LINEAR GCD EQUATIONS

David Jacobson

Let R be a $G C D$ domain. Let A be an $m \times n$ matrix and B an $m \times 1$ matrix with entries in R. Let $c \neq 0, d \in R$. We consider the linear $G C D$ equation $G C D(A X+B, c)=d$. Let S denote its set of solutions. We prove necessary and sufficient conditions that S be nonempty. An element t in R is called a solution modulus if $X+t R^{n} \subseteq S$ whenever $X \in S$. We show that if c / d is a product of prime elements of R, then the ideal of solution moduli is a principal ideal of R and its generator t_{0} is determined. When $R / t_{0} R$ is a finite ring, we derive an explicit formula for the number of distinct solutions $\left(\bmod t_{0}\right)$ of $G C D(A X+B, c)=d$.

1. Introduction. Let R be a $G C D$ domain. As usual $G C D$ (a_{1}, \cdots, a_{m}) will denote a greatest common divisor of the finite sequence of elements a_{1}, \cdots, a_{m} of R.

Let A be an $m \times n$ matrix with entries $a_{i j}$ in R and let B be an $m \times 1$ matrix with entries b_{i} in R for $i=1, \cdots, m ; j=1, \cdots, n$. Let $c \neq 0, d$ be elements of R. In this paper we consider the "linear $G C D$ equation"

$$
\begin{align*}
& G C D\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}+b_{1}, \cdots,\right. \tag{1.1}\\
& \left.a_{m 1} x_{1}+\cdots+a_{m n} x_{n}+b_{m}, c\right)=d .
\end{align*}
$$

Letting X denote the column of unknows x_{1}, \cdots, x_{n} in (1.1), we shall find it convenient to abbreviate the equation (1.1) in matrix notation by

$$
\begin{equation*}
G C D(A X+B, c)=d \tag{1.2}
\end{equation*}
$$

Of course we allow a slight ambiguity in viewing (1.1) as an equation, since the $G C D$ is unique only up to a unit.

Let R^{n} denote the set of $n \times 1$ matrices with entries in R. We let $S \equiv S(A, B, c, d)$ denote the set of all solutions of (1.1), that is

$$
S=\left\{X \in R^{n} \mid G C D(A X+B, c)=d\right\}
$$

If S is nonempty, we say that (1.1) or (1.2) is solvable. Note that X satisfies $G C D(A X+B, d)=d$ if and only if X is a solution of the linear congruence system $A X+B \equiv 0(\bmod d)$.

We show in Proposition 1 that if (1.1) is solvable, then $d \mid c, A X+$ $B \equiv 0(\bmod d)$ has a solution and $G C D(A, d)=G C D(A, B, c)$. Here $G C D(A, d)=G C D\left(a_{11}, \cdots, a_{1 n}, \cdots, a_{m 1}, \cdots, a_{m n}, d\right)$ and $G C D(A, B, c)=$ $\operatorname{GCD}\left(A, b_{1}, \cdots, b_{m}, c\right)$. Conversely we show in Proposition 3 that if
the above conditions hold and $e=c / d$ is atomic, that is e is a product of prime elements of R, then (1.1) is solvable. (Also see Proposition 4).

Let the solution set S of (1.1) be nonempty. We say that t in R is a solution modulus of (1.1) if given X in S and $X \equiv X^{\prime}(\bmod t)$, then X^{\prime} is in S. We let $M \equiv M(A, B, c, d)$ denote the set of all solution moduli of (1.1). We show in Theorem 2 that M is an ideal of R and if $e=c / d$ is atomic, then M is actually a principal ideal generated by $d / g\left(p_{1} \cdots p_{k}\right)$, where $g=G C D(A, d)$ and $\left\{p_{1}, \cdots, p_{k}\right\}$ is a maximal set of nonassociated prime divisors of e such that for each p_{i}, the system $A X+B \equiv 0\left(\bmod d p_{i}\right)$ is solvable. This generator $d / g\left(p_{1} \cdots p_{k}\right)$ denoted by t_{0} is called the minimum modulus of (1.1).

In $\S 4$ we assume that $R / t_{0} R$ is a finite ring and we derive an explicit formula for the number of distinct equivalence classes of $R^{n}\left(\bmod t_{0}\right)$ comprising S. We denote this number by $N_{t_{0}} \equiv N_{t_{0}}(A, B, c, d)$. Let $A^{\prime}=A / g$ and $d^{\prime}=d / g$. Let $L=\left\{X+d^{\prime} R^{n} \mid A^{\prime} X \equiv 0\left(\bmod d^{\prime}\right)\right\}$ and $L_{i}=\left\{X+d^{\prime} R^{n} \mid A^{\prime} X \equiv 0\left(\bmod d^{\prime} p_{i}\right)\right\}$ for $i=1, \cdots, k$. In Theorem 3 we show that

$$
\begin{equation*}
N_{t_{0}}=|L| \prod_{i=1}^{k}\left(\left|R / p_{i} R\right|^{n}-\left|R / p_{i} R\right|^{n-\left(r_{i}+s_{i}\right)}\right) \tag{1.3}
\end{equation*}
$$

where r_{i} is rank $A^{\prime}\left(\bmod p_{i}\right)$ and s_{i} is the dimension of the $R / p_{i} R$ vector space L / L_{i}.

The formula (1.3) is applied in some important cases. For example in Corollary 6 we determine $N_{t_{0}}$ when R is a principal ideal domain.

This paper is an extension and generalization to GCD domains, of the results obtained over the ring of integers \boldsymbol{Z} in [2].
2. Solvability of $G C D(A X+B, c)=d$.

Proposition 1. If $G C D(A X+B, c)=d$ is solvable, then the following conditions hold.
(i) $d \mid c$,
(ii) $A X+B \equiv 0(\bmod d)$ is solvable,
(iii) $G C D(A, d)=G C D(A, B, c)$.

Proof. Let X satisfy $G C D(A X+B, c)=d$. Then clearly (i) $d \mid c$ and (ii) $A X+B \equiv 0(\bmod d)$. Let $A X+B=d U$ where U is an $m \times 1$ matrix with entries u_{i} for $i=1, \cdots, m$. Then $G C D(d U, c)=$ $G C D\left(d u_{1}, \cdots, d u_{m}, c\right)=d$. Let $g=G C D(A, d)$ and $h=G C D(A, B, c)$. Then $B \equiv 0(\bmod g)$ as $A X-d U=B$ and $g \mid c$ as $d \mid c$, which shows that $g \mid h$. Also $d U \equiv 0(\bmod h)$, so that $h \mid G C D(d U, c)$, that is $h \mid d$. Thus $h \mid g$, which proves (iii).

Proposition 2. Let e in R have the following property
(I) $G C D(A X+B, e)=1$ is solvable whenever $G C D(A, B, e)=1$. Suppose that $c=d e, A X+B \equiv 0(\bmod d)$ is solvable and $G C D(A, d)=$ $G C D(A, B, c)$. Then $G C D(A X+B, c)=d$ is solvable.

Proof. There exist X^{\prime} in R^{n} and V in R^{m} such that $A X^{\prime}+B=d V$. Let $g=G C D(A, d)$ and let A^{\prime} denote the matrix with entries $\alpha_{i j} / g$ and B^{\prime} the matrix with entries b_{2} / g for $i=1, \cdots, m ; j=1, \cdots, n$. Then $A^{\prime} X^{\prime}+B^{\prime}=d^{\prime} V$ where $d^{\prime}=d / g$. We claim that $G C D\left(A^{\prime}, V, e\right)=1$. For let h be any divisor of $G C D\left(A^{\prime}, V, e\right)$. Then $B^{\prime} \equiv 0(\bmod h)$ and $h \mid G C D\left(A^{\prime}, B^{\prime}, c^{\prime}\right)$ where $c^{\prime}=d^{\prime} e$. However, $G C D\left(A^{\prime}, B^{\prime}, c^{\prime}\right)=1$ as $g=G C D(A, B, c)$. Hence h is a unit, that is $G C D\left(A^{\prime}, V, e\right)=1$. So by property (I), there is a Y in R^{n} such that $G C D\left(A^{\prime} Y+V, e\right)=1$. Thus $G C D\left(A\left(d^{\prime} Y\right)+d V, d e\right)=d$ and if we set $X=X^{\prime}+d^{\prime} Y$, then $G C D(A X+B, c)=d$, establishing the proposition.

We show in Proposition 3 that if e is atomic, then e satisfies property (I).

We require the following useful lemmas.

Lemma 1. Let $e=p_{1} \cdots p_{k}$ be a product of nonassociated prime elements p_{1}, \cdots, p_{k} in R. If $G C D(A, B, e)=1$, then $G C D(A X+$ $B, e)=1$ is solvable.

