RAMSEY THEORY AND CHROMATIC NUMBERS

Gary Chartrand and Albert D. Polimeni

Abstract

Let $\chi(G)$ denote the chromatic number of a graph G. For positive integers $n_{1}, n_{2}, \cdots, n_{k}(k \geqq 1)$ the chromatic Ramsey number $\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ is defined as the least positive integer p such that for any factorization $K_{p}=\bigcup_{i=1}^{k} G_{i}, \chi\left(G_{i}\right) \geqq n_{i}$ for at least one $i, 1 \leqq i \leqq k$. It is shown that $\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right)=$ $1+\prod_{i=1}^{k}\left(n_{i}-1\right)$. The vertex-arboricity $a(G)$ of a graph G is the fewest number of subsets into which the vertex set of G can be partitioned so that each subset induces an acyclic graph. For positive integers $n_{1}, n_{2}, \cdots, n_{k}(k \geqq 1)$ the vertexarboricity Ramsey number $a\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ is defined as the least positive integer p such that for any factorization $K_{p}=$ $\bigcup_{i=1}^{k} G_{i}, a\left(G_{i}\right) \geqq n_{i}$ for at least one $i, 1 \leqq i \leqq k$. It is shown that $a\left(n_{1}, n_{2}, \cdots, n_{k}\right)=1+2 k \prod_{i=1}^{k}\left(n_{i}-1\right)$.

Introduction. The classical Ramsey number $r(m, n)$, for positive integers m and n, is the least positive integer p such that for any graph G of order p, either G contains the complete graph K_{m} of order m as a subgraph or the complement \bar{G} of G contains K_{n} as a subgraph. More generally, for $k(\geqq 1)$ positive integers $n_{1}, n_{2}, \cdots, n_{k}$, the Ramsey number $r\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ is defined as the least positive integer p such that for any factorization $K_{p}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ (i.e., the G_{i} are spanning, pairwise edge-disjoint, possibly empty subgraphs of K_{p} such that the union of the edge sets of the G_{i} equals the edge set of K_{p}), G_{i} contains $K_{n_{i}}$ as a subgraph for at least one $i, 1 \leqq i \leqq$ k. It is known (see [5]) that all such Ramsey numbers exist; however, the actual values of $r\left(n_{1}, n_{2}, \cdots, n_{k}\right), k \geqq 1$, are known in only seven cases (see [2, 3]) for which $\min \left\{n_{1}, n_{2}, \cdots, n_{k}\right\} \geqq 3$.

A clique in a graph G is a maximal complete subgraph of G. The clique number $\omega(G)$ is the maximum order among the cliques of G. The Ramsey number $r\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ may be alternatively defined as the least positive integer p such that for any factorization $K_{p}=$ $G_{1} \cup G_{2} \cup \cdots \cup G_{k}, \omega\left(G_{i}\right) \geqq n_{i}$ for at least one $i, 1 \leqq i \leqq k$.

The foregoing observation suggests the following definition. Let f be a graphical parameter, and let $n_{1}, n_{2}, \cdots, n_{k}, k \geqq 1$ be positive integers. The f-Ramsey number $f\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ is the least positive integer p such that for any factorization $K_{p}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$, $f\left(G_{i}\right) \geqq n_{i}$ for at least one $i, 1 \leqq i \leqq k$. Hence, $\omega\left(n_{1}, n_{2}, \cdots, n_{k}\right)=$ $r\left(n_{1}, n_{2}, \cdots, n_{k}\right)$, i.e., the ω-Ramsey number is the Ramsey number.

The object of this paper is to investigate f-Ramsey numbers for two graphical parameters f, namely chromatic number and vertexarboricity.

