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PUISEUX SERIES FOR RESONANCES AT AN
EMBEDDED EIGENVALUE

JAMES S. HOWLAND

Let H{κ) = T + κB*A be a self-adjoint perturbation of
the self-adjoint operator T, and suppose that T has an eigen-
value Λo of finite multiplicity m embedded in its continuous
spectrum. If the operator

Q(z) = A(T - zy'B*

is bounded and can be continued meromorphically across the
axis at λQ, the asymptotic spectral concentration of the family
H{κ) at λ0 is determined by the poles of

(1) κA(H(κ) - zT'B* = ! - [ ! + KQiz)]-1 .

These "resonances" can be expanded in a series of fractional
powers of tc, and therefore have a unitarily invariant signi-
ficance for the family H(κ). An example shows that nonanalyt-
ic series may indeed occur; however, if a resonance is an
actual eigenvalue of H{κ) for all sufficiently small real K, its
series is analytic. Because the resonances cannot lie on the
first sheet when K is real, these series must have a special
form. In the generic case, they yield, as the lowest order
approximation to the imaginary parts of the resonances, the
famous Fermi's Golden Rule. The case when 2Q is embedded
at a branch point of (1) is studied by means of a simple ex-
ample.

To outline briefly, Puiseux expansions are obtained in §1, and
their special form is noted (c.f. [15, Theorem 4.2]). In §2, a study
of these series for perturbations which remove the degeneracy at λ0

leads to Fermi's Golden Rule. The discussion of spectral concentra-
tion in §3 relies heavily on the arguments of [3], particularly on a
grouping of the resonances into "clusters" which act asymptoticly as
a single simple pole. The examples appear in §4. The appendix
contains a technical result which simplifies not only Theorem 3.1 but
also [3, Theorem 2.1] (c.f. [3, p. 156; Note (1)]). The results proved
here were announced in [4].

Simon [14> 15] has recently discussed a similar problem for N-
body Hamiltonians with dilatation analytic interactions. It is of
particular interest that the Balslev-Combes technique which he em-
ploys reduces the problem to that of an isolated eigenvalue of a
non-self-ad joint operator. This gives an interesting insight into the
occurrence of Puiseux series, and suggests that, in the general case,
resonance series can be viewed as perturbation series for an isolated
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eigenvalue of a suitable non-self-adjoint operator. Simon considers
eigenvalues of arbitrary finite multiplicity, and not, as erroneously
remarked in [4], only simple multiplicity.

Eigenvalues embedded at "thresholds" are not considered by
Simon. Mathematically, a threshold may be variously described as
(i) a branch point of an appropriate function, (ii) a point where the
absolutely continuous part of T changes multiplicity, or (sometimes)
(iii) an end point of the spectrum of T. The unperturbed eigenvalue
in the second example of §4 is a threshold in all three senses. A
slightly revised Golden Rule is shown to apply to this case.

Let us conclude this introduction with an observation about the
invariant significance of "resonances". It is tempting, at first glance,
to call a point Λ a resonance of the self-adjoint operator H if the
continuation of some matrix element {{H — ζ)"1/, /) across the spec-
trum of H has a pole at Λ. However, this definition is worthless;
for if H is the multiplication

Hf(x) = Xf(x) - oo < x < oo

(which is essentially the general case in which continuation is possible),
then given any point Λ in the lower half-plane, there is a rational
function f(x) for which the continuation of

{{H - ζ)-1/, /) = j (a - ζ Π f(x) \>dx

has a pole at Λ. The "resonances" considered by various authors
are always something more than this—poles of an S-matrix [11], of
an integral operator [13], or (as here) of an operator-valued function.
Accordingly, the definition of "resonance" is referred to some struc-
ture in addition to the operator H—such as outgoing subspaces, the
representation of H as a differential operator, or a decomposition
H= T+ AB*.

While something of this sort is necessary in general, in the case
of an analytic perturbation H(tc) of an embedded eigenvalue, a uni-
tarily invariant significance can be attached to a Puiseux series Λ(/c)
of "resonances" in the weak sense which we have scorned above.
There is of course additional structure here, too: the analyticity of
the families H(fc) and Λ(/c).

To be precise, suppose that H(ιc) is an analytic family [6, Chapter
VII] of closed operators, self-adjoint for real tc, with essential spec-
trum independent of /c. Let λ0 be an eigenvalue of H(0) and assume
that for some vector /

κ) - cr/, f)
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has a continuation F(ζ, tc) to a meromorphic function of (ζ, tc) for
I tc I < δ and | ζ - λ01 < δ. Assume further that

Λ{tc) = X0 + βiίnlP + β^.O

is a pole of F(ζ, tc) for each tc. Since for small tc9 the term βtcnlp

dominates those which follow it, Λ{tc) will be in the upper half-plane
for tc in certain sectors of the complex plane, and will therefore be
an eigenvalue of H(/c), because of the assumed in variance of the
essential spectrum. Thus the same analytic family Λ(/c) represents a
"resonance" for some values of the perturbation parameter, and an
actual eigenvalue of H(tc) for others. Put differently, the resonances
are continuations in tc of eigenvalues of H(/c), and have, therefore, a
unitarily invariant significance for the family H(/c).