Proof. Let $G C D(A, B, e)=1$. We use induction on k. Let $k=1$. If $G C D\left(B, p_{1}\right)=1$, then $X=0$ satisfies $G C D\left(A X+B, p_{1}\right)=1$. Suppose that $B \equiv 0\left(\bmod p_{1}\right)$. Then $G C D\left(A, p_{1}\right)=1$. Hence there is a j such that $G C D\left(a_{1 j}, \cdots, a_{m j}, p_{1}\right)=1$. Let X^{j} in R^{n} have a 1 in the j th position and o's elsewhere. Then $G C D\left(A X^{j}+B, p_{1}\right)=$ $G C D\left(A X^{j}, p_{1}\right)=1$. Thus $G C D\left(A X+B, p_{1}\right)=1$ is solvable. Now let $k>1$ and let $e^{\prime}=p_{1} \cdots p_{k-1}$. By the induction assumption there is X^{\prime} in R^{n} such that $G C D\left(A X^{\prime}+B, e^{\prime}\right)=1$. Let $B^{\prime}=A X^{\prime}+B$. We claim that $G C D\left(A e^{\prime}, B^{\prime}, p_{k}\right)=1$. If $G C D\left(A, p_{k}\right)=1$, then $G C D\left(A e^{\prime}\right.$, $\left.B^{\prime}, p_{k}\right)=1$. Suppose that $A \equiv 0\left(\bmod p_{k}\right)$. If $B^{\prime} \equiv 0\left(\bmod p_{k}\right)$, then $B \equiv 0\left(\bmod p_{k}\right)$, contradicting the hypothesis that $G C D(A, B, e)=1$. Hence $G C D\left(B^{\prime}, p_{k}\right)=1$, establishing the claim. So there exists a Y in R^{n} such that $G C D\left(\left(A e^{\prime}\right) Y+B^{\prime}, p_{k}\right)=1$. Let $X=X^{\prime}+e^{\prime} Y$. Then $X \equiv X^{\prime}\left(\bmod e^{\prime}\right)$ yields that $A X+B \equiv B^{\prime}\left(\bmod e^{\prime}\right)$. Thus $G C D(A X+$ $\left.B, e^{\prime}\right)=1$ since $G C D\left(B^{\prime}, e^{\prime}\right)=1$. Also

$$
G C D\left(A X+B, p_{k}\right)=G C D\left(\left(A e^{\prime}\right) Y+B^{\prime}, p_{k}\right)=1
$$

:so that $G C D\left(A X+B, e^{\prime} p_{k}\right)=1$, completing the proof.
Lemma 2. Suppose that e is an atomic element of R.

Let $\left\{p_{1}, \cdots, p_{k}\right\}$ be a maximal set of nonassociated
(*) prime divisors of e such that for each p_{i}, the system $A X+B \equiv 0\left(\bmod d p_{i}\right)$ is solvable.

Then X is a solution of $G C D(A X+B, c)=d$ if and only if $G C D(A X+$ $\left.B, d e_{0}\right)=d$, where $c=$ de and $e_{0}=p_{1} \cdots p_{k}$.

Proof. Since e is atomic, it is clear that we may select a set $\left\{p_{1}, \cdots, p_{k}\right\}$ as defined in (*). If this set is empty, we let $e_{0}=1$. Suppose that X satisfies $G C D(A X+B, c)=d$. Then there is U in R^{m} such that $A X+B=d U$ and $G C D(U, e)=1$. Since $e_{0} \mid e$, $G C D\left(U, e_{0}\right)=1$ and thus $G C D\left(d U, d e_{0}\right)=d$, that is, $G C D(A X+$ $\left.B, d e_{0}\right)=d$.

Conversely let X satisfy $G C D\left(A X+B, d e_{0}\right)=d$. Then $A X+$ $B=d U$ and $G C D\left(U, e_{0}\right)=1$. Suppose there is a prime $p \mid e$ and $U \equiv 0(\bmod p)$. Then $A X+B \equiv 0(\bmod d p)$ and the maximal property of the set $\left\{p_{1}, \cdots, p_{k}\right\}$ shows that p is an associate of some p_{i}. So $U \equiv 0\left(\bmod p_{\imath}\right)$, contradicting that $G C D\left(U, e_{0}\right)=1$. Hence $G C D(U, p)=1$ for all primes $p \mid e$ and thus $G C D(U, e)=1$, that is $G C D(A X+B, c)=d$.

Proposition 3. Suppose that $c=d e, A X+B \equiv 0(\bmod d)$ is solvable and $G C D(A, d)=G C D(A, B, c)$. If e is atomic, then $G C D(A X+$ $B, c)=d$ is solvable.

Proof. Let e be atomic. By Proposition 2 it suffices to show that e satisfies property (I). Thus let $G C D\left(A_{0}, B_{0}, e\right)=1$ where A_{0} is an $m \times n$ matrix and B_{0} is an $m \times 1$ matrix. By Lemma 2, $G C D\left(A_{0} X+B_{0}, e\right)=1$ is solvable if and only if $G C D\left(A_{0} X+B_{0}, e_{0}\right)=1$ is solvable where $e_{0}=p_{1} \cdots p_{k}$ is a product of nonassociated prime divisors of e. However by Lemma $1, G C D\left(A_{0} X+B_{0}, e_{0}\right)=1$ is solvable since $G C D\left(A_{0}, B_{0}, e_{0}\right)=1$. Thus (I) holds and $G C D(A X+B, c)=d$ is solvable.

Theorem 1. Let R be a GCD domain. Consider the following condition
(II) $G C D\left(a_{1} x+b_{1}, \cdots, a_{m} x+b_{m}, c\right)=1$ is solvable if

$$
G C D\left(a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{m}, c\right)=1 ;
$$

(i) If R satisfies (II), then $G C D(A X+B, c)=1$ is solvable whenever $G C D(A, B, c)=1$.
(ii) If R is a Bezout domain such that $\operatorname{GCD}(a x+b, c)=1$ is solvable whenever $G C D(a, b, c)=1$, then R satisfies (II).

Proof. (i) Let R satisfy (II). Let $G C D(A, B, c)=1$ where A
is an $m \times n$ matrix. We prove that $G C D(A X+B, c)=1$ is solvable by induction of n. For $n=1$, solvability is granted by the supposition (II). Let $n>1$ and let A^{\prime} denote the $m \times(n-1)$ matrix with entries $a_{i, j+1}$ for $i=1, \cdots, m ; j=1, \cdots, n-1$. If $c^{\prime}=G C D\left(a_{11}, \cdots\right.$, $a_{1 m}, c$), then $G C D\left(A^{\prime}, B, c^{\prime}\right)=1$. Hence by the induction assumption, there exist x_{2}, \cdots, x_{n} in R such that $G C D\left(a_{12} x_{2}+\cdots+a_{1 n} x_{n}+\right.$ $\left.b_{1}, \cdots, a_{m 1} x_{2}+\cdots+a_{m n} x_{n}+b_{m}, c^{\prime}\right)=1$. If $b_{i}^{\prime}=a_{i 2} x_{2}+\cdots+a_{i n} x_{n}+b_{i}$ for $i=1, \cdots, m$, then $G C D\left(a_{11}, \cdots, a_{m 1}, b_{1}^{\prime}, \cdots, b_{m}^{\prime}, c\right)=1$. Thus by (II), there exists x_{1} in R such that $G C D\left(a_{11} x_{1}+b_{1}^{\prime}, \cdots, a_{m 1} x_{1}+b_{m}^{\prime}, c\right)=1$. So if X in R^{n} has entries $x_{1}, x_{2}, \cdots, x_{n}$, then $G C D(A X+B, c)=1$, completing the proof of (i).
(ii) Let R be a Bezout domain, that is a domain in which every finitely generated ideal is principal. Suppose that R has the property that $G C D(a x+b, c)=1$ is solvable if $G C D(a, b, c)=1$. Let

$$
G C D\left(a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{m}, c\right)=1
$$

Let A and B denote the $m \times 1$ matrices with entries a_{1}, \cdots, a_{m} and b_{1}, \cdots, b_{m} respectively. Then by [3, Theorem 3.5], there exists an invertible $m \times m$ matrix P such that $P A$ has entries a, o, \cdots, o. Also it is clear that $G C D(P A, P B, c)=1$. Let $P B$ have entries $b, b_{2}^{\prime}, \cdots, b_{m}^{\prime}$. Thus by hypothesis, $G C D\left(a x+b, c^{\prime}\right)=1$ is solvable where $c^{\prime}=$ $G C D\left(b_{2}^{\prime}, \cdots, b_{m}^{\prime}, c\right)$. Hence $G C D(A x+B, c)=1$ is solvable, that is R satisfies (II).

As an immediate consequence of the preceding propositions and Theorem 1, we state

Proposition 4. Let R be a UFD or a Bezout domain such that $G C D(a x+b, c)=1$ is solvable if $G C D(a, b, c)=1$. Then $G C D(A X+$ $B, c)=d$ is solvable if and only if $d \mid c, A X+B \equiv 0(\bmod d)$ is solvable and $G C D(A, d)=G C D(A, B, c)$.

We remark that we do not know whether there exists a $G C D$ domain in which (II) is not valid. Any Bezout domain satisfying (II) is an elementary divisor domain [3, Theorem 5.2].

We conclude this section with the following result.
Proposition 5. Let R be a Bezout domain. Suppose that (0) $G C D(a x+b, c)=1$ is solvable whenever $G C D(a, b)=1$ and $a \mid c$. Then $G C D(a x+b, c)=1$ is solvable whenever $G C D(a, b, c)=1$.

