (2) $A_{u, v, m}=-\left\{d_{u, v}\right\}, d_{u, v} \in \mathscr{D}_{m}$, for all $v \in V_{u}$; and (3) $A_{u, v, m}$ is either of the form $-D_{t, s}$ or $D_{t, s}$ for all $v \in V_{u}^{\prime}$. Consequently, for all $u \in U$,

$$
\bigcap_{v \in V} \bigcup_{m \in M_{u, v}} A_{u, v, m}=\bigcap_{v \in V_{u}}-\left\{d_{u, v}\right\} \cap \bigcap_{v \in V_{\dot{u}}} \bigcup_{m \in M_{u}} A_{v} A_{u, v, m}
$$

Let

$$
C_{u}=\bigcap_{v \in V} \bigcup_{m \in \mathbb{N}_{u, v}} A_{u, v, m}
$$

Suppose U is the set of all ordinals $u<\alpha$, where $\alpha=\overline{\bar{U}}$. Let $D_{1}=\left\{d \in \mathscr{D}_{m}: \pi_{t}(d)=s_{1}^{\prime}, s_{2}^{\prime}\right\}$. Now $\overline{\bar{D}}_{1}=2^{m}$ implies there is a $d_{1} \in D$ such that

$$
d_{1} \in \bigcap_{v \in V_{1}}-\left\{d_{1, v}\right\}
$$

Since $d_{1} \notin B$, this implies

$$
d_{1} \in \bigcap_{2 \in V_{1}^{\prime}} \bigcup_{m \in M_{1, v}} A_{1, v, m}
$$

hence for some $v_{1} \in V_{1}^{\prime}$,

$$
d_{1} \notin \bigcup_{m \in M_{1}, v_{1}} A_{1, v_{1}, m}
$$

Also, $D_{1} \subseteq-D_{t, s}$ for all $t \in T$ and $s \in S^{\prime}$, hence

$$
A_{1, v_{1}, m}=D_{t_{1, m}, s_{t, m}}
$$

for some $t_{1, m} \in T$ and $s_{t_{1}, m} \in S^{\prime}$, for all $m \in M_{1, v_{1}}$. Let $T_{1}=\left\{t_{1, m}: m \in M_{1, v_{1}}\right\}$
and pick $s_{1} \in S^{\prime}$ such that $s_{1} \neq s_{t_{1, m}}$ for all $m \in M_{1, v_{1}}$. Define

$$
\varphi(t)=s_{1}
$$

for all $t \in T_{1}$. Let $B_{1}=\varnothing$ and define $B_{2}=\left\{d \in \mathscr{D}_{m}: \pi_{t}(d)=\varphi(t)\right.$ for all $\left.t \in T_{1}\right\}$.

Note that $B_{2} \cap C_{1}=\varnothing$.
Suppose $i>1$ and a finite set $T_{i^{\prime}}$ has been defined for each $i^{\prime}<i$ so that $T_{i^{\prime}} \cap T_{i^{\prime \prime}}=\varnothing$ if $i^{\prime}, i^{\prime \prime}<i, i^{\prime} \neq i^{\prime \prime} ; s_{i^{\prime}} \in S^{\prime}$ has been chosen; φ has been defined on each $T_{i^{\prime}}, i^{\prime}<i$, so that $\varphi(t)=s_{i^{\prime}}$ for all $t \in T_{i^{\prime}}$; and if

$$
B_{i}=\left\{d \in \mathscr{D}_{m}: \pi_{t}(d)=\varphi(t) \text { for all } t \in \bigcup_{i^{\prime}<i} T_{i^{\prime}}\right\}
$$

then

$$
B_{i} \cap \bigcup_{i^{\prime}<i} C_{i^{\prime}}=\varnothing
$$

Let

$$
\hat{T}_{i}=\bigcup_{i<i} T_{i^{\prime}}
$$

and note that $\overline{\overline{\hat{T}}_{i}}<m$. Let

$$
\begin{aligned}
D_{i}= & \left\{d \in \mathscr{D}_{m}: \pi_{t}(d)=\varphi(t) \text { for all } t \in \hat{T}_{i}\right. \\
& \text { and } \left.\pi_{t}(d)=s_{k}^{\prime}, k=1,2, \text { if } t \in T-\widehat{T}_{i}\right\}
\end{aligned}
$$

