ON THE INNER APERTURE AND INTERSECTIONS OF CONVEX SETS

D. G. Larman

If C_{1}, \cdots, C_{n} are n convex surfaces or sets in d-dimensional Euclidean space E^{d}, then it is of some interest to study the invariance properties of $\bigcap_{i=1}^{n}\left(C_{i}+\boldsymbol{a}_{i}\right)$ for all choices of vectors \boldsymbol{a}_{i} in E^{d}. Such considerations occur naturally in identifying an object irrespective of the direction in which it approaches the observer.

For example, Melzak [2] and Lewis [1] have investigated the conditions under which the intersection $\bigcap_{i=1}^{d}\left(C_{i}+\boldsymbol{a}_{i}\right)$ of certain convex surfaces always is a single point. These surfaces arise from the work of Ratcliff and Hartline [3] concerning varying light intensities upon different visual elements of the eye.

In this article we study such intersections and in Theorem 1, we show that the result of Melzak [1] has an associated Helly number in E^{2} but not in E^{3}. In Theorem 2 we give a necessary and sufficient condition for $\bigcap_{i=1}^{n} C_{i}+\boldsymbol{a}_{i}$ to be nonempty, whenever C_{1}, \cdots, C_{n} are convex sets, in terms of the outward normals. This condition is not easy to apply in that it involves the outward normals to intersections of d-membered subsets. So in Theorem 3 we give a sufficient condition in terms of inner and outer apertures which is widely applicable. Finally, in Theorem 4, we give a characterization of the sets which can arise as inner apertures. I am indebted to Z. A. Melzak for suggesting these problems to me.

To define the inner and outer aperture, let D be a convex subset of E^{d}. If $l \equiv l(\boldsymbol{u}, \boldsymbol{v})$,

$$
l=\{\boldsymbol{u}+\lambda \boldsymbol{v}, \lambda \geqq 0\}
$$

is a typical ray in $E^{d}, \boldsymbol{u}, \boldsymbol{v} \in E^{d}, \boldsymbol{v} \neq \boldsymbol{o}$, define

$$
\theta(\lambda, D)=\operatorname{dist} .\left\{\boldsymbol{u}+\lambda \boldsymbol{v}, E^{d} \backslash D\right\}
$$

and

$$
\theta(D)=\sup _{\lambda \geq 0} \theta(\lambda)
$$

where

$$
\operatorname{dist.}\{A, B\}=\inf _{\substack{\boldsymbol{b} \in A \\ \boldsymbol{b} \in B}}\|\boldsymbol{a}-\boldsymbol{b}\|
$$

when A, B are nonempty subsets of E^{d}. The inner aperture $\mathscr{J}(D)$ of D is the union of those rays $l(\boldsymbol{u}, \boldsymbol{v})-\boldsymbol{u}$ emanating from the origin
o such that $\theta(l(u, v), D)=+\infty$. So, if D contains $o, \mathscr{J}(D)$ is the union of those rays $l \equiv l(\boldsymbol{o}, \boldsymbol{u})$ in D such that $\lambda \boldsymbol{u}$ can be made an arbitrarily large distance from the boundary of D for λ sufficiently large. The outer cone $O(D)$ of D is what is usually known as the characteristic cone namely the set of all rays $l(u, v)-u$ emanating from o with $l(\boldsymbol{u}, \boldsymbol{v})$ contained in D. Both $O(D)$ and $\mathscr{J}(D)$ are convex cones and $O(D)$ is closed whenever D is closed. In general, of course, $O(D)$ can be any convex cone in E^{d} but this is not the case for $\mathscr{J}(D)$. It will follow from Theorem 4 that $\mathscr{J}(D)$ is a G_{i}-convex cone with the property that whenever a ray $l \in \mathrm{cl} .\{\mathscr{F}(D)\} \backslash \mathscr{J}(D)$ then the smallest exposed face $F(l)$ of cl. $\{\mathscr{J}(D)\}$ containing l also is contained in $\{\mathrm{cl} . \mathscr{F}(D)\} \mid \mathscr{F}(D)$.

Theorem 1. Let $C_{1}^{*}, \cdots, C_{n}^{*}$ be n convex sets in E^{d} whose ddimensional interiors are nonempty and do not contain a line. Let C_{1}, \cdots, C_{n} be the convex surfaces bounding $C_{1}^{*}, \cdots, C_{n}^{*}$ respectively. Then $\bigcap_{j=1}^{n}\left(C_{j}+\boldsymbol{a}_{j}\right)$ is at most a single point for all choices $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ of points in E^{d} if and only if there does not exist n parallel lines of support l_{1}, \cdots, l_{n} to $C_{1}^{*}, \cdots, C_{n}^{*}$ respectively. In E^{2} this is true if and only if some four membered subset $C_{j_{1}}^{*}, \cdots, C_{j_{4}}^{*}$ do not have parallel lines of support. However, in E^{3} and for every $n \geqq 3$ there exist convex sets $C_{1}^{*}, \cdots, C_{n}^{*}$, whose relative interiors do not contain a line, such that every $n-1$ membered subset have parallel lines of support but this is not so for $C_{1}^{*}, \cdots, C_{n}^{*}$.

Lemma 1. Let A_{1}, \cdots, A_{n} be spherically convex subsets (possibly open, half-open or closed semicircles) of the unit circle S^{1} such that

$$
\bigcap_{\nu=1}^{4}\left(A_{i_{\nu}} \cup-A_{i_{\nu}}\right) \neq \varnothing, 1 \leqq i_{\nu} \leqq n, \nu=1, \cdots, 4
$$

Then

$$
\bigcap_{i=1}^{n}\left(A_{i} \cup-A_{i}\right) \neq \varnothing
$$

Proof. We parametrise S^{1} in terms of the angle θ made with some fixed line through the origin and consider the semicircular interval $[0, \pi]$. The intersection $A_{i} \cup-A_{i}$ with $[0, \pi]$ is either
(i) an interval $\left\langle c_{i}, d_{i}\right\rangle$ not containing either 0 or π,
or (ii) $[0, \pi]$,
or (iii) two intervals $\left[0, a_{i}>,<b_{i}, \pi\right]$, the first containing 0 and the second containing π.