Proof. Let $G C D(a, b, c)=1$. If $a^{\prime}=G C D(a, c)$, then $G C D\left(a^{\prime}, b\right)=1$ and $a^{\prime} \mid c$. By the assumption (0), there is x^{\prime} in R such that $G C D\left(a^{\prime} x^{\prime}+b, c\right)=1$. If $u=a^{\prime} x^{\prime}+b$, then $a^{\prime} \mid(u-b)$ and since R is a Bezout domain, there is an x in R such that $a x+b \equiv u(\bmod c)$.

Thus $G C D(a x+b, c)=1$ since $G C D(u, c)=1$.
Let $a \mid c$ and let $\nu: R / c R \rightarrow R / a R$ be the epimorphism given by $\nu(r+c R)=r+a R$ for all r in R. Let $G\left(\right.$ resp. $\left.G^{\prime}\right)$ denote the group of units of $R / c R(\operatorname{resp} . R / a R)$. If $\nu^{\prime}: G \rightarrow G^{\prime}$ is the induced homomorphism, then note that (0) is equivalent to the condition that $\nu^{\prime}(G)=G^{\prime}$. (See [5].)
3. The minimum modulus. Let the solution set S of $G C D(A X+B, c)=d$ be nonempty. Then

$$
M=\left\{t \in R \mid X+t R^{n} \cong S \text { for all } X \in S\right\}
$$

is the set of solution moduli of $G C D(A X+B, c)=d$.
Note that $c \in M$ for if $X \in S$ and $X \equiv X^{\prime}(\bmod c)$, then $A X+B \equiv$ $A X^{\prime}+B(\bmod c)$, so that $d=G C D\left(A X^{\prime}+B, c\right)$.

It is obvious that $M=R$, that is $S=R^{n}$ if and only if $d=$ $G C D(A, d)=G C D(A, B, c)$ and $G C D(A / d(X)+B / d, c / d)=1$ for all X in R^{n}.

Theorem 2. Let R be a GCD domain. Let $G C D(A X+B, c)=d$ be solvable. Let $e=c / d=\prod_{i=1}^{k} e_{i}$. Let $\hat{e}_{2}=e_{1} \cdots e_{i-1} e_{i+1} \cdots e_{k}$ for $i=1, \cdots, k$.
(1) M is an ideal of R,
(2) $M \supseteqq \bigcap_{i=1}^{k} M_{i}$ where M_{i} is the ideal of solution moduli for $G C D\left(A X+B, d e_{2}\right)=d$.
(3) If each \hat{e}_{i} satisfies property (I) of Proposition 2, then $M=\bigcap_{i=1}^{k} M_{i}$ and M is a principal ideal if each M_{\imath} is principal.
(4) If e is atomic, then M is a principal ideal generated by $d / g\left(p_{1} \cdots p_{k}\right)$ where $g=G C D(A, d)$ and $\left\{p_{i}, \cdots, p_{k}\right\}$ is defined in $\left(^{*}\right)$ of Lemma 2.

Proof.
(1) As S is nonempty, the set M is well-defined and o, c belong to M. Let t_{1}, t_{2} be in M and let $r \in R$. Let $X \in S$ and let $Y \in R^{n}$. Then $X+t_{1} Y \in S$ and hence $\left(X+t_{1} Y\right)+t_{2}(-Y) \in S$, that is $X+\left(t_{1}-t_{2}\right) Y \in S$ which shows that $t_{1}-t_{2} \in M$. Also $X+t_{1}(r Y) \in S$, that is $X+$ $\left(t_{1} r\right) Y \in S$. So $t_{1} r \in M$ and thus M is an ideal of R.
(2) As $d \mid c$ we let $c=d e$. Let S_{i} denote the solution set of $G C D\left(A X+B, d e_{i}\right)=d$ where $e=\prod_{i=1}^{k} e_{i}$. Then clearly $S=\bigcap_{i=1}^{k} S_{i}$. Let $t \in \bigcap_{i=1}^{k} M_{i}$. Let $X \in S$ and let $Y \in R^{n}$. Then $X+t Y \in \bigcap_{i=1}^{k} S_{i}$ since $X \in \bigcap_{i=1}^{k} S_{i}$. So $X+t Y \in S$, that is $t \in M$, which proves that $M \supseteqq \bigcap_{i=1}^{k} M_{i}$.
(3) Assume that each \hat{e}_{i} satisfies property (I). We prove that $M \subseteq M_{i}$ for $i=1, \cdots, k$. As $g=G C D(A, d)=G C D(A, B, c)$, let $A^{\prime}=A / g, B^{\prime}=B / g$, and $d^{\prime}=d / g$. Let i be fixed and let $X_{i} \in S_{i}$.

Then $A^{\prime} X_{i}+B^{\prime}=d^{\prime} U$ where $G C D\left(U, e_{i}\right)=1$. We claim that $G C D\left(e_{i} A^{\prime}, U, \hat{e}_{i}\right)=1$. For let h be a divisor of $G C D\left(e_{i} A^{\prime}, U, \hat{e}_{i}\right)$. Then $A^{\prime} \equiv 0(\bmod h)$ since $G C D\left(h, e_{i}\right)=1$. Thus $h \mid G C D\left(A^{\prime}, B^{\prime}, d^{\prime} e\right)$, that is $h \mid 1$. So by assumption there exists X^{\prime} in R^{n} such that

$$
G C D\left(\left(e_{i} A^{\prime}\right) X^{\prime}+U, \hat{e}_{i}\right)=1 .
$$

Let $X=X_{i}+d^{\prime} e_{i} X^{\prime}$. Then for $j=1, \cdots, k$,

$$
\begin{aligned}
& G C D\left(A^{\prime} X+B^{\prime}, d^{\prime} e_{j}\right) \\
& \quad=d^{\prime} G C D\left(\left(e_{i} A^{\prime}\right) X^{\prime}+U, e_{j}\right)=d^{\prime} .
\end{aligned}
$$

Hence $X \in \bigcap_{j=1}^{k} S_{j}$, that is $X \in S$. Now let $t \in M$ and let $Y \in R^{n}$. Then $X+t Y \in S$ and so $X+t Y \in S_{i}$. However, $X+t Y \equiv X_{i}+t Y\left(\bmod d^{\prime} e_{i}\right)$ and thus $X_{i}+t Y \in S_{i}$, that is $t \in M_{i}$, which proves that $M \subseteq M_{i}$. So by (2), $M=\bigcap_{i=1}^{k} M_{i}$. Moreover, if each M_{i} is a principal ideal, say $M_{i}=t_{i} R$, then $\bigcap_{i=1}^{b} M_{i}$ is a principal ideal generated by the $\operatorname{LCM}\left(t_{1}, \cdots, t_{k}\right)$.
(4) Let t be any element of M. We show that $d / g \mid t$ where $g=G C D(A, d)$. First note that S is the solution set of $G C D\left(A^{\prime} X+\right.$ $\left.B^{\prime}, d^{\prime} e\right)=d^{\prime}$ where $A^{\prime}=A / g, B^{\prime}=B / g$, and $d^{\prime}=d / g$. Let $X \in S$ and let $A^{\prime} X+B^{\prime}=d^{\prime} U$. Then $G C D\left(A^{\prime}(X+t Y)+B^{\prime}, d^{\prime} e\right)=d^{\prime}$ for all Y in R^{n}. So $G C D\left(\left(A^{\prime} t\right) Y+d^{\prime} U, d^{\prime} e\right)=d^{\prime}$ and thus $\left(A^{\prime} t\right) Y \equiv 0\left(\bmod d^{\prime}\right)$ for all Y in R^{n}. Hence $A^{\prime} t \equiv 0\left(\bmod d^{\prime}\right)$ and since $G C D\left(A^{\prime}, d^{\prime}\right)=1$, it follows that $d^{\prime} \mid t$.

Now suppose that e is atomic. By Lemma $2, S$ is also the solution set of $G C D\left(A^{\prime} X+B^{\prime}, d^{\prime} e_{0}\right)=d^{\prime}$ where $e_{0}=p_{1} \cdots p_{k}$ and $\left\{p_{1}, \cdots, p_{k}\right\}$ is defined in (*). Thus M is also the ideal of solution moduli of $G C D\left(A^{\prime} X+B^{\prime}, d^{\prime} e_{0}\right)=d^{\prime}$. Let M_{i}^{\prime} denote the ideal of solution moduli of $G C D\left(A^{\prime} X+B^{\prime}, d^{\prime} p_{i}\right)=d^{\prime}$ for $i=1, \cdots, k$. Then Lemma 1 shows that (3) can be applied to yield that $M=\bigcap_{i=1}^{k} M_{i}^{\prime}$. We prove that each M_{i}^{\prime} is a principal ideal generated by $d^{\prime} p_{i}$. Clearly $d^{\prime} p_{i} \in M_{i}^{\prime}$ for $i=1, \cdots, k$. Let i be fixed and let t be any element in M_{i}^{\prime}. Then as shown earlier, $d^{\prime} \mid t$ say $t=d^{\prime} t^{\prime} . \quad$ By (${ }^{*}$) there exists X in R^{n} such that $A^{\prime} X+B^{\prime} \equiv 0\left(\bmod d^{\prime} p_{i}\right)$. Thus $G C D\left(A^{\prime}, p_{i}\right)=1$ since $G C D\left(A^{\prime}, B^{\prime}, d^{\prime} e\right)=1$. So there is a j for which $G C D\left(A^{\prime} E_{j}, p_{i}\right)=1$ where E_{j} is the $n \times 1$ matrix with 1 in the j th position and o's elsewhere.