1* Puiseux series* The following assumptions will be made
throughout this article. For proofs of the various assertions, see [2,
7, and 10].

Let £έf and 3ίff be separable Hubert spaces. Let T be a self-
adjoint operator on έ%f with resolvent G(z) = (T — z)~ι> and let A
and B be closed, densely defined operators from J%f to Sίf' such
that &r(T) c &r(A) Π 3f{β) and

(1.1) (Ax, By) = (Bx, Ay) for every x, y e 2f(A) n

Suppose that for every zep(T), the operator AG(z)B*, which is
defined on <&(B*)f has a bounded extension Q(z) to 3ίff, and that
/ + Q(z) is invertible for some zep(T). Then, for sufficiently small
real /c, there is a self-adjoint extension H(/c) of T + Λ:JB*A the resolv-
ent of which is

(1.2) R(z, K) = G(2) - fc[BG(z)]* [I + /cQ^J

whenever z e |θ(Γ) and 7 + ιcQ(z) has a bounded inverse. In particular,

H(0) = T and B(z, 0) = G(z). We shall write B(A;) - (XdEκ(X). If

) denotes the smallest reducing subspace of T which contains
)f then ^€ = ^€(A*) Π ̂ ( .B*) reduces both if(/r) and Γ and

£Γ(Λ:) = Γ o n ^ T 1 . Only the parts of H(/c) and T in ̂ € are of in-
terest in perturbation theory.

Let Ω be a neighborhood of a point λ0 of the real axis, and Ω± =
{zeβ: ±Im£ > 0}. Assume that Q(z) has a continuation Q±{z) from
£?* to i2, which is analytic on Ω except for a simple pole at λ0 with
residue of finite rank m. The part of T in ^ is then absolutely
continuous in Ω Π R, except for an eigenvalue λ0 of finite multiplicity
equal to m. Since Q+(z) and Q~(z) do not in general agree on Ω,
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the eigenvalue λ0 is in general embedded in the absolutely continuous
spectrum of T.

If we now write

Q*(2) = Qi(z) + (λ0 - z)-'F

where F has finite rank and Qΐ(z) is analytic at λ0, then I + κQΐ(z)
can be inverted by a Neumann series for | z — λ01 < δt and \κ\ < δz

if δ± and δ2 are sufficiently small. Hence, AR(z, tc)B* also has a
bounded extension Q^z, £) for Im z Φ 0, which has completely mero-
morphic (meromorphic with finite rank principal parts at all poles
[2]) continuations Qϊ(z, fc) from Ω± to | z — λ01 < δλ satisfying

The poles of Qf(zf tc) need not be real, but for real tc do not lie in
Ω±m, they are the resonances of this perturbation problem.

THEOREM 1.1. There is an analytic function Δ(zy K) on a polydisc
{(z, /c): I z — λ01 < δlf I K \ < δ2} such that

(a) For \ιc\<δ2, Δ{z, tc) has exactly m zeros z^fc), , zm(/c)
(repeated according to multiplicity) in \ z — λ01 < δίf which are pre-
cisely the poles of Qt{z, fc) in | z — λ01 < δ1Λ For tc = 0, zά{0) = λ0

(j = 1, . . . , m).
(b) J/ for some real ic, Zj(ιc) is real, then Zj(fc) is an eigenvalue

of H(fc) of multiplicity equal to the multiplicity m^fc) of Zj(κ) as a
zero of A(z, K).

This result was proved in [2, §5], except for analyticity of
A(z, K) which is clear from the construction of A(z, tc) (see equation
(2.2) below). However, we have omitted the hypothesis of [2] that
Q(z) is compact. This can be done; for in [2] compactness was used
only for two things: (a) to prove that / + fcQ±(z) has a completely
meromorphic inverse, and (b) to prove, by references to [10], that
H(κ) is self-adjoint for real K. However, we have argued above that
(a) holds here, while (b) holds for K sufficiently small [10, p. 59].

Note that [2] F = APQ[BP0\*.
We shall now show that the resonances can be grouped into

cycles, so that each of the p elements of a cycle is one of the values
of a series expansion in powers of tcllp. Such series are known as
Puiseux series [9, p. 130]. For their application to perturbation
theory, see [6; Chapters II and VII].

T H E O R E M 1.2. The resonances z^tc), •••, zm{tc) may be labeled so
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that each Zj(tc) has a Puίseux series expansion in tc. If

(1.4) zfa) = λ0 + a&ic1** + a#?W* + . . . (j = 1, . . ., p)

is a given Puiseux cycle of resonances, where a) is a primitive pih
root of unity, then either the series has the form

(1.5) z3{tc) = λ 0 + aptc + + a2nPtc
2n + a2nP+ίω

3°tc2n+llp + - •

where λ0, aP, , ot{2n_1)p are real and lma2nP < 0, or p = 1
£/&e coefficients <xn are real.

