RAMSEY THEORY AND CHROMATIC NUMBERS

GARY CHARTRAND AND ALBERT D. POLIMENI

Let $\chi(G)$ denote the chromatic number of a graph G. For positive integers n_1, n_2, \dots, n_k $(k \ge 1)$ the chromatic Ramsey number $\chi(n_1, n_2, \dots, n_k)$ is defined as the least positive integer p such that for any factorization $K_p = \bigcup_{i=1}^k G_i, \chi(G_i) \ge n_i$ for at least one $i, 1 \le i \le k$. It is shown that $\chi(n_1, n_2, \dots, n_k) =$ $1 + \prod_{i=1}^k (n_i - 1)$. The vertex-arboricity a(G) of a graph G is the fewest number of subsets into which the vertex set of Gcan be partitioned so that each subset induces an acyclic graph. For positive integers n_1, n_2, \dots, n_k $(k \ge 1)$ the vertexarboricity Ramsey number $a(n_1, n_2, \dots, n_k)$ is defined as the least positive integer p such that for any factorization $K_p =$ $\bigcup_{i=1}^k G_i, a(G_i) \ge n_i$ for at least one $i, 1 \le i \le k$. It is shown that $a(n_1, n_2, \dots, n_k) = 1 + 2k \prod_{i=1}^k (n_i - 1)$.

Introduction. The classical Ramsey number r(m, n), for positive integers m and n, is the least positive integer p such that for any graph G of order p, either G contains the complete graph K_m of order m as a subgraph or the complement \overline{G} of G contains K_n as a subgraph. More generally, for $k(\geq 1)$ positive integers n_1, n_2, \dots, n_k , the Ramsey number $r(n_1, n_2, \dots, n_k)$ is defined as the least positive integer p such that for any factorization $K_p = G_1 \cup G_2 \cup \dots \cup G_k$ (i.e., the G_i are spanning, pairwise edge-disjoint, possibly empty subgraphs of K_p such that the union of the edge sets of the G_i equals the edge set of K_p), G_i contains K_{n_i} as a subgraph for at least one $i, 1 \leq i \leq k$. It is known (see [5]) that all such Ramsey numbers exist; however, the actual values of $r(n_1, n_2, \dots, n_k), k \geq 1$, are known in only seven cases (see [2, 3]) for which min $\{n_1, n_2, \dots, n_k\} \geq 3$.

A clique in a graph G is a maximal complete subgraph of G. The clique number $\omega(G)$ is the maximum order among the cliques of G. The Ramsey number $r(n_1, n_2, \dots, n_k)$ may be alternatively defined as the least positive integer p such that for any factorization $K_p = G_1 \cup G_2 \cup \cdots \cup G_k$, $\omega(G_i) \ge n_i$ for at least one $i, 1 \le i \le k$.

The foregoing observation suggests the following definition. Let f be a graphical parameter, and let $n_1, n_2, \dots, n_k, k \ge 1$ be positive integers. The *f*-Ramsey number $f(n_1, n_2, \dots, n_k)$ is the least positive integer p such that for any factorization $K_p = G_1 \cup G_2 \cup \dots \cup G_k$, $f(G_i) \ge n_i$ for at least one $i, 1 \le i \le k$. Hence, $\omega(n_1, n_2, \dots, n_k) = r(n_1, n_2, \dots, n_k)$, i.e., the ω -Ramsey number is the Ramsey number.

The object of this paper is to investigate f-Ramsey numbers for two graphical parameters f, namely chromatic number and vertexarboricity. Chromatic Ramsey numbers. The chromatic number $\chi(G)$ of a graph G is the fewest number of colors which may be assigned to the vertices of G so that adjacent vertices are assigned different colors. For positive integers n_1, n_2, \dots, n_k , the chromatic Ramsey number $\chi(n_1, n_2, \dots, n_k)$ is the least positive integer p such that for any factorization $K_p = G_1 \cup G_2 \cup \dots \oplus G_k, \ \chi(G_i) \geq n_i$ for some $i, 1 \leq i \leq k$. The existence of the numbers $\chi(n_1, n_2, \dots, n_k)$ is guaranteed by the fact that $\chi(n_1, n_2, \dots, n_k) \leq r(n_1, n_2, \dots, n_k)$. We are now prepared to present a formula for $\chi(n_1, n_2, \dots, n_k)$. We begin with a lemma.

LEMMA. If
$$G = G_1 \cup G_2 \cup \cdots \cup G_k$$
, then
 $\chi(G) \leq \sum_{i=1}^k \chi(G_i)$.

Proof. For $i = 1, 2, \dots, k$, let a $\chi(G_i)$ -coloring be given for G_i . We assign to a vertex v of G the color (c_1, c_2, \dots, c_k) , where c_i is the color assigned to v in G_i . This produces a coloring of G using at most $\prod_{i=1}^{k} \chi(G_i)$ colors; hence, $\chi(G) \leq \prod_{i=1}^{k} \chi(G_i)$.

THEOREM 1. For positive integers n_1, n_2, \dots, n_k ,

$$\chi(n_1, n_2, \cdots, n_k) = 1 + \prod_{i=1}^k (n_i - 1)$$
.