Now assume that $G C D\left(t^{\prime}, p_{i}\right)=1$. Let $X^{\prime}=X+t E_{j}$. Then $G C D\left(A^{\prime}\left(X^{\prime}-X\right), d^{\prime} p_{i}\right)=d^{\prime} G C D\left(t^{\prime} A^{\prime} E_{j}, p_{i}\right)=d^{\prime}$ since $G C D\left(t^{\prime} A^{\prime} E_{j}, p_{i}\right)=1$. So $G C D\left(A^{\prime} X^{\prime}-A^{\prime} X, d^{\prime} p_{i}\right)=d^{\prime}$ and thus $G C D\left(A^{\prime} X^{\prime}+B^{\prime}, d^{\prime} p_{i}\right)=d^{\prime}$ as $B \equiv-A^{\prime} X\left(\bmod d^{\prime} p_{i}\right)$. Hence $G C D\left(A^{\prime}\left(X^{\prime}+t\left(-E_{j}\right)\right)+B^{\prime}, d^{\prime} p_{i}\right)=d^{\prime}$ since $t \in M_{i}^{\prime}$. That is $G C D\left(A^{\prime} X+B^{\prime}, d^{\prime} p_{i}\right)=d^{\prime}$ and thus $d^{\prime} p_{i} \mid d^{\prime}$, which contradicts that p_{i} is a nonunit. So the assumption that $G C D\left(t^{\prime}, p_{i}\right)=1$ is untenable, that is $p_{i} \mid t^{\prime}$. Thus $d^{\prime} p_{i} \mid t$ proving that
$M_{i}^{\prime}=d^{\prime} p_{i} R$. However $M=\bigcap_{i=1}^{k} M_{i}^{\prime}$, so that M is a principal ideal generated by the $L C M\left(d^{\prime} p_{1}, \cdots, d^{\prime} p_{k}\right)$, that is M is generated by $d^{\prime} p_{1} \cdots p_{k}$.

The generator $d^{\prime} p_{1} \cdots p_{k}$ of M is called the minimum modulus of $G C D(A X+B, d e)=d$.
4. The number of solutions with respect to a modulus. Let $G C D(A X+B, c)=d$ be solvable where $e=c / d$ is atomic. If t in R is a solution modulus of $G C D(A X+B, c)=d$, then S consists of equivalence classes of $R^{n}(\bmod t)$. If $R / t R$ is also a finite ring, we let $N_{t} \equiv N_{t}(A, B, c, d)$ denote the number of distinct equivalence classes of $R^{n}(\bmod t)$ comprising S.

For $R / t R$ finite, let $|t|=|R / t R|$ denote the number of elements in $R / t R$. Note that if $t_{0} \mid t$, then each equivalence class of $R^{n}\left(\bmod t_{0}\right)$ consists of $\left|t / t_{0}\right|^{n}=\left(|t| /\left|t_{0}\right|\right)^{n}$ classes of $R^{n}(\bmod t)$. Thus if t is a solution modulus and t_{0} denotes the mininum modulus of $G C D(A X+$ $B, c)=d$, then $N_{t}=\left|t / t_{0}\right|^{n} N_{t_{0}}$. In Theorem 3, we explicitly deter$\operatorname{mine} N_{t_{0}}$.

The following lemma is also of independent interest.
Lemma 3. Let R be a GCD domain and suppose that $R / d R$ is a finite ring. Let p_{1}, \cdots, p_{k} be nonassociated elements such that $R / p_{i} R$ is a finite field for $i=1, \cdots, k$. Let A be an $m \times n$ matrix and let r_{i} denote the rank of $A\left(\bmod p_{i}\right)$ for $i=1, \cdots, k$. Let $\mathscr{L}=\{X \in$ $\left.R^{n} \mid A X \equiv 0(\bmod d)\right\}$ and $L=\left\{X+d R^{n} \mid X \in \mathscr{L}\right\}$. Let $e_{0}=\prod_{i=1}^{k} p_{i}$ and let $\mathscr{L}^{\prime}=\left\{X \in R^{n} \mid A X \equiv 0\left(\bmod d e_{0}\right)\right\}$ and $L^{\prime}=\left\{X+d e_{0} R^{n} \mid X \in \mathscr{L}^{\prime}\right\}$. Let $\mathscr{L}_{i}=\left\{X \in R^{n} \mid A X \equiv 0\left(\bmod d p_{i}\right)\right\}$ and $L_{i}=\left\{X+d R^{n} \mid X \in \mathscr{L}_{i}\right\}$ for $i=1, \cdots, k$. Let $H=\left\{X+e_{0} R^{n} \mid X \in \mathscr{L}^{\prime}\right\}$ and $H_{i}=\left\{X+p_{i} R^{n} \mid X \in \mathscr{L}_{i}\right\}$ for $i=1, \cdots, k$. Then

$$
\begin{equation*}
\left|L^{\prime}\right|=|L||H| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|H|=\prod_{i=1}^{k}\left|H_{i}\right| \tag{2}
\end{equation*}
$$

L / L_{i} is an $R / p_{i} R$ vector space of dimension s_{i} and $\left|H_{i}\right|=\left|R / p_{i} R\right|^{n-\left(r_{i}+s_{i}\right)}$ for $i=1, \cdots, k$.
$s_{i}=0$ if and only if for each X in \mathscr{L} there exists X^{\prime} in \mathscr{L}_{i} such that $X^{\prime} \equiv X(\bmod d)$.
(4) If $G C D\left(d, p_{i}\right)=1$, then $s_{i}=0$.
$|L|=1$ if and only if $n=\operatorname{rank} A(\bmod p)$ for each prime $p \mid d$.

Proof.
(1) In the obvious way, L, L^{\prime}, and H are R-modules. Let $\sigma: L^{\prime} \rightarrow H$ denote the R-homomorphism defined by $\sigma\left(X+d e_{0} R^{n}\right)=$ $X+e_{0} R^{n}$ for all X in \mathscr{L}^{\prime}. Then clearly $\operatorname{Ker} \sigma=\left\{e_{0} Y+d e_{0} R^{n} \mid Y \in \mathscr{L}\right\}$ so that $L \cong \operatorname{Ker} \sigma$ under the R-isomorphism $\tau: L \rightarrow \operatorname{Ker} \sigma$ defined by $\tau\left(Y+d R^{n}\right)=e_{0} Y+d e_{0} R^{n}$ for all Y in \mathscr{L}. Thus $\left|L^{\prime}\right|=|L||H|$ since $\operatorname{Im} \sigma=H$. We now show that H is isomorphic to $\oplus_{i=1}^{k} H_{i}$, the direct sum of the R-modules H_{i}. Let $\gamma: H \rightarrow \bigoplus_{i=1}^{k} H_{i}$ denote the R-homomorphism defined by $\gamma\left(X+e_{0} R^{n}\right)=\left(X+p_{1} R^{n}, \cdots, X+p_{k} R^{n}\right)$ for all X in \mathscr{L}^{\prime}. If $X+e_{0} R^{n} \in \operatorname{Ker} \gamma$, then $X \equiv 0\left(\bmod p_{i}\right)$ for $i=1, \cdots, k$, that is $X \equiv 0\left(\bmod e_{0}\right)$, which shows that γ is $1-1$. To show that $\operatorname{Im} \gamma=\bigoplus_{i=1}^{k} H_{i}$, let $X_{i} \in \mathscr{L}_{i}$ for $i=1, \cdots, k$. Since $R / d R$ is finite, it is easy to verify that d is atomic. Thus let $d=d_{0} \prod_{i=1}^{k} p_{i}^{m_{i}}$ where $m_{i} \geqq 0$ and $G C D\left(d_{0}, p_{i}\right)=1$. By the Chinese remainder theorem there exists X in R^{n} such that $X \equiv 0\left(\bmod d_{0}\right)$ and $X \equiv X_{i}\left(\bmod p_{i}^{m_{i+1}}\right)$ for $i=1, \cdots, k$. However, $A X_{i} \equiv 0\left(\bmod p_{i}^{m_{i}+1}\right)$ for $i=1, \cdots, k$, so that $A X \equiv 0 \bmod \left(d_{0} \prod_{i=1}^{k} p_{i}^{m_{i}+1}\right)$, that is $A X \equiv 0\left(\bmod d e_{0}\right)$. Thus $X+$ $e_{0} R^{n} \in H$ and $\gamma\left(X+e_{0} R^{n}\right)=\left(X_{1}+p_{1} R^{n}, \cdots, X_{k}+p_{k} R^{n}\right)$. Hence γ is an isomorphism and $|H|=\prod_{i=1}^{k}\left|H_{2}\right|$.
(2) Let $L_{i}^{\prime}=\left\{X+d p_{i} R^{n} \mid X \in \mathscr{L}_{2}\right\}$ for $i=1, \cdots, k$. Let i be fixed. Let $\nu: L_{i}^{\prime} \rightarrow L_{i}$ denote the R-homomorphism defined by $\nu\left(X+d p_{i} R^{n}\right)=X+d R^{n}$ for all X in \mathscr{L}_{i}. Then clearly Ker $\nu=$ $\left\{d Y+d p_{i} R^{n} \mid A Y \equiv 0\left(\bmod p_{i}\right)\right\}$ and it follows that