Moreover, the multiplicity m^tc) is independent of tc for tc Φ 0
and sufficiently small, and is the same for each element Zj(fc) of a
given Puiseux cycle.

In particular, if z^tc) belongs to a Puiseux cycle with p ^ 2,
then Zj(fc) is not real for all sufficiently small real tc Φ 0. Thus any
actual embedded eigenvalues of H(/c) are analytic.

COROLLARY 1.3. For real tc Φ 0 sufficiently small, the multi-
plicity of point eigenvalues in the interval (λ0 — δu λ0 + δι) is in-
dependent of K. If for some j , Zj(tc) is real for all sufficiently small
tc, then Zj(fc) is analytic in K.

Proof of Theorem 1.2. Since Δ{z, 0) = (λ0 — z)m, the Weierstrass
Preparation Theorem [1, p. 188] yields that

Δ(z, K) = [{z - X0)
m + gm^(fc)(z - λ o ) - 1 + - + go(κ:)]F(z, tc)

where gQ, , gm^ and F are analytic, ^(λo, 0) Φ 0 and go(O) - =
^m_i(0) = 0. Thus z1(tc)J •••, ̂ m(/c) are the zeros of a polynomial in z
with coefficients analytic in tc, namely A(z, ιc)/F(z, tc). Hence, (c.f. [6,
pp. 63-66]) ^(/u), * ,zm(ιc) are algebroidal functions having at most
an algebraic singularity at tc = 0, and must therefore have Puiseux
series expansions. The statement about multiplicities is part of this
theory.

Since H(tc) is self-adjoint for real tc, R(z, tc), and hence Qt(z, tc),
is analytic for Imz > 0, so that in the cycle (1.4), one has Imz5{tc) ^
0 for real tc, and each j = 1, •••, p. Therefore, the first term of
(1.4) with a nonreal coefficient must have negative imaginary part
for all real tc and j ~ 1, •••,#. But this can only happen for an
even integer power tc2n where, moreover, Im a2nP < 0. If all coefficients
an(O3% are real, then because of the factor ωjn, we can only have
p = 1 or 2. However, if p = 2 and a%ωjntcnl2 is the first nonzero term
with n odd, then changing tc into — tc introduces a factor i, so that
by proper choice of j , the imaginary part of this term can be made
positive. Since this cannot occur, we must have p = 1.
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REMARK. With perhaps a mild additional hypothesis, stationary
scattering theory [8] shows that, for real K, the absolutely continuous
parts of H(fc) and T in (λ0 - δ2, λ0 + δ2) are unitarily equivalent.

2* Fermi's golden rule. In the simple case in which the per-
turbation B*A removes the degeneracy at λ0, calculation of the reso-
nances up to terms of order tc2 leads to the venerable Golden Rule
for the line widths Γj(fc). In order to discuss this, we must recall
the construction of A(z, K) [2, §5].

It was proved in [2, p. 329; Theorem 3.1] that the residue of
Q+(z) at λ0 is — AP0[J?P0]*, where Po is the orthogonal projection
onto k e r ( Γ — λ0). Hence the operator

(2.1) Qt{z) = Q+(z) - (λ0 - z)-ιAP0[BP0]* ,

which corresponds to the continuous part of T near λ0, is analytic
on Ω. According to [2, p. 335; Theorem 5.1]

J(z, K) = (λ0 - z)m det [I+[I+ κQ:(z)]-1κ(X0 - z)'ιAP0[BP0]*] .

Using the formula det (I + ST) = det (I + TS) [6, p. 162; Problem
4.17] gives

(2.2) A(z9 K) = (λ0 - zY det {/ + [BP0]*[I + ιcQU*Tικ(\ - *

Now, A and B are one-one on ^ ( P o ) and <^?([£P0]*) = ^(Po) [2,
p. 331]. We may therefore write (2.2) as a determinant on ^ ( P o ) ,
and then the factor (λ0 — z)m may be taken inside the m x m deter-
minant to yield

(2.3) J{Z>K)

= det {(λ0 - z)Im + tc[BP0YAPQ - κ2[BP0]*Q:(z)AP0

uniformly in z, where Im is the identity on ^ ( P o ) and [I + tcQtiz)]'1

has been expanded in a Neumann series.
The operator Vo = [BPQ]*AP0 m a p s ^ ( P 0 ) into itself, and is es-

sentially the compression of the perturbation B*A to ^ ( P o ) . Using
(1.1), we find that for x.y

(Vox, y) = ([BP0]*APQx, y) = (APox, BPoy) = (BPQx, APoy)

= ([APo]*BPox,y) = (Vo*x,y)

which means that Vo is self-adjoint on ^?(P 0 ). Therefore, with re-
spect to a suitable orthonormal basis φu •••, φm of ^ ( P o ) , VQ has a
diagonal matrix
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\

The perturbation B*A is said to remove the degeneracy at λ0

iff the eigenvalues Xlf •••, λm to Fo are all distinct. If X(z) denotes
the matrix with entries

* « / ( * ) = -(Qt(z)Aφi9 Bφd)

t h e n w r i t i n g (2.3) w i t h r e s p e c t t o t h e b a s i s φl9 •••, ώm y i e l d s finally

(2.4) A(z, ic) = det {(λ0 - z)Im + icD + fc2X(z) + O(/c3)}

uniformly in z on a neighborhood of λ0.