The classification yields a corresponding subdivision I_{1}, I_{2}, I_{3} of $\{1, \cdots, n\}$. Let

$$
\begin{aligned}
& {\left[0, a_{i_{1}}\right\rangle=\bigcap_{i \in I_{3}}\left[0, a_{i}\right\rangle} \\
& \left\langle b_{i_{2}}, \pi\right]=\bigcap_{i \in I_{3}}\left\langle b_{i}, \pi\right] .
\end{aligned}
$$

If $\left\langle c_{i}, d_{i}\right\rangle$ and $\left\langle c_{j}, d_{j}\right\rangle, i, j \in I_{1}$ both meet $\left[0, a_{i_{1}}\right\rangle$ and

$$
\begin{equation*}
\left\langle c_{i}, d_{i}\right\rangle \cap\left\langle c_{j}, d_{j}\right\rangle \cap\left[0, a_{i_{1}}\right\rangle=\varnothing \tag{1}
\end{equation*}
$$

then at least one of these intervals is contained in $\left[0, a_{i_{1}}\right\rangle$. But then

$$
\left(A_{i} \cup-A_{i}\right) \cap\left(A_{j} \cup-A_{j}\right) \cap\left(A_{i_{1}} \cup-A_{i_{1}}\right) \cap\left(A_{i_{2}} \cup-A_{i_{2}}\right)
$$

is contained in [0, $\left.a_{i_{1}}\right\rangle \cup-\left[0, a_{i_{1}}\right\rangle$ and consequently, by (1), is empty, which is contradiction. So, if

$$
I_{1}^{1}=\left\{i \in I_{1}:\left\langle c_{i}, d_{i}\right\rangle \cap\left[0, \alpha_{i_{1}}\right\rangle \neq \varnothing\right\}
$$

we have, from Helly's theorem, that

$$
\begin{equation*}
\left[0, a_{i_{1}}\right\rangle \cap \bigcap_{i \in I_{1}^{1}}\left\langle c_{i}, d_{i}\right\rangle \neq \varnothing \tag{2}
\end{equation*}
$$

Similarly, if

$$
\begin{align*}
I_{1}^{2}= & \left\{i \in I_{1}:\left\langle c_{i}, d_{i}\right\rangle \cap\left\langle b_{i_{2}}, \pi\right] \neq \varnothing\right\} \tag{3}\\
& \left\langle b_{i_{2}}, \pi\right] \cap \bigcap_{i \in I_{1}^{2}}\left\langle c_{i}, d_{i}\right\rangle \neq \varnothing
\end{align*}
$$

If there exists $i_{3} \in I_{1} \backslash I_{1}^{1}$ and $i_{4} \in I_{1} \backslash I_{1}^{2}$ then

$$
\bigcap_{\nu=1}^{4} A_{i_{\nu}} \cup-A_{i_{\nu}}=\varnothing
$$

so either $I_{1}^{1}=I_{1}$ or $I_{1}^{2}=I_{1}$ and, using (2) and (3),

$$
\bigcap_{i=1}^{n} A_{i} \cup-A_{i} \neq \varnothing
$$

Remark. This is the best possible result for if $A_{1}=[0, \pi / 2], A_{2}=$ $[\pi / 4,3 \pi / 4], A_{3}=[\pi / 2, \pi], A_{4}=[3 \pi 4,5 \pi / 4]$ then

$$
\bigcap_{\cup=1}^{3} A_{i_{\nu}} \cup-A_{i_{\nu}} \neq \varnothing, 1 \leqq i_{1}<i_{2}<i_{3} \leqq 4
$$

but

$$
\bigcap_{i=1}^{4} A_{i} \cup-A_{i}=\varnothing
$$

Lemma 2. There exist n closed spherically convex two dimensional subsets D_{1}, \cdots, D_{n} on S^{2}, none of which contain antipodal points, such that for every $n-1$ membered subset $D_{i_{1}}, \cdots, D_{i_{n-1}}$ there exists
a great circle of S^{2} which meets each $D_{i_{\nu}}$, but there does not exist a great circle meeting each of D_{1}, \cdots, D_{n}.

Proof. In [4], Santalo constructs, for each $n \geqq 3$, a family of n compact convex two dimensional sets F_{1}, \cdots, F_{n} in E^{2} so that each $n-1$ members of the family admit a common transversal but the entire family does not have a common transversal. We mention that such an example is the family of n circular discs whose centers have polar coordinates $\rho=1$ and $\theta=2 k \pi / n, k=1, \cdots, n$ and whose radii are all equal to $\cos ^{2} \pi / n$ or $\cos ^{2} \pi / n+\cos ^{2} \pi / 2 n-1$ according as whether n is even or odd.

Now, if we place the configuration F_{1}, \cdots, F_{n} into a plane tangent to S^{2}, let D_{1}, \cdots, D_{n} be the corresponding closed spherically convex subsets of S^{2} obtained by the projection of F_{1}, \cdots, F_{n} into S^{2} from the origin. Clearly D_{1}, \cdots, D_{n} satisfy the requirements of the lemma.

Proof of Theorem 1. The proof of the first part is essentially due to Melzak [1] but as he makes the restriction that $d=n$ we repeat the details.