$$
|\operatorname{Ker} \nu|=\left|R / p_{i} R\right|^{n-r_{i}} \equiv\left|p_{i}\right|^{n-r_{i}}
$$

where $r_{i}=\operatorname{rank} A\left(\bmod p_{i}\right)$. Thus $\left|L_{i}^{\prime}\right|=\left|p_{i}\right|^{n-r_{i}}\left|L_{i}\right|$ since $\operatorname{Im} \nu=L_{i}$. However by (1), $\left|L_{i}^{\prime}\right|=|L|\left|H_{i}\right|$. Also since L_{i} is an R-submodule of L, the quotient module L / L_{i} is defined and $|L|=\left|L_{i}\right|\left|L / L_{i}\right|$. Thus we obtain that $\left|H_{i}\right|\left|L / L_{i}\right|=\left|p_{i}\right|^{n-r_{i}}$. We now show that L / L_{i} is an $R / p_{i} R$ vector space. Let $\langle X\rangle=X+d R^{n}$ for X in R^{n}. Then $L / L_{i}=\left\{\langle X\rangle+L_{i} \mid X \in \mathscr{L}\right\}$. For r in R, let $\bar{r}=r+p_{i} R$ in $R / p_{i} R$. We define $\bar{r}\left(\langle X\rangle+L_{i}\right)=\langle r X\rangle+L_{i}$ for all r in R and X in \mathscr{L}. We claim that this is a well-defined $R / p_{i} R$ multiplication on L / L_{i}. For let $\bar{r}=\bar{r}^{\prime}$ and $\langle X\rangle+L_{i}=\left\langle X^{\prime}\right\rangle+L_{i}$, where $r, r^{\prime} \in R$ and $X, X^{\prime} \in \mathscr{L}$. Then $r-r^{\prime} \equiv \mathrm{o}\left(\bmod p_{i}\right)$ and $\langle X\rangle-\left\langle X^{\prime}\right\rangle \in L_{i}$, that is $\left\langle X-X^{\prime}\right\rangle \in L_{i}$. Thus there exists Y in \mathscr{L}_{i} such that $\left\langle X-X^{\prime}\right\rangle=$ $\langle Y\rangle$. We must show that $\langle r X\rangle+L_{i}=\left\langle r^{\prime} X^{\prime}\right\rangle+L_{i}$, that is $\left\langle r X-r^{\prime} X^{\prime}\right\rangle \in L_{i} . \quad$ We write $\quad r X-r^{\prime} X^{\prime}=\left(r-r^{\prime}\right) X+r^{\prime}\left(X-X^{\prime}\right)$. However, $X-X^{\prime} \equiv Y(\bmod d)$ and thus $r\left(X-X^{\prime}\right) \equiv r Y(\bmod d)$. So $r X-r^{\prime} X^{\prime} \equiv\left(r-r^{\prime}\right) X+r Y(\bmod d)$ and $\left(r-r^{\prime}\right) X+r Y \in \mathscr{L}_{i}$. Hence $\left\langle r X-r^{\prime} X^{\prime}\right\rangle \in L_{i}$, which establishes the claim. It follows immediately that L / L_{i} is an $R / p_{i} R$ vector space since L / L_{i} is an R-module.

Let s_{i} denote the dimension of the $R / p_{i} R$ vector space L / L_{i}.

Then $\left|L / L_{i}\right|=\left|p_{i}\right|^{s_{i}}$ and as $\left|H_{i}\right|\left|L / L_{i}\right|=\left|p_{i}\right|^{n-r_{i}}$, we obtain that $\left|H_{i}\right|\left|p_{i}\right|^{s_{i}}=\left|p_{i}\right|^{n-r_{i}}$. Thus $o \leqq s_{i} \leqq n-r_{i}$ and $\left|H_{i}\right|=\left|p_{i}\right|^{n-\left(r_{i}+s_{i}\right)}$, which completes the proof of (2).
(3) As $|L|=\left|L_{i}\right|\left|p_{i}\right|^{s_{i}}$, it is immediate that $s_{i}=0$ if and only if $L=L_{i}$, that is if and only if for each X in \mathscr{L} there exists X^{\prime} in \mathscr{L}_{i} such that $X^{\prime} \equiv X(\bmod d)$.
(4) Suppose that $G C D\left(d, p_{i}\right)=1$. Let $X \in \mathscr{L}$. By the Chinese remainder theorem there exists X^{\prime} in R^{n} such that $X^{\prime} \equiv X(\bmod d)$ and $X^{\prime} \equiv 0\left(\bmod p_{i}\right)$. Thus $A X^{\prime} \equiv 0\left(\bmod d p_{i}\right)$, so that $s_{i}=0$ by (3).
(5) Let p be a prime dividing d and let $d=d_{1} p$. Then $L=$ $\left\{X+d_{1} p R^{n} \mid X \in \mathscr{L}\right\}$. However as shown in the proof of (2), $|L|=$ $|p|^{n-r_{0}}\left|L_{0}\right|$ where $r_{0}=\operatorname{rank} A(\bmod p)$ and $L_{0}=\left\{X+d_{1} R^{n} \mid X \in \mathscr{L}\right\}$. Thus if $|L|=1$, then $n=\operatorname{rank} A(\bmod p)$ for any prime $p \mid d$. The converse is trivial.

Theorem 3. Let R be a GCD domain. Let $G C D(A X+B, c)=d$ be solvable and suppose that $e=c / d$ is atomic. Let $A^{\prime}=A / g$ and $d^{\prime}=d / g$ where $g=G C D(A, d)$. Let $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ denote the minimum modulus of $G C D(A X+B, c)=d$ where $\left\{p_{1}, \cdots, p_{k}\right\}$ is defined in $\left(^{*}\right)$ of Lemma 2. Suppose that $R / t_{0} R$ is a finite ring. Let $L=$ $\left\{X+d^{\prime} R^{n} \mid A^{\prime} X \equiv 0\left(\bmod d^{\prime}\right)\right\}$ and $L_{i}=\left\{X+d^{\prime} R^{n} \mid A^{\prime} X \equiv 0\left(\bmod d^{\prime} p_{i}\right)\right\}$ for $i=1, \cdots, k$. Then

$$
\begin{equation*}
N_{t_{0}}=|L| \prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-\left(r_{i}+s_{i}\right)}\right) \tag{4.1}
\end{equation*}
$$

where r_{i} denotes rank $A^{\prime}\left(\bmod p_{i}\right)$ and s_{i} denotes the dimension of the $R / p_{i} R$ vector space L / L_{i}.

Proof. Let S denote the solution set of $G C D(A X+B, c)=d$. As $g=G C D(A, B, c)$, let $B^{\prime}=B / g$. Then by Lemma $2, S$ is also the solution set of $G C D\left(A^{\prime} X+B, d^{\prime} e_{0}\right)=d^{\prime}$ where $e_{0}=\prod_{i=1}^{k} p_{2}$. Let \mathscr{S} denote the set of X in R^{n} such that $A^{\prime} X+B^{\prime} \equiv 0\left(\bmod d^{\prime}\right)$. Let \mathscr{S}_{i} denote the set of X in R^{n} such that $A^{\prime} X+B^{\prime} \equiv 0\left(\bmod d^{\prime} p_{i}\right)$ for $i=1, \cdots, k$. It is clear that $S=\mathscr{S} \backslash \bigcup_{i=1}^{k} \mathscr{S}_{2}$. Let $T_{0}=\{X+$ $\left.t_{0} R^{n} \mid X \in S\right\}$. Then $\left|T_{0}\right|$ is what we have denoted by $N_{t_{0}}$. Also let $T=\left\{X+t_{0} R^{n} \mid X \in \mathscr{S}\right\}$ and $T_{i}=\left\{X+t_{0} R^{n} \mid X \in \mathscr{S}_{i}\right\}$ for $i=1, \cdots, k$. Hence $T_{0}=T \backslash \bigcup_{i=1}^{k} T_{i}$ and by the method of inclusion and exclusion

$$
\begin{equation*}
N_{t_{0}}=\left|T_{0}\right|=\sum_{I}(-1)^{|I|}\left|T_{I}\right| \tag{4.2}
\end{equation*}
$$

where the summation is over all subsets I of

$$
I_{k}=\{1, \cdots, k\} \text { and } T_{I}=\bigcap_{i=1} T_{i}
$$

Now let $\mathscr{S}_{I}=\bigcap_{i \in I} \mathscr{S}_{i}$ and $d_{I}^{\prime}=d^{\prime} \prod_{i \in I} p_{i}$ for each subset I of
I_{k}. Then it is easy to see that \mathscr{S}_{I} is the set of X in R^{n} such that $A^{\prime} X+B^{\prime} \equiv 0\left(\bmod d_{I}^{\prime}\right)$ and $T_{I}=\left\{X+t_{0} R^{n} \mid X \in \mathscr{S}_{I}\right\}$. Let $T_{I}^{\prime}=\{X+$ $\left.d_{I}^{\prime} R^{n} \mid X \in \mathscr{S}_{I}\right\}$ and let $I^{\prime}=I_{k} \backslash I$. Then $\left|T_{I}\right|=\left|T_{I}^{\prime}\right| \Pi_{i \in I^{\prime}}\left|p_{i}\right|^{n}$, since $X+d_{I}^{\prime} R^{n}$ consists of $\left.\left|t_{0}\right| d_{I}^{\prime}\right|^{n}=\Pi_{i \in I^{\prime}}\left|p_{i}\right|^{n}$ distinct classes of $R^{n}\left(\bmod t_{0}\right)$.