Chromatic Ramsey numbers. The chromatic number $\chi(G)$ of a graph G is the fewest number of colors which may be assigned to the vertices of G so that adjacent vertices are assigned different colors. For positive integers $n_{1}, n_{2}, \cdots, n_{k}$, the chromatic Ramsey number $\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ is the least positive integer p such that for any factorization $K_{p}=G_{1} \cup G_{2} \cup \cdots G_{k}, \chi\left(G_{i}\right) \geqq n_{i}$ for some $i, 1 \leqq i \leqq$ k. The existence of the numbers $\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ is guaranteed by the fact that $\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right) \leqq r\left(n_{1}, n_{2}, \cdots, n_{k}\right)$. We are now prepared to present a formula for $\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right)$. We begin with a lemma.

Lemma. If $G=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$, then

$$
\chi(G) \leqq \sum_{i=1}^{k} \chi\left(G_{i}\right)
$$

Proof. For $i=1,2, \cdots, k$, let a $\chi\left(G_{i}\right)$-coloring be given for G_{i}. We assign to a vertex v of G the color $\left(c_{1}, c_{2}, \cdots, c_{k}\right)$, where c_{i} is the color assigned to v in G_{i}. This produces a coloring of G using at most $\prod_{i=1}^{k} \chi\left(G_{i}\right)$ colors; hence, $\chi(G) \leqq \prod_{i=1}^{k} \chi\left(G_{i}\right)$.

Theorem 1. For positive integers $n_{1}, n_{2}, \cdots, n_{k}$,

$$
\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right)=1+\prod_{i=1}^{h}\left(n_{i}-1\right)
$$

Proof. The result is immediate if $n_{i}=1$ for some i; hence, we assume that $n_{i} \geqq 2$ for all $i, 1 \leqq i \leqq k$. First, we verify that

$$
\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right) \leqq 1+\prod_{i=1}^{k}\left(n_{i}-1\right)
$$

Let $p=1+\Pi_{i=1}^{k}\left(n_{i}-1\right)$, and assume there exists a factorization $K_{p}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ such that $\chi\left(G_{i}\right) \leqq n_{i}-1$ for each $i=1,2, \cdots, k$. Then by the Lemma, it follows that

$$
1+\prod_{i=1}^{k}\left(n_{i}-1\right)=\chi\left(K_{p}\right) \leqq \prod_{i=1}^{k} \chi\left(G_{i}\right) \leqq \prod_{i=1}^{k}\left(n_{i}-1\right)
$$

which produces a contradiction. Thus, in any factorization $K_{p}=$ $G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ for $p=1+\prod_{i=1}^{k}\left(n_{i}-1\right)$, we have $\chi\left(G_{i}\right) \geqq n_{i}$ for at least one $i, 1 \leqq i \leqq k$.

In order to show that

$$
\chi\left(n_{1}, n_{2}, \cdots, n_{k}\right) \geqq 1+\prod_{i=1}^{k}\left(n_{i}-1\right)
$$

we exhibit a factorization $K_{N_{k}}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$, where $N_{k}=$
$\Pi_{i=1}^{k}\left(n_{i}-1\right)$ and $\chi\left(G_{i}\right) \leqq n_{i}-1$ for $i=1,2, \cdots, k$. The factorization is accomplished by employing induction on k. For $k=1$, we simply observe that $\chi\left(K_{N_{1}}\right)=\chi\left(K_{n_{1}-1}\right)=n_{1}-1$. Assume there exists a factorization $K_{N_{k-1}}=H_{1} \cup H_{2} \cup \cdots \cup H_{k-1}$ such that $\chi\left(H_{i}\right) \leqq n_{i}-1$ for $i=1,2, \cdots, k-1$. Let F denote $n_{k}-1$ (pairwise disjoint) copies of $K_{N_{k-1}}$ and define G_{k} by $G_{k}=\bar{F}$. Thus, \bar{G}_{k} contains $n_{k}-1$ pairwise disjoint copies of H_{i} for $i=1,2, \cdots, k-1$, which we denote by G_{i}. Hence, $K_{N_{k}}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$, where $\chi\left(G_{i}\right) \leqq n_{i}-1$ for each i, $1 \leqq i \leqq k$, which produces the desired result.