THEOREM 2.1. // J3*.A removes the degeneracy at λ0,
is analytic (j = 1, , m)

<2.5) £,(£) = λ0 + Λ λ,- + ίc2X3Ί(XQ) 4- O(/c3) .

Taking the imaginary part of (2.5) for real /c, we obtain formally

Γs(κ) - -Im^(/c) - -tc2lm(Qt(X0)Aφjf Bφ3) + O(/r3)

- -ιc2Im(Rc(X0 +

- (2ΐ)-1/c2([,Bc(λ0 - ίO) - RC(XO

.and hence finally

{2.6) Γά{ιc) = πfc\δc(T - X0)Vφh Vφj) + O(^)

where V = B*A = A*£, J2β(2) - JS(J2;) - (λ0 - zY'P,, and

δc(Γ - λ) - (2πi)-1[Rc(X - iO) - RC(X + iθ)] .

Formula (2.6) is Fermi's Golden Rule.

Proof of Theorem 2.1. We already know that zό(κ) — λ0 + O(/c),
and hence X{zά{tz)) = X(λ0) + O(Λ:). If we define

ζy(Λ:) - Λ : - 1 ^ , . ^ ) - λ0) .

Then the equation for ζό(κ) is, by (2.4),

(2.7) det {-~fcζά{κ)Im + κD + tc*X(X0) + O(/ί3)} - 0 .

Expanding and dividing by κm gives

<2.8) (λ, - ζ,.(κ)) . . (λm - ζ,.(κ)) + O(/c) = 0 .
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Since the polynomial (λx — ζ) (λTO — ζ) obtained for tc = 0 has dis-
tinct simple zeros, equation (2.8) has m analytic solutions, one asymp-
totic to each root as tc —•> 0. Thus we may take

£•(*) = λ, + βόtc + O(/c2) (j == 1,

Setting i = 1 and substituting into (2.7), we find that

det {/cJ + tc2X(X0) + O(/c3)} = 0

, m) .

where

(λ2 - \) -

- λi)

Expanding (2.7) gives

so that, in fact,

(λ m - λ = 0

, = Xn(\) .

3* Spectral concentration^ The following theorem extends the
main result of [3] to embedded eigenvalues.

THEOREM 3.1. Assume that there exists a subspace & of &
such that B& c &(A*), A& c ^(.B*), and which is dense

in &(A) and Sf(B) in the respective graph norms. For j = 1, , m
and tc real, choose dj(fc) such that δj(fc) = o(l) and Im Zj(κ) — o(δj(fc))
as fc —> 0. Let

S(ιc) = U {ί: Re zj(κ) - δd(κ) < t < Re zό{ιc) + δs(ιc)} .
5 = 1

If H(fc) = [ XdEκ(X), then

Po = st - lim \ dEκ(X) .
κ-*0 JS(K)

As shown in the appendix, the additional hypothesis insures
that, for real Λ:, the poles of Qϊ{z, tc) are the complex conjugates of
those of Qτ{z, tc). Thus we did not need to take into account the
poles of Qτ(z, &) when defining S(tc), as was done for the corre-
sponding set Jn in [3, Theorem 2.1]. In order that 3f exists, it is
sufficient that either A or B be bounded, or that A and B be com-
muting self-ad joint operators.
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Theorem 3.1 has a proof very similar to that of [3, Theorem 2.1],
but cannot be deduced directly from that result because the operator
Q?(z, fc), which corresponds to Qt{zy n) of [3], tends to zero as Λ:—>0,
and cannot, therefore, satisfy Hypothesis III (b) of [3]. To avoid
repeating the lengthy arguments of [3], we shall simply carry the
argument along to a point at which the arguments become essentially
identical. A considerable study of [3] is therefore necessary to un-
derstanding the remainder of this section.

In order to surmount the difficulties posed by nonsimple poles,
or poles close together, we shall show that for real tc, the resonances
ZM, " '9 zm(κ) may be grouped into what we shall call clusters in
such a way that, as /c —> 0, the resonances of a single cluster act
together as a single, simple pole of Qt(z, fc), at least insofar as their
asymptotic effect on the spectral measure of H(fc) is concerned.

The result of our considerations is a rather detailed description
of the singular part of Qt{z, fc).

In the first two lemmas, fc may be complex.