Let \mathscr{L}_{I} denote the set of X in R^{n} such that $A^{\prime} X \equiv 0\left(\bmod d_{I}^{\prime}\right)$. Let $L_{I}^{\prime}=\left\{X+d_{I}^{\prime} R^{n} \mid X \in \mathscr{L}_{I}\right\}$. As \mathscr{S}_{i} is nonempty for $i=1, \cdots, k$, an argument involving the Chinese remainder theorem shows that each \mathscr{S}_{I} is nonempty. Hence it follows that $\left|T_{I}^{\prime}\right|=\left|L_{I}^{\prime}\right|$. Let $L=$ $\left\{X+d^{\prime} R^{n} \mid X \in \mathscr{L}_{\phi}\right\}$ and $L_{i}=\left\{X+d^{\prime} R^{n} \mid X \in \mathscr{L}_{\{i\rangle}\right\}$ for $i=1, \cdots, k$. Then (1) and (2) of Lemma 3 yield that $\left|L_{I}^{\prime}\right|=|L| \prod_{i \in I}\left|p_{i}\right|^{n-\left(r_{i}+s_{i}\right)}$ where $r_{i}=\operatorname{rank} A^{\prime}\left(\bmod p_{i}\right)$ and $s_{i}=$ dimension of the $R / p_{i} R$ vector space L / L_{i}.

Hence by (4.2),

$$
N_{t_{0}}=|L| \sum_{I}(-1)^{|I|} \prod_{i \in I}\left|p_{i}\right|^{n-\left(r_{i}+s_{i}\right)} \prod_{i \in I^{\prime}}\left|p_{i}\right|^{n}
$$

where the summation is over all subsets I of I_{k} and $I^{\prime}=I_{k} \backslash I$. Thus we may write

$$
N_{t_{0}}=|L| \prod_{i=1}^{k}\left|p_{i}\right|^{n} \sum_{I}(-1)^{|I|} \prod_{i \in I}\left|p_{i}\right|^{-\left\langle r_{i}+s_{i}\right)}
$$

where the summation is over all subsets I of I_{k}. However,

$$
\prod_{i=1}^{k}\left(1-\left|p_{i}\right|^{-\left(r_{i}+s_{i}\right)}\right)=\sum_{I}(-1)^{|I|} \prod_{i \in I}\left|p_{i}\right|^{-\left(r_{i}+s_{i}\right)}
$$

which yields the formula (4.1) for $N_{t_{0}}$. This completes the proof of the theorem.

We remark that if $p_{i}^{m_{i}}$ is the highest power of p_{i} dividing d^{\prime}, then s_{i} is also the dimension of the $R / p_{i} R$ vector space K_{i}^{0} / K_{i} where $K_{i}^{0}=\left\{X+p_{i}^{m_{i}} R^{n} \mid A^{\prime} X \equiv 0\left(\bmod p_{i}^{m_{i}}\right)\right\}$ and

$$
K_{i}=\left\{X+p_{i}^{m_{i}} R^{n} \mid A^{\prime} X \equiv 0\left(\bmod p_{i}^{m_{i}+1}\right)\right\}
$$

Also note that $r_{i} \geqq 1$ for $i=1, \cdots, k$.
In Corollaries 1 and 2, the notation is the same as in Theorem 3.
Corollary 1. Let $G C D(A X+B, c)=d$ be solvable and suppose that $e=c / d$ is atomic. Let $R / t_{0} R$ be finite where $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ is the minimum modulus of $G C D(A X+B, c)=d$.
(i) If $G C D\left(d^{\prime}, e\right)=1$, then

$$
\begin{equation*}
N_{t_{0}}=|L| \prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-r_{i}}\right) \tag{4.3}
\end{equation*}
$$

(ii) If $|L|=1$, then

$$
\begin{equation*}
N_{t_{0}}=\prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-r_{i}}\right), \tag{4.4}
\end{equation*}
$$

where $r_{i}=n$ if $p_{i} \mid d^{\prime}$.
(iii) If $n^{\prime}=\operatorname{rank} A^{\prime}\left(\bmod p_{i}\right)$ for $i=1, \cdots, k$, where n^{\prime} denotes the smaller of m and n, then

$$
\begin{equation*}
N_{t_{0}}=|L| \prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-n^{\prime}}\right) \tag{4.5}
\end{equation*}
$$

(iv) $N_{t_{0}}=1$ if and only if (a) $|L|=1$ and there exists no prime $p \mid e$ such that $A X+B \equiv 0(\bmod d p)$ is solvable, or (b) $n=1$ and $|p|=2$ for any prime $p \mid e$ such that $A X+B \equiv 0(\bmod d p)$ is solvable.

Proof.
(i) If $G C D\left(d^{\prime}, p_{i}\right)=1$, then (4) of Lemma 3 shows that $s_{i}=\mathrm{o}$ in (4.1). Hence if $G C D\left(d^{\prime}, e\right)=1$, then $s_{i}=0$ for $i=1, \cdots, k$, which yields (4.3).
(ii) Suppose that $|L|=1$. If $p_{i} \mid d^{\prime}$, then $n=r_{i}$ by (5) of Lemma 3 and thus $s_{i}=0$ since $s_{i} \leqq n-r_{i}$. However if $G C D\left(d^{\prime}, p_{i}\right)=1$, then $s_{i}=o$, so that (4.4) is immediate from (4.1).

In particular if $d=1$, then $N_{t_{0}}$ is given by (4.4). If A^{\prime} is invertible $\left(\bmod d^{\prime}\right)$, then (4.4) also applies.
(iii) If $n=r_{i}$, then $s_{i}=0$. If $m=r_{i}$, then the criterion in (3) shows that $s_{i}=o$. Thus (4.5) follows from (4.1).
(iv) Suppose that $N_{t_{0}}=1$. Then by (4.1), $|L|=1$ and thus $s_{i}=0$ for $i=1, \cdots, k$. If p_{i} is a prime dividing e such that $A X+B \equiv 0\left(\bmod d p_{i}\right)$ is solvable, then $\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-r_{i}}=1$, so that $n=r_{i}=1$ and $\left|p_{i}\right|=2$. Thus either (a) or (b) holds. Conversely if (a) holds, then $N_{t_{0}}=1$. If $n=1$, then clearly $|L|=1$ and hence (b) implies that $N_{t_{0}}=1$.

Corollary 2. Let $G C D(A X+B, c)=d$ be solvable and let $e=c / d$. Suppose that $R / c R$ is a finite ring. Then

$$
\begin{equation*}
N_{c}=|L||g e|^{n} \prod_{i=1}^{k}\left(1-\left|p_{i}\right|^{-\left(r_{i}+s_{i}\right)}\right) \tag{4.6}
\end{equation*}
$$

Proof. Since $R / c R$ is finite, e is atomic. Thus $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ is the minimum modulus of $G C D(A X+B, c)=d$. Also $R / t_{0} R$ is finite since $t_{0} \mid c$, so that $N_{t_{0}}$ is given by (4.1). However $N_{c}=\left|c / t_{0}\right|^{n} N_{t_{0}}$, which yields the result (4.6).

Corollary 3. Suppose that $R / c R$ is a finite ring. Then $G C D\left(a_{1} x_{1}+\cdots+a_{n} x_{n}+b, c\right)=d$ is solvable if and only if $d \mid c$ and $G C D\left(a_{1}, \cdots, a_{n}, d\right)=G C D\left(a_{1}, \cdots, a_{x}, b, c\right)$. Let $a_{j}^{\prime}=a_{j} / g$ for $j=1, \cdots, n$
where $g=G C D\left(a_{1}, \cdots, a_{n}, d\right)$. Let $\left\{p_{1}, \cdots, p_{k}\right\}$ be a maximal set of nonassociated prime divisors of $e=c /$ d such that $G C D\left(a_{1}^{\prime}, \cdots, a_{n}^{\prime}, p_{i}\right)=1$ for $i=1, \cdots, k$. Then

$$
\begin{equation*}
N_{c}=|c|^{n-1}|g e| \prod_{i=1}^{k}\left(1-\left|p_{i}\right|^{-1}\right) \tag{4.7}
\end{equation*}
$$