Vertex-arboricity Ramsey numbers. The vertex-arboricity $a(G)$ of a graph G is the minimum number of subsets into which the vertex set of G may be partitioned so that each subset induces an acyclic subgraph. As with the chromatic number, the vertex-arboricity may be considered a coloring number since $a(G)$ is the least number of colors which may be assigned to the vertices of G so that no cycle of G has all of its vertices assigned the same color.

Our next result will establish a formula for the vertex-arboricity Ramsey number $a\left(n_{1}, n_{2}, \cdots, n_{k}\right)$, defined as the least positive integer p such that for every factorization $K_{p}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}, a\left(G_{i}\right) \geqq n_{i}$ for some $i, 1 \leqq i \leqq k$. Since $a\left(K_{n}\right)=\{n / 2\}$, it follows that $a\left(n_{1}, n_{2}, \cdots\right.$, $\left.n_{k}\right) \leqq r\left(2 n_{1}-1,2 n_{2}-1, \cdots, 2 n_{k}-1\right)$. In the proof of the following result, we shall make use of the (edge) arboricity $a_{1}(G)$ of a graph, which is the minimum number of subsets into which the edge set of G may be partitioned so that the subgraph induced by each subset is acyclic. It is known (see [1, 4]) that $a_{1}\left(K_{n}\right)=\{n / 2\}$.

Theorem 2. For positive integers $n_{1}, n_{2}, \cdots, n_{k}$,

$$
a\left(n_{1}, n_{2}, \cdots, n_{k}\right)=1+2 k \prod_{i=1}^{k}\left(n_{i}-1\right)
$$

Proof. In order to show that

$$
a\left(n_{1}, n_{2}, \cdots, n_{k}\right) \leqq 1+2 k \prod_{i=1}^{k}\left(n_{i}-1\right)
$$

we let $p=1+2 k \prod_{i=1}^{k}\left(n_{i}-1\right)$ and assume there exists a factorization $K_{p}=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ such that $a\left(G_{i}\right) \leqq n_{i}-1$ for each $i=$ $1,2, \cdots, k$. For each $i=1,2, \cdots, k$, there is a partition $\left\{U_{i, 1}, U_{i, 2}, \cdots\right.$, $\left.U_{i, n_{i}-1}\right\}$ of the vertex set $V\left(G_{i}\right)$ of G_{i} such that the subgraph $\left\langle U_{i, j}\right\rangle$ of G_{i} induced by $U_{i, j}$ is acyclic, $j=1,2, \cdots, n_{i}-1$. At least one of the sets $U_{1,1}, U_{1,2}, \cdots, U_{1, n_{1}-1}$, say $U_{1, m_{1}}$, contains at least $1+$ $2 k \prod_{i=2}^{k}\left(n_{i}-1\right)$ vertices. Thus, at least one of the sets $U_{2,1}, U_{2,2}, \cdots$,
$U_{2, n_{2}-1}$, say $U_{2, m_{2}}$, contains at least $1+2 k \prod_{i=3}^{k}\left(n_{i}-1\right)$ vertices of $U_{1, m_{1}}$. Proceeding inductively, we arrive at subsets $U_{1, m_{1}}, U_{2, m_{2}}, \cdots$, $U_{k, m_{k}}$ such that $\bigcap_{i=1}^{t} U_{i, m_{i}}$ contains at least $1+2 k \prod_{i=t+1}^{k}\left(n_{i}-1\right)$ vertices, $1 \leqq t \leqq k-1$. In particular, $\bigcap_{i=1}^{k} U_{i, m_{i}}$, contains a set U having $1+2 k$ vertices. For each $i=1,2, \cdots, k,\langle U\rangle$ is an acyclic subgraph of the graph $\left\langle U_{i, m_{i}}\right\rangle$. This implies that $a_{1}\left(K_{1+2 k}\right) \leqq k$, which is contradictory. Therefore, $a\left(G_{i}\right) \geqq n_{i}$ for at least one $i, 1 \leqq i \leqq k$. The proof will be complete once we have verified that

$$
a\left(n_{1}, n_{2}, \cdots, n_{k}\right) \geqq 1+2 k \prod_{i=1}^{k}\left(n_{i}-1\right)
$$