Then $D_{i} \subseteq D$ and $\overline{\overline{D_{i}}}=2^{m}$, hence there is a $d_{i} \in D_{i}$ such that

$$
d_{i} \in \bigcap_{v \in V_{i}}-\left\{d_{i, v}\right\}
$$

Since $d_{i} \notin B$, this implies

$$
d_{i} \notin \bigcap_{v \in V_{i}^{\prime}} \bigcup_{m \in M i, v} A_{i, v, m},
$$

hence for some $v_{i} \in V_{i}^{\prime}$,

$$
d_{i} \notin \bigcup_{m \in M_{i, v_{i}}} A_{i, v_{i}, m}
$$

If $B_{i} \cap C_{i}=\varnothing$ set $T_{i}=\varnothing$. If not, there is a $d_{i}^{\prime} \in B_{i}$ such that $d_{i}^{\prime} \in C_{i}$, so

$$
d_{i}^{\prime} \in \bigcup_{m \in M_{i, v_{i}}} A_{i, v_{i}, m} .
$$

Note that $\pi_{t}\left(d_{i}^{\prime}\right)=\pi_{t}\left(d_{i}\right)$ for all $t \in \widehat{T}_{i}$.
It immediately follows that if

$$
d_{i}^{\prime} \in \underset{m \in M_{i, v_{i}}}{ } A_{i, v_{i}, m}
$$

then

$$
A_{i, v_{i}, m}=D_{t_{i, m}, s_{i, m}},
$$

where $t_{i, m} \notin \hat{T}_{i}$ and

$$
\pi_{t_{i, m}}\left(d_{i}^{\prime}\right)=s_{t_{i, m}}
$$

for some $m \in M_{i, v_{i}}$.
Let

$$
T_{i}=\left\{t_{i, m} \in T-\hat{T}_{i}: A_{i, v_{i, m}}=D_{t_{i, m}, s_{i, m}} \text { for some } m \in M_{i, v_{i}}\right\}
$$

and pick $s_{i} \in S^{\prime}$ such that if $t_{i, m} \in T_{i}$ then

$$
s_{i} \neq S_{t_{i, m}},
$$

for all $m \in M_{i, v_{i}}$. Now define

$$
\varphi(t)=s_{i} \text { for all } t \in T_{i} .
$$

Thus $T_{i} \cap \widehat{T}_{i}=\varnothing$ which implies $T_{i} \cap T_{i^{\prime}}=\varnothing$ for all $i^{\prime}<i$. If

$$
B_{i+1}=\left\{d \in \mathscr{D}_{n}: \pi_{t}(d)=\varphi(t) \text { for all } t \in T_{i} \cup \widehat{T}_{i}\right\}
$$

then it is clear that

$$
B_{i+1} \cap \bigcup_{i<i} C_{i}=\varnothing .
$$

Now let $\hat{T}=\bigcup_{i<\alpha} T_{i}$ and set

$$
\begin{aligned}
\hat{B}= & \left\{d \in \mathscr{D}_{m}: \pi_{t}(d)=\varphi(t) \text { for all } t \in \widehat{T}\right. \\
& \text { and } \left.\pi_{t}(d) \neq s_{1}^{\prime}, s_{2}^{\prime} \text { if } t \in T-\widehat{T}\right\} .
\end{aligned}
$$

Then $\hat{B} \neq \varnothing$ and $\hat{B} \subseteq B$. But $\hat{B} \cap \bigcup_{u \in U} C_{u}=\varnothing$ which implies

$$
B-\bigcup_{w \in U} C_{u} \neq \varnothing .
$$

If $B^{\prime}=B-\bigcup_{u \in U} C_{u}$ then for each $b \in B^{\prime}$,

$$
b=\bigcap_{t \in T} D_{t, s, b},
$$

for some m-indexed set $\left\{s_{t, b}\right\}_{t \in T}$ in $S^{\prime \prime}$. Thus

$$
B=\bigcup_{u \in U} \bigcap_{v \in V} \bigcup_{m \in \mathbb{H}_{u, v}} A_{u, v, m} \cup \bigcup_{b \in B^{\prime}} \bigcap_{t \in T} D_{t, s_{t, b}},
$$