Proof. Suppose that $c=d e$ and $g=G C D\left(a_{1}, \cdots, a_{n}, b, c\right)$. Since $R / c R$ is finite, d is atomic and $R / p R$ is a finite field for any prime $p \mid d$. Hence as $g \mid b$, a standard argument shows that $a_{1} x_{1}+\cdots+$ $a_{n} x_{n}+b \equiv \mathrm{o}(\bmod d)$ is solvable and has $|g||d|^{n-1}$ distinct solutions $(\bmod d)$. Thus $G C D\left(a_{1} x_{1}+\cdots+a_{n} x_{n}+b, c\right)=d$ is solvable since e is atomic. Let $d^{\prime}=d / g$ and $b^{\prime}=b / g$. Since $G C D\left(a_{1}^{\prime}, \cdots, a_{n}^{\prime}, d^{\prime} p_{i}\right)=1$ and $R / d^{\prime} p_{i} R$ is finite, $a_{1}^{\prime} x_{1}+\cdots+a_{n}^{\prime} x_{n}+b^{\prime} \equiv 0\left(\bmod d^{\prime} p_{i}\right)$ is solvable for $i=1, \cdots, k$. It follows that $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ is the minimum modulus of $G C D\left(a_{1} x_{1}+\cdots+a_{n} x_{n}+b, c\right)=d$. Let A^{\prime} denote the $1 \times n$ matrix $\left(a_{1}^{\prime}, \cdots, a_{n}^{\prime}\right)$. Then $\operatorname{rank} \quad A^{\prime}\left(\bmod p_{i}\right)=1$ for $i=1, \cdots, k$. Also $a_{1}^{\prime} x_{1}+\cdots+a_{n}^{\prime} x_{n} \equiv \mathrm{o}\left(\bmod d^{\prime}\right)$ has $\left|d^{\prime}\right|^{n-1}$ distinct solutions $\left(\bmod d^{\prime}\right)$. Thus by (iii) of Corollary 1,

$$
N_{t_{0}}=\left|d^{\prime}\right|^{n-1} \prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-1}\right)
$$

which yields (4.7).
Corollary 4. Suppose that $R / c R$ is a finite ring where $c=d e$. Let $g=G C D\left(a_{1}, \cdots, a_{m}, d\right)$ and $a_{i}^{\prime}=a_{i} / g$ for $i=1, \cdots, m$. Then $G C D\left(a_{1} x+b_{1}, \cdots, a_{m} x+b_{m}, c\right)=d$ is solvable if and only if
(1) $G C D\left(a_{i}, d\right) \mid b_{i}$ for $i=1, \cdots, m$,
(2) $a_{i}^{\prime} b_{j} \equiv a_{j}^{\prime} b_{i}(\bmod d)$ for $1 \leqq i<j \leqq m$,
(3) $g=G C D\left(a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{m}, c\right)$.

Let $\left\{p_{1}, \cdots, p_{k}\right\}$ be a maximal set of nonassociated prime divisors of e such that for each $p_{h}, G C D\left(a_{i}, d p_{h}\right) \mid b_{i}$ for $i=1, \cdots, m$ and $a_{i}^{\prime} \equiv a_{j}^{\prime} b_{i}\left(\bmod d p_{h}\right)$ for $1 \leqq i<j \leqq m$. Then

$$
N_{c}=|g e| \prod_{h=1}^{k}\left(1-\left|p_{h}\right|^{-1}\right)
$$

Proof. Let A and B denote the $m \times 1$ matrices with entries a_{1}, \cdots, a_{m} and b_{1}, \cdots, b_{m} respectively. Since $R / d R$ is finite, the reader may easily verify that the system $A x+B \equiv 0(\bmod d)$ is solvable if and only if (1) and (2) hold. Thus as e is atomic, $G C D(A x+B, c)=d$ is solvable if and only if (1), (2), and (3) hold. Let $G C D(A x+B, c)=d$ be solvable and let $d^{\prime}=d / g$. Then it follows that $t_{0}=d^{\prime} \prod_{h=1}^{k} p_{h}$ is the minimum modulus of $G C D(A x+B, c)=d$. Let A^{\prime} denote the $m \times 1$ matrix with entries $a_{1}^{\prime}, \cdots, a_{m}^{\prime}$. Then $\operatorname{rank} A^{\prime}\left(\bmod p_{i}\right)=1$ for
$i=1, \cdots, k$. Also the system $A^{\prime} x \equiv 0\left(\bmod d^{\prime}\right)$ has only the solution $x \equiv \mathrm{o}\left(\bmod d^{\prime}\right)$. Thus by (iii) of Corollary $1, N_{t_{0}}=\prod_{h=1}^{k}\left(\left|p_{k}\right|-1\right)$. Hence $N_{c}=|g e| \prod_{k=1}^{k}\left(1-\left|p_{k}\right|^{-1}\right)$.

Corollary 5. Let $c=$ de where e is atomic. Let $g=\operatorname{GCD}\left(a_{1}\right.$, $\left.\cdots, a_{n}, d\right)$ and $d^{\prime}=d / g$. Suppose that $R / d^{\prime} R$ is a finite ring. Then $G C D\left(a_{1} x_{1}+b_{1}, \cdots, a_{n} x_{n}+b_{n}, c\right)=d$ is solvable if and only if $G C D\left(a_{j}, d\right) \mid b_{j}$ for $j=1, \cdots, n$ and $g=G C D\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}, c\right)$. Suppose that $R /\left(\prod_{i=1}^{k} p_{i}\right) R$ is finite where $\left\{p_{1}, \cdots, p_{k}\right\}$ is a maximal set of nonassociated prime divisors of e such that for each p_{i}, $G C D\left(a_{j}, d p_{i}\right) \mid b_{j}$ for $j=1, \cdots, n$. Then $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ is the minimum modulus of $G C D\left(a_{1} x_{1}+b_{1}, \cdots, a_{n} x_{n}+b_{n}, c\right)=d$. Let $d_{j}=G C D\left(a_{j}, d\right)$ and $d_{j}^{\prime}=d_{j} / g$ for $j=1, \cdots, n$. Then

$$
\begin{equation*}
N_{t_{0}}=\prod_{j=1}^{n}\left|d_{j}^{\prime}\right| \prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-t_{i}}\right) \tag{4.8}
\end{equation*}
$$

where t_{2} denotes the number of j in $\{1, \cdots, n\}$ for which

$$
G C D\left(\frac{a_{j}}{d_{j}}, p_{i}\right)=1
$$

Proof. Suppose that $d_{j} \mid b_{j}$ for $j=1, \cdots, n$. Let $a_{j}^{\prime}=a_{j} / g$ and $b_{j}^{\prime}=b_{j} / g$ for $j=1, \cdots, n$. Let A and A^{\prime} denote the $n \times n$ diagonal matrices with entries a_{1}, \cdots, a_{n} and $a_{1}^{\prime}, \cdots, a_{n}^{\prime}$ respectively. Let B and B^{\prime} denote the $n \times 1$ matrices with entries b_{1}, \cdots, b_{n} and $b_{1}^{\prime}, \cdots, b_{n}^{\prime}$ respectively. Then the system $A^{\prime} X+B^{\prime} \equiv 0\left(\bmod d^{\prime}\right)$ is solvable since $G C D\left(a_{j}^{\prime}, d^{\prime}\right) \mid b_{j}^{\prime}$ for $j=1, \cdots, n$ and $R / d^{\prime} R$ is finite. Thus the system $A X+B \equiv 0(\bmod d)$ is solvable. Hence if $g=G C D\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}, c\right)$, then $G C D(A X+B, c)=d$ is solvable.

Assume that $G C D(A X+B, c)=d$ is solvable. It follows that $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ is the minimum modulus of $G C D(A X+B, c)=d$. Let $L=\left\{X+d^{\prime} R^{n} \mid A^{\prime} X \equiv 0\left(\bmod d^{\prime}\right)\right\}$. Let

$$
\mathscr{L}_{i}=\left\{X \in R^{n} \mid A^{\prime} X \equiv 0\left(\bmod d^{\prime} p_{i}\right)\right\}
$$

and $L_{\imath}=\left\{X+d^{\prime} R^{n} \mid X \in \mathscr{L}_{i}\right\}$ for $i=1, \cdots, k$. Then by (4.1),

$$
N_{t_{0}}=|L| \prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{\left[-\left\langle r_{i}+s_{s}\right)\right.}\right)
$$

where $r_{i}=\operatorname{rank} A^{\prime}\left(\bmod p_{i}\right)$ and s_{i} is the dimension of the $R / p_{i} R$ vector space L / L_{i}. Clearly $|L|=\prod_{j=1}^{n}\left|d_{j}^{\prime}\right|$ since $d_{j}^{\prime}=G C D\left(a_{j}^{\prime}, d^{\prime}\right)$ for $j=1, \cdots, n$. Let $L_{i}^{\prime}=\left\{X+d^{\prime} p_{i} R^{n} \mid X \in \mathscr{L}_{i}\right\}$ and $H_{i}=\{X+$ $\left.p_{i} R^{n} \mid X \in \mathscr{L}_{i}\right\}$ for $i=1, \cdots, k$. Then (1) and (2) of Lemma 3 show that $\left|L_{i}^{\prime}\right|=|L|\left|H_{i}\right|$ where $\left|H_{i}\right|=\left|p_{i}\right|^{\mid n-\left(r_{i}+s_{i}\right)}$ for $i=1, \cdots, k$. However, $G C D\left(a_{j}^{\prime}, d^{\prime} p_{i}\right)=d_{j}^{\prime} G C D\left(a_{j} / d_{j}, p_{i}\right)$ and thus

$$
\left.\left|L_{i}^{\prime}\right|=\left|L \backslash \prod_{j=1}^{n}\right| G C D\left(\frac{a_{j}}{d_{j}}, p_{i}\right) \right\rvert\,
$$

for $i=1, \cdots, k$. Hence $\left|p_{i}\right|^{n-\left(r_{i}+s_{i}\right)}=\prod_{j=1}^{n}\left|G C D\left(a_{j} / d_{j}, p_{i}\right)\right|$ and thus $\left|p_{i}\right|^{n-\left(r_{i}+s_{i}\right)}=\left|p_{i}\right|^{n-t_{i}}$, since t_{i} is the number of j in $\{1, \cdots, n\}$ for which $G C D\left(a_{j} / d_{j}, p_{i}\right)=1$. So $t_{i}=r_{i}+s_{i}$ for $i=1, \cdots, k$, which yields (4.8).