LEMMA 3.2. Let Zj(κ){j = 1, -••, N) be the distinct poles of
Qΐ(z, Λ:). Then Qΐ(z, fc) has the partial fraction expansion

(3.1) Qt{z, K Σ T ^ T Γ + + . L . + L(z, K) ,
i=i (Z - Zj(/c)) (Z - Zd(K))m>

where L(z, fc) is analytic in z and /c. If z3(/c) has a Puiseux series
expansion in powers of κ1Jp, then B{

k

j)(tc)(k = 1, •••, mό) also has an
expansion in powers of /cllP, and has at most an algebraic pole at
K = 0.

The proof is a simple adaptation of the argument on pp. 69-70
of [6]. Certain additional facts obtained there do not hold here,
since Qt(z, fc) is not a resolvent. Analyticity of L(z, tc) is proved in
the proof of the next lemma.

It follows immediately that for small K Φ 0, B{

κ

j)(fc) either vanishes
identically or is never zero. Hence, for small /c Φ 0, the order mά

of the jth pole z3(fc) of Qΐ(z, ic) is independent of tz.
If the terms of the singular part of Qt(z, fc) in (3.1) are combined,

we obtain

^ 4 L<<z> *)Δ(z, tc)

where P{zy tc) is a polynomial in z with coefficients having at most
an algebraic singularity at K = 0, and A(z, fc) is the analytic function
of z and fc defined in § 1.
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LEMMA 3.3. (a) As tc — 0, Qt(z9 tc) -— Q+(z) uniformly on 0 <
ε ^ I z - λ01 ̂  δ2 /or ever?/ ε > 0.

(b) P(z, tc), Λ(z, tc), and L(z, tc) are all analytic in z and tc.
Moreover,

(3.2) lim P(z, tc) = (z- Xj^APάBPo]* .
κ-*Q

Proof. From (1.3) and (2.1) one obtains

(3.3) I - tcQt(z, tc) = [I + ιc(\ - zyxΓ(z9 κ)AP0[BPQY\-ιΓ{z, it)

where

is analytic in z and K, for tc and z — λ0 small. Expanding the right
side, canceling / on both sides and dividing by tc yields the result.
Analyticity of L(z, tc) and the coefficients of P{z, tc), as well as (3.2)
follow from the formulas between equations (2.7) and (2.8) of [3],
where the discrete parameter n must be replaced by tc.

Assume now that tc is real, and write

z,.(ιc) = Xj(tc) - iΓj(tc) (j = 1, . , N)

where Xj(tc) is real and Γ3(tc) ^ 0. We shall now describe the group-
ing of the z3'(tc)9s into clusters. To begin with, we specify that if
Γj(tc) = 0, then z3(tc) is to form a cluster by itself. Otherwise, Γj(tc) >
0 for small tc Φ 0, and we shall assume now for convenience that

Γj(tc)>0 (i = l, . . - , # ) .

Then Γj{ιc) has a Puiseux series, so that

(3.4) Γj(tc) = aόtc^ +

where α5- > 0 and p(j) is an integer (i = 1, , m). (If tc is complex
in (3.4), Γj{tc) is defined, but no longer the imaginary part of —Zj(tc).)
For tc Φ 0, choose ^-(Λ;) > 0 such that

δs(ιc) = oiic'M-1) (i = l, . . . , m )

while

as tc—> 0, and consider the intervals

J3(tc) = (λ,(/r) - Sy(jc), λy(is:) + δy(Λ)) .

If tc is small, the number of component intervals of
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(3.5) Jλ(κ) U U JJL*)

is independent of tc, and each component is the union of the intervals
Jό{tc) corresponding to a certain set of resonances. For the distance
between Xj(tc) and Xk(κ) is of the order of some integral power of /c,
and is therefore either much greater or much less than the length
of Jj(tc). These sets are the clusters; they are independent of fc. We
shall denote the components of (3.5) by

(cό(fc) - p5{tc\ c3(fc) + pj(fc)) (j - 1, , N)

where N is the number of clusters. We shall refer to Cj(/c) and p3(fc)
as the center and radius of the i th cluster.

It is easily seen that if {zι{fc)f , zVl(fc)} is the first cluster, then

(3.6) Xfa) - Cι(κ) - o(^(O) (j = 1, , p1) .

For if Xj(fc) and λ/c(Λ;) belong to the first cluster, the distance between
them is much less than either Sj(fc) or δk(tc)y neither of which can
exceed pχ(fc). Similarly

(3.7) pt(κ) = o(| Cl(ιc) - c2(tc) I) (ί = 1, 2)

because cx{tc) -~ c2(tc), being determined by the X^tcYs, is of integral
power order, while pj(tc), being determined by the δ3(fcγs is not.

Similar statements hold for other clusters. The interpretation
of (3.6) is that the resonances of a cluster are asymptotically very
close to the center of the corresponding interval (cn — pn, cn + pn),
while (3.7) says that distinct components of (3.5) are asymptotically
very small compared to their distance apart.