but the above construction shows that

$$
B-\left(\bigcup_{w \in U} \bigcap_{v \in V} \bigcup_{m \in \mathbb{H}_{u, v}} A_{u, v, m} \cup \bigcup_{b \in B^{\prime}} \bigcap_{t \in T} D_{t, s, s, b}\right) \neq \varnothing
$$

if $\overline{\bar{B}^{\prime}} \leqq m$. Hence

$$
\overline{\overline{B-\bigcup} \bigcup_{u \in U} C_{u}>m} .
$$

Lemma 3.6. If $\{i, \mathscr{B}\}$ is an m-completion of the Boolean algebra \mathscr{A} and there is a $B \in \mathscr{B}$ such that

$$
B \neq \bigcup_{t \in T}^{\infty} \bigcap_{s \in S}^{\mathscr{C}} i\left(A_{t, s}\right)
$$

for all m-indexed sets $\left\{A_{t, \text {, }}\right\}_{t \in T, s \in S}$ in \mathscr{A}, then there is an m-ideal Δ in \mathscr{B} such that $\left\{j, \mathscr{B}_{A}\right\}$ is an m-extension of $i_{A}(\mathscr{A})$ but not an m-completion, where $i_{\Delta}(A)=[i(A)]_{\Delta}$ for all $A \in \mathscr{A}, \mathscr{B}_{A}=\mathscr{B} \mid \triangle$ and j is the identity map of $i_{A}(\mathscr{A})$ into \mathscr{B}_{s}.

Proof. Let

$$
\begin{aligned}
A^{\prime}= & \left\{B^{\prime} \in \mathscr{B}: B^{\prime} \subseteq B \text { and } B^{\prime}=\bigcap_{t \in T}^{\mathscr{R}} i\left(A_{t}\right),\right. \\
& \text { for some } \left.m \text {-indexed set }\left\{A_{t}\right\}_{t \in T} \text { in } \mathscr{A}\right\}
\end{aligned}
$$

and let $\Delta=\left\langle\Delta^{\prime}\right\rangle_{m}$. Then if $\delta \in \Delta, \delta \subseteq B$, so $B \notin \Delta$. If $A \in \mathscr{A}$ and $[i(A)]_{\Delta} \cong[B]_{A}$ then $i(A)-B \in \Delta$ so $i(A)-B \cong B$ which implies $i(A) \cong B$, hence $i(A) \in \Delta$ and $[i(A)]_{A}=\Lambda_{\Omega_{\Delta}}$, implying $i_{A}(\mathscr{A})$ is not dense in \mathscr{B}.

It only remains to show that $i_{A}(\mathscr{A})$ is m-regular in \mathscr{B}_{A}. If

$$
\bigcap_{t \in T}^{i,(S)}\left[i\left(A_{t}\right)\right]_{A}=\Lambda_{\Omega_{A}}
$$

then $i(A) \subseteq i\left(A_{t}\right)$ for all $t \in T$ implies $i(A) \in \Delta$, so $i(A) \cong B$. If

$$
\bigcap_{t \in T}^{\mathscr{F}} i\left(A_{t}\right) \nsubseteq B
$$

then there is an $A \neq \Lambda_{\infty}$ in \mathscr{A} such that

$$
i(A) \subseteq \bigcap_{t \in T}^{\curvearrowleft} i\left(A_{t}\right)-B,
$$

contradicting the above statement. Thus

$$
\bigcap_{t \in T} i\left(A_{t}\right) \cong B
$$

so

$$
\bigcap_{t \in T}^{\overparen{T}} i\left(A_{t}\right) \in \Delta
$$

and

$$
\Lambda_{\mathscr{\Phi}_{\Delta}}=\left[\bigcap_{t \in T}^{\mathscr{F}} i\left(A_{t}\right)\right]_{J}=\bigcap_{t \in T}^{\mathscr{A}}\left[i\left(A_{t}\right)\right]_{\lrcorner} .
$$