Note that if $R / c R$ is finite, then

$$
N_{c}=\prod_{j=1}^{n}\left|d_{j} e\right| \prod_{i=1}^{k}\left(1-\left|p_{i}\right|^{-t_{i}}\right) .
$$

Corollary 6. Let R be a principal ideal domain. Let A be an $m \times n$ matrix of rank r and let $\alpha_{1}, \cdots, \alpha_{r}$ be the invariant factors of A. Let B be an $m \times 1$ matrix and let ($A: B$) have rank r^{\prime} and invariant factors $\beta_{1}, \cdots, \beta_{r^{\prime}}$. Then $G C D(A X+B, c)=d$ is solvable if and only if (1) $d \mid c$, (2) $G C D\left(\alpha_{1}, d\right)=G C D\left(\beta_{1}, c\right)$, (3) $G C D\left(\alpha_{j}, d\right)=G C D\left(\beta_{j}, d\right) \quad$ for $\quad j=1, \cdots, r$ and $\beta_{r^{\prime}} \equiv \operatorname{o}(\bmod d) \quad$ if $r^{\prime}=r+1$.

Let $\left\{p_{1}, \cdots, p_{k}\right\}$ be a maximal set of nonassociated prime divisors of $e=c / d$ such that each p_{i} satisfies ($\left.3^{\prime}\right) G C D\left(\alpha_{j}, d p_{i}\right)=G C D\left(\beta_{j}, d p_{i}\right)$ for $j=1, \cdots, r$ and $\beta_{r^{\prime}} \equiv \mathrm{o}\left(\bmod d p_{i}\right)$ if $r^{\prime}=r+1$. Let $d_{j}=G C D\left(\alpha_{j}, d\right)$ for $j=1, \cdots, r$ and $d^{\prime}=d / d_{1}$. Then $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ is the minimum modulus of $G C D(A X+B, c)=d$. Suppose that $R / t_{0} R$ is finite. Then

$$
\begin{equation*}
N_{t_{0}}=\left|d^{\prime}\right|^{n-r} \prod_{j=1}^{r}\left|d_{j}^{\prime}\right| \prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-t_{i}}\right) \tag{4.9}
\end{equation*}
$$

where $d_{j}^{\prime}=d_{j} / d_{1}$ and t_{\imath} denotes the largest j in $\{1, \cdots, r\}$ for which $G C D\left(\alpha_{j} / d_{j}, p_{i}\right)=1$.

Proof. Since R is a principal ideal domain, it is well-known that there exist invertible matrices P and Q such that $P A Q=A_{0}$ where A_{0} is an $m \times n$ matrix in "diagonal form", with nonzero entries $\alpha_{1}, \cdots, \alpha_{r}$ and $\alpha_{j} \mid \alpha_{j^{\prime}}$ if $j<j^{\prime}$. The elements $\alpha_{1}, \cdots, \alpha_{r}$ are called the invariant factors of A and $\alpha_{j}=D_{j} / D_{j-1}$ where D_{j} denotes the $G C D$ of the determinants of all the $j \times j$ submatrices of A. Clearly $G C D(A, d)=G C D\left(\alpha_{1}, \cdots, \alpha_{r}, d\right)$, that is $G C D(A, d)=G C D\left(\alpha_{1}, d\right)$ since $\alpha_{1} \mid \alpha_{j}$ for $j=1, \cdots, r$. Similarly $G C D(A, B, c)=G C D\left(\beta_{1}, c\right)$. However, it is also well-known that the system $A X+B \equiv 0(\bmod d)$ is solvable if and only if condition (3) holds (see [4]). Thus GCD(AX+ $B, c)=d$ is solvable if and only if (1), (2), and (3) hold.

Let $G C D(A X+B, c)=d$ be solvable and let $c=d e$. Then $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ is the minimum modulus of $G C D(A X+B, c)=d$. Suppose that $R / t_{0} R$ is finite. Let S denote the set of X in R^{n} such
that $G C D(A X+B, c)=d$. Let $P B=B_{0}$ and let S^{\prime} denote the set of Y in R^{n} such that $G C D\left(A_{0} Y+B_{0}, c\right)=d$. Then clearly $X \in S$ if and only if $Y=Q^{-1} X \in S^{\prime}$. Thus $G C D(A X+B, c)=d$ and $G C D\left(A_{0} Y+\right.$ $\left.B_{0}, c\right)=d$ have the same ideal of solution moduli. Let $T_{0}=\{X+$ $\left.t_{0} R^{n} \mid X \in S\right\}$ and $T_{0}^{\prime}=\left\{Y+t_{0} R^{n} \mid Y \in S^{\prime}\right\}$. Then the mapping $f: T_{0} \rightarrow T_{0}^{\prime}$ is a bijection, where $f\left(X+t_{0} R^{n}\right)=Q^{-1} X+t_{0} R^{n}$ for all X in S. Hence $\left|T_{0}\right|=\left|T_{0}^{\prime}\right|$, that is $N_{t_{0}}=\left|T_{0}^{\prime}\right|$. Let B_{0} have entries $b_{1}^{0}, \cdots, b_{m}^{0}$ and let $c_{0}=G C D\left(b_{r+1}^{0}, \cdots, b_{m}^{0}, c\right)$. Then S^{\prime} is the set of solutions of the linear $G C D$ equation

$$
\begin{align*}
& G C D\left(\alpha_{1} y_{1}+b_{1}^{0}, \cdots, \alpha_{r} y_{r}+b_{r}^{0}, o \cdot y_{r+1}+o,\right. \tag{4.10}\\
& \left.\cdots, o \cdot y_{n}+o, c_{0}\right)=d .
\end{align*}
$$

Thus $t_{0}=d^{\prime} \prod_{i=1}^{k} p_{i}$ is also the minimum modulus of (4.10) and hence by (4.8) of Corollary 5,

$$
N_{t_{0}}=\left|d^{\prime}\right|^{n-r} \prod_{j=1}^{r}\left|d_{j}^{\prime}\right| \prod_{i=1}^{k}\left(\left|p_{i}\right|^{n}-\left|p_{i}\right|^{n-t_{i}}\right)
$$

where $d_{j}^{\prime}=d_{j} / d_{1}$ and t_{i} is the largest j in $\{1, \cdots, r\}$ for which $G C D\left(\alpha_{j} / d_{j}, p_{i}\right)=1$ since $\alpha_{j} / d_{j} \mid \alpha_{j^{\prime}} / d_{j^{\prime}}$ if $j<j^{\prime}$.

If $R / c R$ is finite, then

$$
N_{c}=|c|^{n-r} \prod_{j=1}^{r}\left|d_{j} e\right| \prod_{i=1}^{k}\left(1-\left|p_{i}\right|^{-t_{i}}\right)
$$

Finally we remark that the formula for $N_{t_{0}}$ in (4.1) applies to the class \mathscr{D} of $G C D$ domains R which contain at least one element p such that $R / p R$ is a finite field. Some immediate examples are the integers \boldsymbol{Z}, the localizations $\boldsymbol{Z}_{(p)}$ at primes p in \boldsymbol{Z} and $F[X]$ where F is a finite field.

However, an example of such a ring R in \mathscr{O} which is not a $P I D$ is the subring R of $\boldsymbol{Q}[X]$ consisting of all polynomials whose constant term is in \boldsymbol{Z}. Indeed R is a Bezout domain which cannot be expressed as an ascending union of PID's [1]. Clearly if p is a prime in Z, then $R / p R$ is isomorphic to the finite field $\boldsymbol{Z} / p \boldsymbol{Z}$.

We are also indebted to Professor W. Heinzer for the following construction of a ring R in \mathscr{D} which is a $U F D$ but not a PID. Let F be a finite field. Let Y be an element of the formal power series ring $F[[X]]$ such that X and Y are algebraically independent over F. Let V denote the rank one discrete valuation ring $F[[X]] \cap F(X, Y)$ and let $R=F[X, Y][1 / X] \cap V$. Then $R / X R$ is isomorphic to F and R is a $U F D$.

References

1. P. M. Cohn, Bezout rings and their subrings, Proc. Camb. Phil. Soc., 64 (1968), 251-264.
2. D. Jacobson and K. S. Williams, On the solution of linear GCD equations, Pacific J. Math., 39 (1971), 187-206.
3. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc., 66 (1949), 464-491.
4. H. J. S. Smith, On systems of linear indeterminate equations and congruences, Phil. Trans. London, 151 (1861), 293-326. (Collected Mathematical Papers Vol. 1, Chelsea, N.Y.), (1965), 367-409.
5. R. Spira, Elementary problem no. E1730, Amer. Math. Monthly, 72 (1965), 907.

Received February 22, 1974 and in revised form September 3, 1974. This research was supported in part by NRC Grant-A8749.

University of new Brunswick