If there exist n parallel lines of support l_{1}, \cdots, l_{n} to $C_{1}^{*}, \cdots, C_{n}^{*}$ respectively then by translating the line l_{j} into the relative interior of C_{j} if necessary, $j=1, \cdots, n$ we obtain n nondegenerate similarly orientated chords $\left[\boldsymbol{p}_{j}, \boldsymbol{q}_{j}\right.$] of C_{j}^{*} parallel to l_{j} such that

$$
\left\|\boldsymbol{p}_{1}-\boldsymbol{q}_{1}\right\|=\cdots=\left\|\boldsymbol{p}_{n}=\boldsymbol{q}_{n}\right\|
$$

Hence, if $\boldsymbol{a}_{j}=\boldsymbol{p}_{i}-\boldsymbol{p}_{j}, j=1, \cdots, n$

$$
\bigcap_{j=1}^{n} C_{j}^{*}+\boldsymbol{a}_{j} \supset\left\{\boldsymbol{p}_{1}, \boldsymbol{q}_{1}\right\}
$$

and so contains at least two points.
On the other hand, if there exist vectors $\boldsymbol{a}_{j}, j=1, \cdots, n$ such that $\bigcap_{j=1}^{n} C_{j}^{*}+\boldsymbol{a}_{j}$ contains at least two points say $\boldsymbol{p}, \boldsymbol{q}$ then, by considering two dimensional sections of C_{j}, C_{j} has a line of support l_{j} parallel to $[\boldsymbol{p}, \boldsymbol{q}]$ and hence l_{1}, \cdots, l_{n} are parallel lines of support to C_{1}, \cdots, C_{n} respectively which completes the proof of the first part.

In E^{2} we may select a set A_{i} of unit tangent vectors \boldsymbol{u} to C_{i}^{*} by ensuring that the outward normal lies on the left hand side of \boldsymbol{u} when viewed from the point of contact on C_{i} in a clockwise direction. Then A_{i} is a spherically convex subset of S^{1} which is either S^{1} or is contained in semicircle according to whether or not C_{i} is bounded. Now $C_{1}^{*}, \cdots, C_{n}^{*}$ do not have parallel lines of support if and only if

$$
\bigcap_{i=1}^{n}\left(A_{i} \cup-A_{i}\right)=\varnothing
$$

This, by Lemma 1, is true if and only if there exists some four membered subset of $C_{1}^{*}, \cdots, C_{n}^{*}$ which do not possess parallel lines of support which completes the proof of the second part of the theorem.

In E^{3} and for each $n \geqq 2$ consider the n closed spherically convex subsets D_{1}, \cdots, D_{n} of S^{2} afforded by Lemma 2. If \langle,$\rangle denotes scalar$ product consider the set of closed half-spaces \mathscr{H}_{i} such that $H^{-} \in \mathscr{H}_{i}$ if

$$
H^{-}=\{\boldsymbol{x}:\langle\boldsymbol{x}, \boldsymbol{u}\rangle \leqq 1\} \quad \text { for some } \quad \boldsymbol{u} \in D_{i} .
$$

Let

$$
C_{i}^{*}=\bigcap_{\mathscr{C}_{i}} H^{-}, \quad i=1, \cdots, n
$$

Then D_{i} is the set of outward normals to C_{i}^{*} and so as D_{i} is two dimensional, C_{i}^{*} does not contain a line, $i=1, \cdots, n$. Also for every $n-1$ membered subset $C_{i_{i}}^{*}, \cdots, C_{i_{n-1}}^{*}$ of C_{1}, \cdots, C_{n} the corresponding set of outward normals $D_{i_{1}}, \cdots, D_{i_{n-1}}$ all meet some great sphere $S \equiv$ $S\left(i_{1}, \cdots, i_{n-1}\right)$. Consequently, if l is a line perpendicular to aff. S, $C_{i_{1}}, \cdots, C_{i_{n-1}}$ each possess lines of support parallel to l.

On the other hand, if C_{1}, \cdots, C_{n} possess parallel lines of support then there would exist a great sphers S^{1} of S^{2} which meets each of D_{1}, \cdots, D_{n} which, by Lemma 2 , is not so. Hence C_{1}, \cdots, C_{n} do not possess parallel lines of support, which completes the proof of Theorem 1.

We observe the following lemma which is easily established by separating two disjoint convex sets by a hyperplane.

Lemma 3. Two convex sets C_{1}, C_{2} in E^{d} cannot be separated by translation if and only if $N\left(C_{1}\right) \cap\left(-N\left(C_{2}\right)\right)=\boldsymbol{o}$, where $N\left(C_{i}\right)$ is the convex cone of outward normals to $C_{i}, i=1,2$.

Using Helly's theorem we readily verify the following lemma.
Lemma 4. If C_{1}, \cdots, C_{n} are convex sets in E^{d}, then $\bigcap_{i=1}^{n}\left(C_{i}+\right.$ $\left.\boldsymbol{a}_{i}\right) \neq \varnothing$ for all points $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ in E^{d} if and only if $\bigcap_{\nu=1}^{d+1}\left(C_{i_{\nu}}+\boldsymbol{a}_{i_{\nu}}\right) \neq$ \varnothing for all points $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ in E^{d} and for every $d+1$ membered subset $\left\{C_{i_{2}}\right\}_{v=1}^{d+1}$ of $\left\{C_{i}\right\}_{i=1}^{n}$.