LEMMA 3.4. For Im z > 0, and \ z — λ01 <; δ2

\\P(z,tc)\\^C\Δ(zffc)\(lmzΓ

where C is independent of tc.

Proof. For each /c, the coefficients of P(z, tc) are of finite rank,
since they are residues of functions with singular parts of finite rank,
and are also analytic in /c. The lemma therefore follows by a proof
similar to that of equation (2.8) of [3].

The procedures of [3] could now be applied to yield an asymptotic
expansion for the singular part P(z, fc)/Δ(z, fc) of Qtiz, tc). However,
we shall be content to remark that for any sequence tcn —• 0, the
quantities P(z, tcn), Δ(z, tcn), etc. have precisely the properties of Pn(z),
Δn(z) etc. which are used in the proof of [3, Theorem 2.1] from
equation (2.10) of [3] onward. The remainder of the proof of Theorem
3.1 follows [3] with essentially no change.



168 JAMES S. HOWLAND

4* Examples* We shall now consider some simple examples
which illustrate certain phenomena.

EXAMPLE 1. We shall first give an example in which a nonana-
lytic Puiseux series occurs. Let έ%f = L2(—oof + c o ) 0 ^ 2 , and let
elf e2 be the usual orthonormal basis of &2. Define

ττ(u(t)\ It 0\ίu(t)\ ltu{t)\

where u e L2(— oo, + oo), ζ e 02 and c is a fixed real number. Ho = T
has absolutely continuous spectrum of simple multiplicity, except for
an embedded eigenvalue c of multiplicity m = 2. Let fι(t), fz{t) be
an orthonormal pair of functions in L2(—oof +oo), and define an
operator Y from €2 into L2(—oof +co) by

f2/a(ί) .

The operator F* from L2(—oof +oo) back into j£2 is then

Y*u =

We shall consider the perturbed operator

H(/c) =

where

° Y

Y* XJ

and X1 > 0. The perturbation V is self-adjoint of rank 4, and its
range has the orthonormal basis {flf f2, elf e2}. If we choose the fac-
torization

V= VP= PV

where P is the orthogonal projection onto the range of V, then the
matrix of

Q(z) - V(H0 - zY'P

with respect to the orthonormal basis flf f2, elf e2 of the range of V is

/ 0

\F{z)

where
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and /2 is the 2 x 2 identity matrix.
If we now assume that F(z) has a meromorphic continuation from

the upper half-plane across the axis in a neighborhood of c, then
the equation

(c - z)2 det (I + /cQ(z)) = 0

for the resonances reduces to

tc*D(z) - £2TO)(c + κ\ - z) + (c + /cλx - s)2 = 0

where T(V) and D(z) are the trace and determinant of F(z). Solving
for (c + tc\ — z) - 1 by the quadratic formula yields

z — c + λiΛ: + κ2g(z)

where

For simplicity, let us now take c = 0. Then, if the function

H{z) - T\z) ~ W{z)

has a simple zero at 3 = 0, the function g(z) has a Puiseux series
expansion

g{z) = aQ + α^172 + α22; +

where αL Φ 0. It then follows easily from

z •= \λtί + tc2(a0 + α^ 1 / 2 + a2z + •)

that

z = \/c + aQ/c2 + a^Xl12^12 + O(Λ:3)

which means that z(fc) has a nonanalytic Puiseux series in /c. We
shall therefore have obtained the desired example, if we can find

and f2(t) such that H(z) has a simple zero at 2 = 0.
To this end, let

and

Λ(ί) = (2 - 2ε)-1/2 sgn ί 0 < ε < | ί | < 1

= 0 otherwise .
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Then ft and f2 are an orthonormal pair, and since they are real,

F12(z) = F21(z) .

The values of Fn(0) and i'Yi(O) may be computed from

Fn(z) = -(z + 2i)(z + i)~2 Im z > 0

while due to the fact that f2(t) vanishes near the origin, the integrals
for F12(0) and ^(O), as well as those obtained for F[2(0) and F'22{ϋ)
by differentiation under the integral sign are absolutely convergent.
In fact, one has

F22(0) = (2 - 2s)-1 -ϋί = 0
Jβ<|ί |<l t

and

wv A — 1

Similarly,

+ 1 t

and

FUO) - 0 .

Hence, one computes that

H(0) = (Fn(0) - FJ0)Y + 4f?,(0)

ί2 + l t

and

JΪ'(0) = 2tFu(0) - ^ .^(^ ' . (O) - FUO)) + 8

= -4i(3 + ε-1) Φ 0 .

It therefore remains to choose ε such that H(0) = 0; that is, such
that

But since Φ(e) is decreasing on 0 < ε < 1, Φ(0 + ) = +00, and Φ(l —) =
0, there is a unique ε in the interval 0 < ε < 1 satisfying this equation.