Let $r=\prod_{i=1}^{k}\left(n_{i}-1\right)$. We shall exhibit a factorization $K_{2 k r}=G_{1} \cup$ $G_{2} \cup \cdots \cup G_{k}$ such that $a\left(G_{i}\right) \leqq n_{i}-1$ for $i=1,2, \cdots, k$. We begin with r pairwise disjoint copies of $K_{2 k}$, labeled $K_{2 k}^{1}, K_{2 k}^{2}, \cdots, K_{2 k}^{r}$. Since $a_{1}\left(K_{2 k}\right)=k$, it follows that $K_{2 k}=\bigcup_{i=1}^{k} F_{i}$, where each F_{i} is an acyclic graph. We introduce the notation $F_{i l}$ to denote the F_{i} contained in $K_{2 k}^{l}, l=1,2, \cdots, r$ and $i=1,2, \cdots, k$. With each of the $r k$-tuples $\left(c_{1}, c_{2}, \cdots, c_{k}\right), c_{j}=1,2, \cdots, n_{j}-1$ and $j=1,2, \cdots, k$, we identify a complete graph $K_{2 k}^{l}, l=1,2, \cdots, r$, in such a way that the identification is one-to-one. Then, for each $i=1,2, \cdots, k$ and $l=1,2, \cdots$, r, we associate with $F_{i l}$ the k-tuple identified with $K_{2 k}^{l}$. Define the graph $G_{i}, i=1,2, \cdots, k$, to consist of the graphs $F_{i 1}, F_{i 2}, \cdots, F_{i r}$; in addition, each vertex of $F_{i s}$ is adjacent to each vertex of $F_{i t}$, $s, t=1,2, \cdots, r$, provided the i th coordinate is the first coordinate in which their associated k-tuples differ (otherwise, there are no edges between $F_{i s}$ and $F_{i t}$). It is then seen that $K_{2 k r}=\bigcup_{i=1}^{k} G_{i}$. For each $i=1,2, \cdots, k$, define $V_{i, j}$ to be the set of all vertices v such that v is a vertex of an $F_{i l}$ whose associated k-tuple ($c_{1}, c_{2}, \cdots, c_{k}$) has $c_{i}=j ; j=1,2, \cdots, n_{i}-1$. Then $\left\{V_{i, 1}, V_{i, 2}, \cdots, V_{i, n_{i}-1}\right\}$ is a partition of $V\left(G_{i}\right)$ for which the subgraph $\left\langle V_{i, j}\right\rangle$ consists of $r /\left(n_{i}-1\right)$ pairwise disjoint copies of $F_{i}, j=1,2, \cdots, n_{i}-1$. Thus, $\left\langle V_{i, j}\right\rangle$ is an acyclic graph for each such j. Hence, $a\left(G_{i}\right) \leqq n_{i}-1$, $i=1,2, \cdots, k$.

References

1. L. W. Beineke, Decompositions of complete graphs into forests, Magyar Tud. Akad. Mat. Kutato Int. Kozl., 9 (1964), 589-594.
2. J. E. Graver and J. Yackel, Some graph theoretic results associated with Ramsey's theorem, J. Combinatorial Theory, 4 (1968), 125-175.
3. R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math., 7 (1955), 1-7.
4. C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc., 36 (1961), 445-450.
5. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 30 (1930), 264-286.

Received October 4, 1974. The second author's research was supported by the Research Foundation of the State of New York.

Western Michigan University
AND
Suny, College at Fredonia