Using Lemmas 3 and 4 we obtain
Theorem 2. If C_{1}, \cdots, C_{n} are convex sets in E^{d} then $\bigcap_{i=1}^{n}\left(C_{i}+\right.$ $\left.\boldsymbol{a}_{i}\right) \neq \varnothing$ for all points $\boldsymbol{a}_{1}, \cdots \boldsymbol{a}_{n}$ in E^{d} if and only if

$$
\left\{-N\left(C_{i_{1}}\right)\right\} \cap N\left(\bigcup_{\nu=2}^{d+1} C_{i_{\nu}}\right)=\varnothing
$$

for all $d+1$ membered subcollections $\left\{C_{i_{\nu}}\right\}_{v=1}^{d+1}$ of $\left\{C_{i}\right\}_{i=1}^{n}$.
However, this condition is not completely satisfactory in that $N\left(\bigcup_{v=2}^{d+1} C_{i_{\nu}}\right)$ is a function of $\bigcup^{d=2}{ }_{v=2}^{d+1} C_{i_{\nu}}$ rather than a combination of functions of each $C_{i_{\nu}}$. We shall resolve this problem to a certain extent in Theorem 3 by giving a widely applicable sufficient condition.

Theorem 3. Let C_{1}, \cdots, C_{n} be n convex sets in E^{d}. Then

$$
\begin{equation*}
\bigcap_{i=1}^{n}\left(C_{i}+\boldsymbol{a}_{i}\right) \neq \varnothing \tag{4}
\end{equation*}
$$

for all choices of $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ if there exists j such that

$$
O\left(\operatorname{cl.} C_{j}\right) \cap \bigcap_{v=1}^{d+1} \mathscr{J}\left(C_{i_{\nu}}\right) \neq \varnothing
$$

for all $d+1$ membered subcollections $\left\{C_{i_{\nu}}\right\}_{u=1}^{d+1}$ of $\left\{C_{\substack{ \\i}}^{\}_{i=1}^{n}, .}\right.$. Further, if at least of cl. C_{1}, \cdots, cl. C_{n} does not contain a line, each is unbounded and C_{1}, \cdots, C_{n} cannot be separated by translation, i.e., (4) holds for all $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ then

$$
\bigcap_{j=1}^{n} O\left(\mathrm{cl} . C_{j}\right) \neq \varnothing .
$$

Proof. Let l be a ray of $O\left(\mathrm{cl} . C_{j}\right) \cap \bigcap_{i=1}^{n} \mathscr{J}\left(C_{i}\right)$ which, by Helly's theorem, is nonempty. We may suppose, without loss of generality, that $\boldsymbol{o} \in C_{1} \cap \cdots \cap C_{n}$. Then, if $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ are points of E^{d},

$$
l+\boldsymbol{a}_{i} \subset C_{i}+\boldsymbol{a}_{i}, \quad i=1, \cdots, n
$$

If $l=\{\lambda \boldsymbol{u}, \lambda \geqq 0\}$, then, as $l \subset \mathscr{I}\left(C_{i}\right), i \neq j$, there exists λ_{i} such that $\lambda \boldsymbol{u}+\boldsymbol{a}_{j}$ is in $C_{i}, \lambda \geqq \lambda_{i}$.

So, if $\lambda^{*}=\max _{1 \leqq i \leqq n} . \lambda_{i}$,

$$
\lambda * u+a_{j} \in \bigcap_{i=1}^{n} C_{i} \quad \text { as required }
$$

To prove the second part, let C_{i}^{*} denote the closure of $C_{i}, i=1$, \cdots, n. We may assume that C_{1} and C_{1}^{*} do not contain a line and that for some $n, \bigcap_{i=1}^{n-1} C_{i}^{*}$ is unbounded, which is certainly true for $n=2$. As $\bigcap_{i=1}^{n-1} C_{i}^{*}$ is convex closed and unbounded it follows that $O\left(\bigcap_{i=1}^{n-1} C_{i}^{*}\right)$ is nonempty. Further, as $\bigcap_{i=1}^{n-1} C_{i}^{*}$ is contained in C_{1}^{*}, $\bigcap_{i=1}^{n-1} C_{i}^{*}$ and $O\left(\bigcap_{i=1}^{n-1} C_{i}^{*}\right)$ do not contain a line. Let l be a ray of $O\left(\bigcap_{i=1}^{n-1} C_{i}^{*}\right)$, say $l=\{\lambda u, \lambda \geqq 0\}$. If $O\left(\bigcap_{i=1}^{n} C_{i}^{*}\right)$ is empty then, in particular, $\bigcap_{i=1}^{n} C_{i}^{*}$ must be a compact convex set.

If $\lambda \geqq 0$,

$$
\lambda \boldsymbol{u}+\bigcap_{i=1}^{m-1} C_{i} \subset \bigcap_{i=1}^{m-1} C_{i}
$$

and consequently,

$$
\begin{equation*}
\left(\lambda \boldsymbol{u}+\bigcap_{i=1}^{m-1} C_{i}\right) \cap C_{m}=\left(\lambda \boldsymbol{u}+\bigcap_{i=1}^{m-1} C_{i}\right) \cap\left(\bigcap_{i=1}^{m} C_{i}\right) . \tag{5}
\end{equation*}
$$

If no matter how large λ is taken, $\left(\lambda \boldsymbol{u}+\bigcap_{i=1}^{m-1} C_{i}\right) \cap C_{m}$ contains a point $z(\lambda)$ say then, by (5), $z(\lambda)$ is confined to a compact set $\bigcap_{i=1}^{m} C_{i}$ and $z(\lambda)-\lambda \boldsymbol{u} \in \bigcap_{i=1}^{m-1} C_{i}, \lambda \geqq 0$. It follows that $-l$ is a ray of $O\left(\bigcap_{i=1}^{m=1} C_{i}^{*}\right)$ which is a contradiction to C_{1}^{*} not containing a line. So $\bigcap_{i=1}^{m} C_{i}^{*}$ is an unbounded closed convex set and hence $O\left(\bigcap_{i=1}^{m} C_{i}^{*}\right)$ is nonempty. So repeating this process for $m=1,2, \cdots, n$ we conclude that $O\left(\bigcap_{i=1}^{n} C_{i}^{*}\right)$ is nonempty as required.