Finally, note that the Puiseux series appears here as a degenerate
case, since in the usual case when H(z) does not vanish at the origin,
g(z) and hence z(/c), have two distinct analytic branches.
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EXAMPLE 2. An example will now be given of an eigenvalue of
multiplicity one embedded at an end point of the continuous spectrum,
and perturbed by an operator of rank two, which gives rise to a
resonance or an eigenvalue which cannot be represented as a Puiseux
series. The endpoint appears as a branch point of Q+{z). Branch
points of continued quantities occur in Simon's articles [14, 15] as
"thresholds" for certain processes (that is, the minimum energies at
which the processes can occur). His theory excludes eigenvalues
embedded at thresholds—with good reason, as this example shows.
Most of the thresholds in [14, 15] are embedded in a continuous
spectrum, rather than at an end point. An example of this along
the present lines would be easily constructed. The example is similar
to Example 8.3 of [5, p. 581]. The operator HQ = T on L2(0, co)0
0 defined by

H0[u(t), ξ] = [tn(t), 0]

has absolutely continuous spectrum [0, <>o) and an eigenvalue at λ0 = 0
with eigenvector

Φo = [0, 1] .

Let H(ιc) = Ho + KV where

V[u(jk), ξ] = [ξf(t)> (u, f) + \ξ] -

We assume that λx > 0 and

Γ|/(ί)|«<Zί = l .
Jo

The perturbation V has rank 2, so the resonances are to be sought
as poles of an analytic continuation of the inverse of the matrix
W(z, tc) of the restriction of I + ιcV(H0 - z)'1 to the range &(V) of
V. Computing W(z, K) with respect to the orthonormal basis φ0, f
of &(V), one obtains [5; eq. (8.9), p. 581]

where

F(z) = [Ίf(t)\\t-zΓdt.
Jo

If we assume that F(z) has a continuation F+(z) from the upper half-
plane across the positive real axis, then the resonances satisfy the
equation

(4.1) z = ιcXx - fc2F+(z) .
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(See [5, p. 581], the third equation from the bottom of the page—in
which there is an error of sign.)

Now choose

(4.2) A
π 1 + t2

so that

TΠ/ v 2% — (2/π)lo2z - z

where 0 < arg 2 < 2π. The solution of (4.1) then has the asymptotic
expansion

(4.3) z(ιc) = /cX, + (2/π)/c2 log (/cXj - 2ίfc2 + O(/cs)

which is not of Puiseux type. For tc < 0, z(/c) lies in the region 0 <
arg z < 2π, and is therefore a negative eigenvalue X(fc) of H{tc), with
the expansion

X(fc) = fcX, + (2/π)fc2 log (-tcXj + O(κ3)tc < 0 .

For /c > 0, the continuation F+(z) of F(z) leads to the solution z+(/c)
with a r g 2 + ( £ ) ^ 0 , while if F+(z) is replaced in (4.1) by the con-
tinuation F_(z) of F(z) from the lower half-plane, one obtains the
solution z_(fc) with arg z_{κ) ^ 2π. These numbers are complex con-
jugates. If ic is complex, the first situation essentially prevails, in
the sense that the non-self-adjoint operator H(/c) has an eigenvalue
at z(fc) for all sufficiently small K in any given sector | arg K — π \ ^
π - δ, δ > 0.

If instead of (4.2), one chooses

(4.4) | / ( t ) | 2 = —cos(ττα/2). ^
π N ' Ί + ίa

where — 1 < a < 1, then one obtains, for a Φ 0,

rpM _ cot (ττa:/2) - esc (πa/2)zae-iπa - g
{ ) ~ 1 + z2

where 0 < arg z < 2π. The solution of (4.2) then has the expansion

(4.5) z(fc) = fcX, - /c2 cot (ττα:/2) + ιc2+ae~iπaXΐ esc (ττα/2) + O(fc$) .

This has the same general behavior: for /c > 0, there is an eigenvalue
X(fc) with expansion

λ(ic) = ιc\ - Λ:2 cot (πa/2) + (-Λ:)2+αλf esc (πrα/2) + O(/c3)

while for K > 0, there is a resonance. A notable feature, however,
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is that one may obtain a Puiseux series by taking, for example, a —
±1/2, in which case W(z, /c) has only an algebraic singularity at z =
0. In fact there are only two sheets, and it is interesting to note
that for ft < 0, these is a pole on the second sheet directly below the
eigenvalue λ(/r).

Let us see what becomes of Fermi's Golden Rule in this case.
One has

(§C(HQ - X)VφQ, VφQ) = \f(X)\*.

(See [5, eq. (8.7)]. Note that, in the notation of [5], the Vγ term
contributes nothing.) Hence, Fermi's Rule gives

Γ(κ) ~ πtc2\ /(λ 0) |2 .

Applied to the case λ0 = 0 with f(t) given by (4.4), this gives the
following results: (a) for a = 0

Γ(κ) s 2/c2

which agrees with (4.3); (b) for a > 0

Γ(κ) s 0

which agrees with (4.5), to order /c2, but is not informative; (c) for
a < 0, Γ(fc) is infinite, which is not surprising because according to
(4.5), Γ(κ) is not O(tc2). The Gold from which the Rule is made is
apparently mixed with Brass.