Thus if \mathscr{A} is the Boolean algebra constructed in Lemua 3.5, $i_{\Delta}(\mathscr{A})$ is a Boolean algebra such that $\mathscr{K}\left(i_{\Delta}(\mathscr{A})\right)$ contains more than one element. Hence it is justified to assume that for each infinite cardinal m there is a Boolean algebra \mathscr{A} such that \mathscr{A} has an m extension which is not an m-completion.
4. Let $\left\{\mathscr{A}_{t}\right\}_{t \in T}$ be a (fixed) indexed set of Boolean algebras. Let h_{t} be an isomorphism of \mathscr{A}_{t} onto the field \mathscr{F}_{t} of all open-closed subsets of the Stone space X_{t} of \mathscr{A}_{t}. Let X denote the Cartesian product of all the spaces X_{t}. Let π_{t} be the projection of X onto \mathscr{F}_{t} and define

$$
\varphi_{t}: \mathscr{F}_{t} \longrightarrow X
$$

by:

$$
\text { if } F \in \mathscr{F}_{t} \text { then } \mathscr{P}_{t}(F)=\left\{x \in X: \pi_{t}(x) \in F\right\} .
$$

Let \mathscr{F} be the Boolean product of $\left\{\mathscr{A}_{t}\right\}_{t \in T}$. Define $h_{t}^{*}=\varphi_{t} h_{t}$ and let \mathscr{S} be the set of all sets $\bigcap_{t \in T^{\prime}} h_{t}^{*}\left(A_{t}\right) ; A_{t} \in \mathscr{A}_{t}, T^{\prime \prime} \cong T^{\prime}, \overline{\overline{T^{\prime}}} \leqq n$. Define $\widehat{\mathscr{F}}$ to be the field of sets generated by \mathscr{S}. Let J be the set of all sets $S \subseteq \hat{\mathscr{F}}$ such that

1. $\overline{\bar{S}} \leqq m$;
2. there is a $t \in T$ such that $S \subseteq h_{t}^{*}\left(\mathscr{A}_{t}\right)$;
3. the join $\bigcup_{A \in S}^{\hat{\theta}} A$ exists.

Let M^{\prime} be the set of all sets $S \subseteq \widehat{T}$ such that

1. $\overline{\bar{S}} \leqq m$;
2. there is a $t \in T$ such that $S \subseteq h_{t}^{*}\left(\mathscr{A}_{t}\right)$;
3. the meet $\bigcap_{A \in S}^{\hat{*}} A$ exists.

Let $M^{\prime \prime}$ be the set of all sets $S \subseteq \hat{T}$ such that

1. $\overline{\bar{S}} \leqq n$;
2. if $A \in S$ then $A \in h_{t}^{*}\left(\mathscr{A}_{t}\right)$ for some $t \in T$;
3. if $A, B \in S, A \neq B$, then $A \in h_{t}^{*}\left(\mathscr{A}_{t}\right)$ implies $B \notin h_{t}^{*}\left(\mathscr{A}_{t}\right)$. Let $M=M^{\prime} \cup M^{\prime \prime}$.

The following lemma is due to La Grange [1] and will be given without proof.

Lemma 4.1. If $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \mathscr{P}_{n}$ then there is one and only one (J, M, m)-isomorphism h mapping $\hat{\mathscr{F}}$ into \mathscr{B} such that

$$
h h_{t}^{*}=i_{t} \quad \text { for all } \quad t \in T .
$$

THEOREM 4.1. If $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \in \mathscr{P}_{n}$ then there is a mapping h of $\hat{\mathscr{F}}$ into \mathscr{B} such that $\{h, \mathscr{B})$ is a (J, M, m)-extension of $\hat{\mathscr{F}}$. If $\{h, \mathscr{B}\}$ is a (J, M, m)-extension of $\widehat{\mathscr{F}}$ then the ordered pair $\left\{\left\{h h_{t}^{*}\right\}_{t \in T}, \mathscr{\mathscr { B }}\right\} \in \mathscr{P}_{n}$.

Proof. Let h be the (J, M, m)-isomorphism from $\hat{\mathscr{F}}$ into \mathscr{P} such that $h h_{t}^{*}=i_{t}$ for all $t \in T$. Then $\{h, \mathscr{B}\}$ is a (J, M, m)-extension of $\stackrel{\mathscr{F}}{ }$.