Proof. The result is immediate if $n_i = 1$ for some i; hence, we assume that $n_i \ge 2$ for all $i, 1 \le i \le k$. First, we verify that

$$\chi(n_1, n_2, \cdots, n_k) \leq 1 + \prod_{i=1}^k (n_i - 1)$$
.

Let $p = 1 + \prod_{i=1}^{k} (n_i - 1)$, and assume there exists a factorization $K_p = G_1 \cup G_2 \cup \cdots \cup G_k$ such that $\chi(G_i) \leq n_i - 1$ for each $i = 1, 2, \dots, k$. Then by the Lemma, it follows that

$$1 + \prod_{i=1}^{k} (n_i - 1) = \chi(K_p) \leq \prod_{i=1}^{k} \chi(G_i) \leq \prod_{i=1}^{k} (n_i - 1)$$
 ,

which produces a contradiction. Thus, in any factorization $K_p = G_1 \cup G_2 \cup \cdots \cup G_k$ for $p = 1 + \prod_{i=1}^k (n_i - 1)$, we have $\chi(G_i) \ge n_i$ for at least one $i, 1 \le i \le k$.

In order to show that

$$\chi(n_{\scriptscriptstyle 1},\,n_{\scriptscriptstyle 2},\,\cdots,\,n_{\scriptscriptstyle k}) \geq 1 \,+\, \prod\limits_{i=1}^k \,(n_i\,-\,1)$$
 ,

we exhibit a factorization $K_{N_k} = G_1 \cup G_2 \cup \cdots \cup G_k$, where $N_k =$

$$\begin{split} \prod_{i=1}^{k} (n_i - 1) \text{ and } \chi(G_i) &\leq n_i - 1 \text{ for } i = 1, 2, \cdots, k. & \text{The factorization} \\ \text{is accomplished by employing induction on } k. & \text{For } k = 1, \text{ we simply} \\ \text{observe that } \chi(K_{N_1}) &= \chi(K_{n_1-1}) = n_1 - 1. & \text{Assume there exists a factorization} \\ K_{N_{k-1}} &= H_1 \cup H_2 \cup \cdots \cup H_{k-1} \text{ such that } \chi(H_i) \leq n_i - 1 \text{ for} \\ i = 1, 2, \cdots, k - 1. & \text{Let } F \text{ denote } n_k - 1 \text{ (pairwise disjoint) copies of} \\ K_{N_{k-1}} \text{ and define } G_k \text{ by } G_k = \bar{F}. & \text{Thus, } \bar{G}_k \text{ contains } n_k - 1 \text{ pairwise} \\ \text{disjoint copies of } H_i \text{ for } i = 1, 2, \cdots, k - 1, \text{ which we denote by } G_i. \\ \text{Hence, } K_{N_k} = G_1 \cup G_2 \cup \cdots \cup G_k, \text{ where } \chi(G_i) \leq n_i - 1 \text{ for each } i, \\ 1 \leq i \leq k, \text{ which produces the desired result.} \end{split}$$

Vertex-arboricity Ramsey numbers. The vertex-arboricity a(G) of a graph G is the minimum number of subsets into which the vertex set of G may be partitioned so that each subset induces an acyclic subgraph. As with the chromatic number, the vertex-arboricity may be considered a coloring number since a(G) is the least number of colors which may be assigned to the vertices of G so that no cycle of G has all of its vertices assigned the same color.

Our next result will establish a formula for the vertex-arboricity Ramsey number $a(n_1, n_2, \dots, n_k)$, defined as the least positive integer psuch that for every factorization $K_p = G_1 \cup G_2 \cup \dots \cup G_k$, $a(G_i) \ge n_i$ for some $i, 1 \le i \le k$. Since $a(K_n) = \{n/2\}$, it follows that $a(n_1, n_2, \dots, n_k) \le r(2n_1 - 1, 2n_2 - 1, \dots, 2n_k - 1)$. In the proof of the following result, we shall make use of the (edge) arboricity $a_1(G)$ of a graph, which is the minimum number of subsets into which the edge set of G may be partitioned so that the subgraph induced by each subset is acyclic. It is known (see [1, 4]) that $a_1(K_n) = \{n/2\}$.

THEOREM 2. For positive integers n_1, n_2, \dots, n_k ,

$$a(n_1, n_2, \cdots, n_k) = 1 + 2k \prod_{i=1}^k (n_i - 1)$$
.