Definition. We say that a collection \mathscr{H} of closed half-spaces in E^{d} is closed if whenever $\left\{H_{i}^{-}\right\}_{i=1}^{\infty}$ is a sequence of closed half-spaces in \mathscr{H}, where

$$
H_{i}^{-}=\left\{\boldsymbol{x}:\left\langle\boldsymbol{x}, \boldsymbol{u}_{i}\right\rangle \leqq \alpha_{i}\right\}, \boldsymbol{u}_{i} \text { a unit vector, }
$$

and $\boldsymbol{u}_{i} \rightarrow \boldsymbol{u}, \alpha_{i} \rightarrow \alpha$ as $i \rightarrow \infty$ then the closed half-space

$$
H^{-}=\{x:\langle\boldsymbol{x}, \boldsymbol{u}\rangle \leqq \alpha\}
$$

is in \mathscr{H}. We say that a collection \mathscr{H} of closed half-spaces is F_{o} if it is the countable union of closed collections.

If \mathscr{C} is a closed collection of closed half-spaces notice that the set $\mathrm{U}_{H^{-e} \mathscr{P}} H$, where H is the bounding hyperplane of H^{-}, is a closed set and consequently $\bigcap_{H^{-\epsilon} \mathscr{C}}$ int H^{-}is a relatively open subset of $\bigcap_{H^{-\epsilon} \mathscr{P}} H^{-}$.

Theorem 4. A set C in E^{d} is the inner aperture of some convex subset of E^{d} if and only if

$$
C=o \cup \bigcap_{\mathscr{O}} \text { int. } H^{-}
$$

where \mathscr{H} is an F_{o}-collection of closed half-spaces and $\boldsymbol{o} \in H$, the bounding hyperplane of H^{-}, for all $H^{-} \in \mathscr{H}$.

Remark. So, in particular, C has to be a G_{i}-convex cone with apex the origin such that if $\boldsymbol{x} \in\{\mathrm{cl} . C\} \backslash C$ then the smallest exposed face $F(x)$ of cl . C that contains \boldsymbol{x} is also contained in $\{c \mathrm{cl} . C\} \backslash C$. In E^{3} the converse is also true.

Proof. We shall assume that the theorem is true in $d-1$ dimensions, the theorem being trivial for $d=1$.
(i) Necessity. Let C be the inner aperture of some convex set D in E^{d} where, since $\mathscr{I}(D)=\mathscr{I}($ cl. $D)$ we may suppose that D is
closed. If $D=E^{d}$ then $C=E^{d}$ and, by convention,

$$
C=\bigcap_{\mathscr{C}} \text { int. } H^{-}=E^{d}
$$

where \mathscr{H} is the empty set of closed half-spaces.
Otherwise $D \neq E^{d}$ and so possesses at least one hyperplane of support M say with D contained in the closed half-space M^{-}. We may suppose, without loss of generality, that $o \in M$. If D contains a (maximal) linear subspace L of dimension at least one then $L \subset M$ and

$$
D=F+L
$$

where F is a closed convex subset of L^{\perp}. By the inductive assumption the inner aperture $\mathscr{J}(F)$ of F can be written

$$
\mathscr{F}(F)=\boldsymbol{o} \cup \bigcap_{\mathscr{H}} \text { int. } H^{*-}
$$

where \mathscr{H}^{*} is a closed subset of the closed half-spaces in L^{\perp}. Then

$$
C=o \cup \bigcap_{\mathscr{C}} \text { int. } H^{-}
$$

where \mathscr{H} is the closed collection of closed half-spaces in E^{d} formed by taking H^{-}in \mathscr{H} if

$$
H^{-}=L+H^{*-}
$$

where $H^{*-} \in \mathscr{H}{ }^{*}$.
If D does not contain a line then the set of rays in D is a closed convex cone K which has a hyperplane of support say $\left\{x_{d}=0\right\}$ with

$$
K \cap\left\{x_{d}=0\right\}=\boldsymbol{o} .
$$

Let π_{ν} denote the hyperplane $x_{d}=\nu, \nu \geqq 0$. Let l be a typical ray of K,

$$
\alpha_{\nu}(l)=\operatorname{dist} .\left\{\left(l \pi_{\nu}\right), \pi_{\nu}\left(E^{d} \backslash D\right)\right\},
$$

and

$$
\alpha(l)=\sup _{v \geqq 0} \alpha_{\nu}(l) .
$$

By considering two dimensional sections through l it is easily verified that $\alpha_{\nu}(l)$ increases with ν. Also

$$
l \subset C \text { if and only if } \alpha(l)=+\infty .
$$

So, if

$$
C_{i}=\{l: l \text { is a ray in } K, \alpha(l)>i\}
$$

then

$$
\begin{equation*}
C=\bigcap_{i=1}^{\infty} C_{i} \tag{6}
\end{equation*}
$$

Now $C_{i} K, i=1,2, \cdots$ and

$$
\begin{equation*}
K=o \cup \bigcap_{\mathscr{C}} \text { int. } H^{-} \tag{7}
\end{equation*}
$$

where \mathscr{H} is the collection of closed half-spaces, whose bounding hyperplanes contain o, such that $K \backslash o \subset$ int. H^{-}. If $\hat{K}=K \cap S^{d-1}$, let \mathscr{H}_{j}^{*} denote the closed set of the closed half-spaces H^{-},

$$
H^{-}=\{\boldsymbol{x}:\langle\boldsymbol{x}, \boldsymbol{u}\rangle \leqq 0\}
$$

where

$$
\langle-\boldsymbol{u}, \boldsymbol{k}\rangle \leqq-2^{-j}, \quad \text { for all } k \in \hat{K}
$$

Then $\mathscr{H}=\bigcup_{j=1}^{\infty} \mathscr{\mathscr { C }}_{j}^{*}$ and so, using (6), (7) it is enough to show that

$$
C_{i}=K \cap \bigcap_{\mathscr{O}}{ }_{i} \text { int. } H^{-}
$$

where $\mathscr{\mathscr { C }}_{i}$ is a closed collection of closed half-spaces of E^{d} whose bounding hyperplanes goes through o.