Conversely, if $\{h, \mathscr{F}\}$ is a (J, M, m)-extension of $\hat{\mathscr{F}}$, it follows immediately that $\left\{\left\{h h_{t}^{*}\right\}_{t \in T^{\prime}}, \mathscr{B}\right\}$ is an (m, n)-product of $\left\{\mathscr{A}_{t}\right\}_{t \in T}$.

THEOREM 4.2. If $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\},\left\{\left\{i_{t}^{\prime}\right\}_{t \in T}, \mathscr{B}^{\prime}\right\}$ are two (m,n)-products of $\left\{\mathscr{A}_{t}\right\}_{t \in T}$ then

$$
\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \leqq\left\{\left\{i_{t}^{\prime}\right\}_{t \in T}, \mathscr{B}^{\prime}\right\}
$$

if, and only if,

$$
\{i, \mathscr{B}\} \leqq\left\{i^{\prime}, \mathscr{B}^{\prime}\right\}
$$

where $\{i, \mathscr{B}\}$ and $\left\{i^{\prime}, \mathscr{B}^{\prime}\right\}$ are the (J, M, m)-extensions of $\hat{\mathscr{F}}$ induced by the (J, M, m)-isomorphisms i^{\prime} and i of $\widehat{\mathscr{F}}$ into \mathscr{B}^{\prime} and \mathscr{B}, respectively, given by Lemma 4.1.

Proof. Now

$$
\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \leqq\left\{\left\{i_{t}^{\prime}\right\}_{t \in T}, \mathscr{B}^{\prime}\right\}
$$

if, and only if, there is an m-homomorphism h such that

$$
h: \mathscr{B}^{\prime} \longrightarrow \mathscr{B}
$$

and $h i_{t}^{\prime}=i_{t}$ for all $t \in T$. Similarly,

$$
\{i, \mathscr{B}\} \leqq\left\{i^{\prime}, \mathscr{B}^{\prime}\right\}
$$

if, and only if, there is an m-homomorphism

$$
\hbar: \mathscr{B}^{\prime} \longrightarrow \mathscr{B}
$$

such that $h^{\prime} i^{\prime}=i$. Thus it suffices to show that $h i^{\prime}=i$, if, and only if, $h i_{t}^{\prime}=i_{t}$. Let h_{t}^{*} be defined as above. Then $i h_{t}^{*}=i_{t}$ and $i^{\prime} h_{t}^{*}=i_{t}^{\prime}$, so if $h i^{\prime}=i$,

$$
h i_{t}^{\prime}=h i^{\prime} h_{t}^{*}=i h_{t}^{*}=i_{t}
$$

and if $h i_{t}^{\prime}=i_{t}$, then

$$
h i^{\prime}=h i_{t}^{\prime} h_{t}^{*-1}=i_{t} h_{t}^{*-1}=i
$$

La Grange [1] has given an example of an ($m, 0$)-product for which \mathscr{P} does not contain a smallest element and an example of an (m, n)-product for which \mathscr{P}_{n} does not contain a smallest element. Theorem 4.2 extends this result by showing that the question whether \mathscr{P} or \mathscr{P}_{n} contains a smallest element reduces to asking whether the class of all (J, M, m)-extensions of \mathscr{A}_{0} or $\hat{\mathscr{F}}$ contains a smallest element for J and M defined appropriately in each case, where \mathscr{A}_{0} and $\hat{\mathscr{F}}$ are defined as above. Now the class of all (J, M, m)-extensions of \mathscr{A}_{0} contains a smallest element only if the class of all m extensions of \mathscr{A} contains a smallest element and Theorem 3.2 shows that the class of all m-extensions of \mathscr{S}_{0} need not contain a smallest element, which implies the same is true for \mathscr{P}. Since Theorem 3.2 may be extended to Boolean algebras of the form $\widehat{\mathscr{F}}$, it follows that \mathscr{P}_{n} need not contain a smallest element.

References

1. R. H. La Grange, On (m, n)-products of Boolean algebras, Pacific J. Math., 31 (1968), 725-731.
2. R. Sikorski, Boolean Algebras (2nd Edition), New York, 1964.

Received November 27, 1972 and in revised form March 28, 1973.
University of California, Los Angeles