Proof. In order to show that

$$a(n_{\scriptscriptstyle 1},\,n_{\scriptscriptstyle 2},\,\cdots,\,n_{\scriptscriptstyle k}) \leq 1 + 2k \prod_{i=1}^k \,(n_i-1)$$
 ,

we let $p = 1 + 2k \prod_{i=1}^{k} (n_i - 1)$ and assume there exists a factorization $K_p = G_1 \cup G_2 \cup \cdots \cup G_k$ such that $a(G_i) \leq n_i - 1$ for each $i = 1, 2, \dots, k$. For each $i = 1, 2, \dots, k$, there is a partition $\{U_{i,1}, U_{i,2}, \dots, U_{i,n_i-1}\}$ of the vertex set $V(G_i)$ of G_i such that the subgraph $\langle U_{i,j} \rangle$ of G_i induced by $U_{i,j}$ is acyclic, $j = 1, 2, \dots, n_i - 1$. At least one of the sets $U_{1,1}, U_{1,2}, \dots, U_{1,n_{1}-1}$, say U_{1,m_1} , contains at least $1 + 2k \prod_{i=2}^{k} (n_i - 1)$ vertices. Thus, at least one of the sets $U_{2,1}, U_{2,2}, \dots$, U_{2,n_2-1} , say U_{2,m_2} , contains at least $1 + 2k \prod_{i=3}^{k} (n_i - 1)$ vertices of U_{1,m_1} . Proceeding inductively, we arrive at subsets U_{1,m_1} , U_{2,m_2} , \cdots , U_{k,m_k} such that $\bigcap_{i=1}^{t} U_{i,m_i}$ contains at least $1 + 2k \prod_{i=t+1}^{k} (n_i - 1)$ vertices, $1 \leq t \leq k - 1$. In particular, $\bigcap_{i=1}^{k} U_{i,m_i}$, contains a set U having 1 + 2k vertices. For each $i = 1, 2, \cdots, k$, $\langle U \rangle$ is an acyclic subgraph of the graph $\langle U_{i,m_i} \rangle$. This implies that $a_1(K_{1+2k}) \leq k$, which is contradictory. Therefore, $a(G_i) \geq n_i$ for at least one $i, 1 \leq i \leq k$.

The proof will be complete once we have verified that

$$a(n_{\scriptscriptstyle 1},\,n_{\scriptscriptstyle 2},\,\cdots,\,n_{\scriptscriptstyle k}) \geq 1 + 2k \prod\limits_{i=1}^k \,(n_i-1)\;.$$

Let $r = \prod_{i=1}^{k} (n_i - 1)$. We shall exhibit a factorization $K_{2kr} = G_1 \cup$ $G_2 \cup \cdots \cup G_k$ such that $a(G_i) \leq n_i - 1$ for $i = 1, 2, \dots, k$. We begin with r pairwise disjoint copies of K_{2k} , labeled $K_{2k}^1, K_{2k}^2, \dots, K_{2k}^r$. Since $a_1(K_{2k}) = k$, it follows that $K_{2k} = \bigcup_{i=1}^k F_i$, where each F_i is an acyclic graph. We introduce the notation F_{il} to denote the F_i contained in $K_{2k}^{l}, l = 1, 2, \cdots, r$ and $i = 1, 2, \cdots, k$. With each of the r k-tuples $(c_1, c_2, \dots, c_k), c_j = 1, 2, \dots, n_j - 1$ and $j = 1, 2, \dots, k$, we identify a complete graph K^l_{2k} , $l=1, 2, \cdots, r$, in such a way that the identification is one-to-one. Then, for each $i = 1, 2, \dots, k$ and $l = 1, 2, \dots$, r, we associate with F_{il} the k-tuple identified with K_{2k}^{l} . Define the graph G_i , $i = 1, 2, \dots, k$, to consist of the graphs $F_{i1}, F_{i2}, \dots, F_{ir}$; in addition, each vertex of F_{is} is adjacent to each vertex of F_{it} , s, $t = 1, 2, \dots, r$, provided the *i*th coordinate is the first coordinate in which their associated k-tuples differ (otherwise, there are no edges between F_{is} and F_{it}). It is then seen that $K_{2kr} = \bigcup_{i=1}^{k} G_i$. For each $i = 1, 2, \dots, k$, define $V_{i,j}$ to be the set of all vertices v such that v is a vertex of an F_{il} whose associated k-tuple (c_1, c_2, \dots, c_k) has $c_i = j; j = 1, 2, \dots, n_i - 1$. Then $\{V_{i,1}, V_{i,2}, \dots, V_{i,n_i-1}\}$ is a partition of $V(G_i)$ for which the subgraph $\langle V_{i,j}
angle$ consists of $r/(n_i - 1)$ pairwise disjoint copies of F_i , $j = 1, 2, \dots, n_i - 1$. Thus, $\langle V_{i,j}
angle$ is an acyclic graph for each such j. Hence, $a(G_i) \leq n_i - 1$, $i = 1, 2, \dots, k.$

References

1. L. W. Beineke, *Decompositions of complete graphs into forests*, Magyar Tud. Akad. Mat. Kutato Int. Kozl., **9** (1964), 589-594.

2. J. E. Graver and J. Yackel, Some graph theoretic results associated with Ramsey's theorem, J. Combinatorial Theory, 4 (1968), 125-175.

3. R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math., 7 (1955), 1-7.

4. C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc., **36** (1961), 445-450.

5. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., **30** (1930), 264-286.

Received October 4, 1974. The second author's research was supported by the Research Foundation of the State of New York.

WESTERN MICHIGAN UNIVERSITY AND SUNY, COLLEGE AT FREDONIA