Suppose now that l is a ray of $K \backslash C_{i}$. Then

$$
\alpha(l) \leqq i
$$

For $j=1,2, \cdots$, there exist points $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots$, with $\boldsymbol{a}_{j} \in \pi_{j} \cap$ bdy. D such that

$$
\begin{equation*}
\left\|\boldsymbol{a}_{j}-\left\{\pi_{j} \cap l\right\}\right\| \leqq i \tag{8}
\end{equation*}
$$

Let H_{j} denote a hyperplane of support to D at \boldsymbol{a}_{j}, with $D \subset H_{j}^{-}$. As we may suppose that $K \neq \boldsymbol{o}, H_{j}$ is not parallel to the hyperplane π_{1}. So $H_{j} \cap \pi_{1}$ is a line in π_{1}. If we consider the two plane σ_{j} through l and \boldsymbol{a}_{j} then H_{j} meets σ_{j} in a line l_{j}. As l_{j} supports $\sigma_{j} \cap D$, it follows, using (8), that

$$
\begin{equation*}
\left\|l_{j} \cap \pi_{1}-l \cap \pi_{1}\right\| \leqq i \tag{9}
\end{equation*}
$$

Consequently the ($d-2$) affine space $\pi_{1} \cap H_{j}$ lies within a distance i of $l \cap \pi_{1}$. So we may suppose, by picking subsequences if necessary, that $\pi_{1} \cap H_{j} \rightarrow \pi_{1} \cap H_{0}$ as $j \rightarrow \infty$ and $l_{j} \cap \pi_{1}$ tends to a point which, with a view to later developments, we denote by $l_{0} \cap \pi_{1}$. Let the line through the points a_{j} and $l_{j} \cap \pi_{1}$ be $l_{j}^{*}, j=1,2, \cdots$. As (8), (9) hold, l_{j}^{*} converges to a line l_{0} through $l_{0} \cap \pi_{1}$ and parallel to l. Consequently $H_{j} \rightarrow H_{0}$ as $j \rightarrow \infty$. So $D \subset H_{0}^{-}$and

$$
\begin{equation*}
\left\|\pi_{\nu} \cap l_{0}-\pi_{\nu} \cap l\right\|=\beta \leqq i, \quad \text { if } \quad \nu \geqq 0 \tag{10}
\end{equation*}
$$

β a constant. We claim that

$$
H_{0}^{-}+\left\{\pi_{1} l-\pi_{1} l_{0}\right\}=H_{0}^{\prime-} \text { say }
$$

contains K and H_{0}^{\prime} supports K and passes through o. Certainly

$$
\begin{equation*}
l \subset H_{0}^{\prime} \tag{11}
\end{equation*}
$$

and so H_{0}^{\prime} passes through o. If there exists a ray l^{*} in $K \backslash H_{0}^{\prime-}$, then l^{*} meets H_{0} which contradicts $D \subset H_{0}^{-}$.

Now let \mathscr{H}_{i} denote those closed half-spaces H^{-}such that the bounding hyperplane H supports K and there exists a closed halfspace H^{*-} containing H^{-}such that H^{*} supports $D ; H^{*}$ is parallel to H and a distance, in the hyperplane π_{1}, at most i from H.

By (11),

$$
\begin{equation*}
C_{i} \supset K \cap \bigcap_{\mathscr{C}} \text { int. } H^{-}, \tag{12}
\end{equation*}
$$

where $\mathscr{\mathscr { H }}_{i}$ is a closed set of closed half-spaces.
Conversely, if l is a ray of

$$
K \backslash\left\{K \cap \bigcap_{\mathscr{C} i} \text { int. } H^{-}\right\}
$$

then there exists H^{-}in \mathscr{H}_{i} such that $l \subset H$. Then there exists a closed half-space H^{*-} which contains D such that H^{*} is parallel to H and the distance between H and H^{*} is at most i. Consequently

$$
\alpha_{\nu}(l) \leqq i, \nu \geqq 0
$$

and so $l \not \subset C_{i}$. Hence

$$
\begin{equation*}
C_{i} \subset K \cap \bigcap_{\mathscr{C}} \text { int. } H^{-} \tag{13}
\end{equation*}
$$

Combining (12) and (3),

$$
C_{i}=K \cap \bigcap_{\mathscr{C}}^{i} \text { int. } H^{-}
$$

which completes the proof of the necessity of the conditions.
(ii) Sufficiency. Suppose now that

$$
C=o \cup \bigcap_{\mathscr{C}} \text { int. } H^{-}
$$

where \mathscr{H} is an F_{σ}-collection of closed half-spaces and $o \in H$ for all $H^{-} \in \mathscr{H}$. So we may write $\mathscr{H}=\bigcup_{i=1}^{\infty} \mathscr{H}_{i}$ where the \mathscr{H}_{i} form an increasing sequence of closed collections.