If, however, λ0 is replaced in the Rule by λ0 + /cXlf the resulting
formula

(4.6) Γ(fc) ^ πtc\δc(H0 - λ0 - /cXjVφo, Vφ0)

is an unalloyed success; for one then obtains

Γ(fc) ^ πtc2\ f(/c\) |2 = 2Xΐfc2+a cos (πa/2)

which agrees with (4.5).

APPENDIX. Let T be self-adjoint and suppose that for some
pair of vectors /, g the function

has meromorphic continuations r±(z) across some interval of the real
axis. That the poles of rΛz) need not be the complex conjugates of
the poles of r+(z) may be seen by taking Tu(t) = tu(t) on L2(— oo, +oo)
and choosing f(t) = (t + i)~ι and g(t) = (ί — i)"1. Then r+(z) has a
pole at z = — i, while r_(z) vanishes identically.
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Similarly, the poles of Qt(z) and Qτ(z) are not always conjugate.
For A = ( , / ) / and B = ( , g)g are bounded and self-ad joint, and
AB = J5A = 0 because / and g are orthogonal. Hence, H = T +
£*A = T, and

Qi(«) - QCO - (G(z)f, </)(•, </)(/ - r(z)( , /)</

so that Qί(») has a pole at s = — i while Qr(^) vanishes identically.
We shall give sufficient conditions that Qt(z) and Qτ(z) have

conjugate poles. Let T, A, and B satisfy the hypotheses of § 1, and
assume that Qf(z) defined by

I - Qf{z) = [I + Q*(z)]-1

is meromorphic, and has finite rank principal parts at all its poles.
This is true, for example, if tz is small in § 1, or if Q±(z) is compact.
Formula (1.2) (with K — 1) then defines the resolvent R(z) of an ex-
tension if of T + B*A, and Q£z) is the extension of AR(z)B*. (It
is not clear whether or not H is self-adjoint in this generality, but
this is not at issue.) By taking ad joints, [7, eq. (2.2)] one also finds
that BG{z)A* has the compact extension

Q(z) = [Q(zψ

which has the continuations

(1) Q*(«) = [Q*(«)]*

defined on Ω. Similarly, BR(z)A* leads to Qλ(z) and Qί(z)

THEOREM. In addition to the hypotheses above, suppose that
there exists a subspace & of &r(A) Π &(B) such that B&<z.&(A*)>
A& c «£gr(i?*), and 2$ is dense in &(A) and 3ϊ(B) respectively, in
the graph norms. If Q+(z) is analytic at z0, then Qt(z) is analytic
at z0 iff Qt(z) is analytic at z0.

Proof. Let PA and PB be the orthogonal projections onto the
closures of the ranges of A and B. Then I — PB projects onto ker
J3*, so that

PAQ(Z) = Q(Z) and Q(z)[I - PB] = 0

for Im z > 0, and hence by continuation

(2) PΛQ
+(z) = Q+(z)

and

( 3 ) Q+(z)PB = Q+(z) .



RESONANCES NEAR AN EMBEDDED EIGENVALUE 175

Observe next that by (1.1),

B*Ax = A*Bx xe^r .

Hence, for x, g e ^ , and Im z > 0, one has

(QMBx, Ay) - (BR(z)A*Bx, Ay)

= {BR{z)B*Ax, Ay) - {AR{z)B*Ax, By)

= (Qx(z)Ax9 By)

where (1.1) was used in the equality next to last. Using that £& is
dense in the graphs, and passing to a continuation shows that ana-
lyticity of PAQΐ(z)PB at zQ is equivalent to analyticity of PBQt(z)PA

at z0.

If we now assume that Q+(z) and Qt{z) are analytic at z0, then
since (1), together with (2) and (3), implies that

Qΐ(z) = Q+(z) - [Q+(z)Y + Q+(z)Qt(z)Q+(z)

= Q+(z) - [Q+(z)Y + Q+(z)PBQt(z)PAQ
+(z)

it follows that Qΐ(z) is also analytic at z0. The other implication is
proved similarly.

It is evident from the proof that if the ranges of A and B are
dense, the assumption that Q+(z) is analytic at z0 may be dropped.
However, the example above shows that it cannot be dropped in
general.

COROLLARY. // all poles of Q+(z) are real, then the nonreal
poles of Qΐ(z) and Qτ(z) are complex conjugates.

This follows from (1).

PROPOSITION. Either of the following conditions suffices for the
existence of £&.

(a) Either A or B is bounded.
(b) A and B are commuting self-adjoint operators.

Proof. If A is bounded, it follows from (1.1) that
. Hence, one may take £& = 3ί(B). Similarly if B is bounded.

Sufficiency of (b) follows easily from [12, p. 358].
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