Consider the closed convex cone

$$
C_{0}=\operatorname{cl.} C=\bigcap_{\mathscr{C}} H^{-} .
$$

If $C_{0}=E^{d}$ then $C=E^{d}$ and C is its own inner aperture. Otherwise C_{0} possesses one hyperplane of support M through \boldsymbol{o} with C_{0} contained in the closed half-space M^{-}. If $M \cap C_{0}$ contains a maximal linear subspace L of dimension at least 1 then we may write $C_{0}=F+L$ where F is a proper closed convex cone in L. Notice that $L \subset H$ for each $H^{-} \in \mathscr{H}$ and consequently we may write

$$
H^{-}=L+H^{*-} \text { for each } H^{-} \in \mathscr{C} \text {, }
$$

where H^{*-} is a closed half-space in L whose bounding hyperplane H^{*} passes through o. Consequently

$$
C=\boldsymbol{o} \cup\left\{\left\{\bigcap_{\text {int }} H^{*-}\right\}+L\right\} .
$$

By the inductive assumption, there exists a closed convex set D^{*} in L such that

$$
o \cup \bigcap \operatorname{int} . H^{*-}
$$

is the inner aperture of D^{*} in L. Let

$$
D=D^{*}+L
$$

and then C is the inner aperture of D.
Henceforth therefore we may suppose that C_{0} is a proper closed convex cone in E^{d} i.e., C_{0} does not contain a line and we can also suppose that the ray

$$
X_{d}^{+}=\left\{\left(0, \cdots, 0, x_{d}\right), x_{d} \geqq 0\right\}
$$

is in C_{0} and that the hyperplane $\pi_{0}=\left\{x_{d}=0\right\}$ supports C_{0} with $\pi_{0} \cap C_{0}=$ o. Then, as for K in the proof of necessity,

$$
C_{0}=\boldsymbol{o} \cup \bigcap_{0} \text { int. } H^{-}
$$

where \mathscr{C}_{0} is a closed set of closed half-spaces whose bounding hyperplanes pass through \boldsymbol{o}. We may suppose that

$$
\mathscr{H}_{0} \subset \mathscr{H}_{1} \subset \mathscr{X}_{2} \subset \cdots
$$

and let

$$
C_{i}=\boldsymbol{o} \cup \bigcap_{\mathscr{E}_{i}} \text { int. } H^{-}, \quad i=0,1,2, \cdots .
$$

We shall produce inductively a nested sequence of closed convex sets $\left\{C_{i}^{*}\right\}_{i=0}^{*}$ such that C_{i} is the inner aperture of C_{i}^{*} and indeed

$$
\begin{equation*}
C_{i+1}^{*}=C_{i}^{*} \cap \bigcap_{\mathscr{C} i} H^{*-}, i \geqq 0 \tag{14}
\end{equation*}
$$

where, if $H^{-} \in \mathscr{H}_{i}$ then H^{*-} is that closed half-space containing H^{-} such that H^{*} and H are parallel and at a distance i apart in the hyperplane π_{1}.

We begin the induction by taking

$$
C_{0}^{*}=\left\{\boldsymbol{x}=\left(x_{1}, \cdots, x_{d}\right), x_{d} \geqq 0 \quad \text { and } \quad \text { dist. }\left(\boldsymbol{x}, C_{0} \cap \pi_{x_{d}}\right) \leqq x_{d}^{1 / 2}\right\}
$$

Clearly C_{0}^{*} is closed and it is convex since, from above, $C_{0}^{*} \cap \pi_{\nu}$ is convex, $\nu \geqq 0$ and so C_{0}^{*} cannot possess a point of concavity. We shall show that

$$
\begin{equation*}
\mathscr{I}\left(C_{0}^{*}\right)=C_{0} . \tag{15}
\end{equation*}
$$

First notice that if $\boldsymbol{u}=\left(u_{1}, \cdots, u_{d}\right)$ is a unit vector in C_{0} then $u_{d}>$ 0 . So, if $l=\{\lambda u: \lambda \geqq 0\}$ is the corresponding ray in C_{0}

$$
\theta_{\lambda}=\alpha_{\lambda u_{d}}(l) \geqq \sqrt{\lambda u_{d}}>0 .
$$

So, if m is a positive number

$$
\begin{equation*}
\theta_{\lambda} \geqq m \tag{16}
\end{equation*}
$$

provided $m^{2} / u_{d} \leqq \lambda$. It is an almost immediate consequence of (16) that $l \subset \mathscr{I}\left(C_{0}^{*}\right)$ and hence $C_{0} \subset \mathscr{F}\left(C_{0}^{*}\right)$.

Suppose next that the ray

$$
l^{\prime}=\{\lambda \boldsymbol{v}, \lambda \geqq 0\}
$$

is not in C_{0}. If $v_{d} \leqq 0$ then $\lambda \boldsymbol{v} \notin C_{0}^{*}$ for all $\lambda>0$ and then certainly $l^{\prime} \not \subset \mathscr{F}\left(C_{0}^{*}\right)$. If $v_{d}>0$ then $l^{\prime} \cap \pi_{\nu}$ is a single point for each $\nu \geqq 0$ and there exists $\eta>0$ such that

$$
\text { dist. }\left(\boldsymbol{v}, C_{0} \cap \pi_{v_{d}}\right)>\eta
$$

So

$$
\begin{equation*}
\text { dist. }\left(\lambda \boldsymbol{v}, C_{0} \pi_{\lambda v_{d}}\right)>\lambda \eta . \tag{17}
\end{equation*}
$$

But, if $l^{\prime} \subset \mathscr{I}\left(C_{0}^{*}\right)$ then, in particular, $\lambda \boldsymbol{v} \in C_{0}^{*}$ for each $\lambda \geqq 0$. So

$$
\begin{equation*}
\operatorname{dist} .\left(\lambda \boldsymbol{v}, C_{0} \pi_{\lambda v_{d}}\right) \leqq\left(\lambda v_{d}\right)^{1 / 2}, \lambda \geqq 0 \tag{18}
\end{equation*}
$$

However, provided $\lambda>v_{d} / \eta^{2}$ it follows from (17) that (18) is false. Consequently $l^{\prime} \not \subset \mathscr{I}\left(C_{0}^{*}\right)$ which establishes (15).

Suppose inductively that for some $m \geqq 1$ we have constructed m closed convex sets $C_{0}^{*}, \cdots, C_{m-1}^{*}$ in E^{d} with C_{i} being the inner aperture of $C_{i}^{*}, i=0, \cdots, m-1$. Indeed,

$$
\begin{equation*}
C_{i+1}^{*}=C_{i}^{*} \cap \bigcap_{\mathscr{C} \cdot+1} H^{*-}, \quad i=0,1, \cdots, m-2 \tag{19}
\end{equation*}
$$

where, if $H^{-} \in \mathscr{H}_{i+1}$ then H^{*-} is that closed half-space containing H^{-} such that H^{*} and H are parallel and at a distance $i+1$ apart in the plane π_{1}.

For each $H^{-} \in \mathscr{H}_{m}$, let H^{*-} be that closed half-space containing H^{-}such that H^{*} and H are parallel and at a distance m apart in the plane π_{1}. Define

$$
\begin{equation*}
C_{m}^{*}=C_{m-1}^{*} \cap \bigcap_{\mathscr{C} m} H^{*-} \tag{20}
\end{equation*}
$$

We claim that the inner aperture of C_{m}^{*} is C_{m} i.e.,

$$
\begin{equation*}
\mathscr{I}\left(C_{m}^{*}\right)=C_{m} \tag{21}
\end{equation*}
$$

If l is a ray of C_{0} not in C_{m} then l is in some hyperplane H where $H^{-} \in \mathscr{H}_{m}$. Consequently, by considering the corresponding closed halfspace H^{*-}, we deduce that $\alpha(l) \leqq m$, and so $l \not \subset \mathscr{F}\left(C_{m}^{*}\right)$. Hence $\mathscr{J}\left(C_{m}^{*}\right) \subset C_{m}$.

On the other hand, suppose that $l \in C_{m}$. That the set

$$
\bigcup_{\mathscr{x}_{m}} H^{*}=H_{m} \text { say }
$$

is a closed set and does not meet the ray $l \backslash \boldsymbol{o}$. As each hyperplane H, with $H^{-} \in \mathscr{H}_{m}$, passes through o, it follows that

$$
\begin{equation*}
\text { dist. }\left(l \cap \pi_{\nu}, H_{m}\right) \longrightarrow+\infty \quad \text { as } \quad \nu \longrightarrow+\infty \tag{22}
\end{equation*}
$$

Also $l \in \mathscr{I}\left(C_{m-1}^{*}\right)$ and so

$$
\begin{equation*}
\text { dist. }\left(l \cap \pi_{\nu}, E^{d} \backslash C_{m-1}^{*}\right) \longrightarrow+\infty \quad \text { as } \quad \nu \longrightarrow+\infty . \tag{23}
\end{equation*}
$$

Consequently using (20), (22), (23),

$$
\text { dist. }\left(l \cap \pi_{\nu}, E^{d} \backslash C_{m}^{*}\right) \longrightarrow+\infty \quad \text { as } \nu \longrightarrow+\infty
$$

Therefore, $l \subset \mathscr{I}\left(C_{m}^{*}\right)$ and so $C_{m} \subset \mathscr{I}\left(C_{m}^{*}\right)$ which completes the verification of (21).

The results (20), (21) verify (19) for m and we can now suppose that the C_{m}^{*} have been defined so that (20), (21) hold for $m=0,1,2$, Define

$$
C^{*}=\bigcap_{m=0}^{\infty} C_{m}^{*}
$$

and we shall show that $\mathscr{F}\left(C^{*}\right)=C$.
Suppose that l is a ray of C_{0} not in $\mathscr{F}\left(C^{*}\right)$. Then there exists m such that $\alpha_{\nu}(l) \leqq m, \nu \geqq 0$. So l is not in $\mathscr{J}\left(C_{m+1}^{*}\right)=C_{m+1}$. Consequently l is not in C. So $C \subset \mathscr{J}\left(C^{*}\right)$.

On the other hand, suppose that l is a ray of C_{0} which is not in C. Then l is not in C_{m} for some $m \geqq 0$. So

$$
l \not \subset \mathscr{I}\left(C_{m}^{*}\right) \supset \mathscr{J}\left(C^{*}\right) .
$$

Hence $\mathscr{I}\left(C^{*}\right) \subset C$ and this finally establishes that

$$
\mathscr{I}\left(C^{*}\right)=C
$$

which completes the proof of Theorem 4.

References

1. J. E. Lewis, On a problem of uniqueness arising in connection with a neurophysical control mechanism, Submitted to Information and Control.
2. Z. A. Melzak, On a uniqueness theorem and its application to a neurophysical control mechanism, Information and Control, 5 (1962), 163-172.
3. F. Ratcliff and H. K. Hartline, The response of Limus optic nerve fibers to patterns of illumination on the receptor mosaic, J. Genl. Physiol., 42 (1959), 1241-1255.
4. L. A. Santaló, Un teorema sobre conjuntos de paralelepipedos de aristas paralelas, Publ. Inst. Mat. Univ. Nac. Litoral, 2 (1940), 49-60 and 3 (1942), 202-210.

Received April 30, 1973 and in revised form August 21, 1973. Research supported by the National Research Council of Canada, while visiting the University of British Columbia.

University College London

