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RAMSEY THEORY AND CHROMATIC NUMBERS

GARY CHARTRAND AND ALBERT D. POLIMENI

Let χ(G) denote the chromatic number of a graph G. For
positive integers nίf n2, , nk (k ̂  1) the chromatic Ramsey
number χ(nίf n2, , nk) is defined as the least positive integer
p such that for any factorization Kp — U*=i Gif χ{Gt) Ξ> w* for
at least one i,l ^i ^k. It is shown that x(nu n2, , nk) =
1 + ΓR=i (nt — 1). The vertex-arboricity a(G) of a graph G is
the fewest number of subsets into which the vertex set of G
can be partitioned so that each subset induces an acyclic
graph. For positive integers nlt n2, , w* (ft ^ 1) the vertex-
arboricity Ramsey number a(nltn2, - ,nk) is defined as the
least positive integer p such that for any factorization Kp —
U*=i Gi> d(Gt) ̂  Ύii for at least one i, 1 rg % <Ξ k. It is shown
that a(nlt n2, , nk) = 1 + 2k ΓR=i (nt — 1).

Introduction* The classical Ramsey number r{m, ri), for positive
integers m and n, is the least positive integer p such that for any
graph G of order p, either G contains the complete graph Km of
order m as a subgraph or the complement G of G contains Kn as a
subgraph. More generally, for k(^ 1) positive integers nίf n2, , %,
the Ramsey number r(nlf n2, •••, nk) is defined as the least positive
integer p such that for any factorization Kv — G1\J G2\J U Gk (i.e.,
the Gi are spanning, pair wise edge-disjoint, possibly empty subgraphs
of Kp such that the union of the edge sets of the G, equals the edge
set of KP), Gi contains Kn. as a subgraph for at least one ί, 1 ^ i ^
k. It is known (see [5]) that all such Ramsey numbers exist; how-
ever, the actual values of r(nl9 n2, , nk), k ^ 1, are known in only
seven cases (see [2, 3]) for which min {nlf n2, , nk} ^ 3.

A clique in a graph G is a maximal complete subgraph of G.
The cϊΐgwe number ω(G) is the maximum order among the cliques of
G. The Ramsey number r{nu n2, , nk) may be alternatively defined
as the least positive integer p such that for any factorization Kv =
ftU^U UGfe, ωίGJ ^ w, for at least one i, l^ί<,k.

The foregoing observation suggests the following definition. Let
/ be a graphical parameter, and let nu n2, , nkf k^l be positive
integers. The f-Ramsey number f(nlf n2, , nk) is the least positive
integer p such that for any factorization Kp = G1 (J G2 (J U Gk,
f(Gi) ^ Πi for at least one i, 1 <Z i <Z k. Hence, ω(nu n2, , nk) =
KΛi> %2, •••, ̂ fc)> i e., the ω-Ramsey number is the Ramsey number.

The object of this paper is to investigate /-Ramsey numbers for
two graphical parameters /, namely chromatic number and vertex-
arboricity.
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Chromatic Ramsey numbers* The chromatic number χ(G) of a
graph G is the fewest number of colors which may be assigned to
the vertices of G so that adjacent vertices are assigned different
colors. For positive integers nlt n2, -—,nk, the chromatic Ramsey
number χ(nίy n2, , nk) is the least positive integer p such that for
any factorization Kp = Gx U G2 U Gk, χ{G%) ^ nt for some i, 1 <̂  i g;
k. The existence of the numbers χ(nu n2, •••, nk) is guaranteed by
the fact that χ(nίf n2, , nk) ^ r(^x, n2, , wA). We are now pre-
pared to present a formula for χ(nlt n2, ---,nk). We begin with a
lemma.

LEMMA. If G = Gx u G2 U U Gk, then

Proo/. For i = 1, 2, , k, let a χ(Gt)-coloring be given for Gt.
We assign to a vertex v oΐ G the color (clf c2, •••, cfe), where ct is
the color assigned to v in Gt. This produces a coloring of G using
at most IK«iZ(G<) colors; hence, χ(G) ^ Π t

THEOREM 1. For positive integers nlf n2, , nk,

lt n2, . , nk) = 1 + Π (nt - 1) .
l

Proof. The result is immediate if ^ = 1 for some ϊ; hence, we
assume that ^ ^ 2 for all i, 1 ^ ΐ ^ Λ. First, we verify that

X(nlt n2, - *,nk)^ Π

Let p = 1 + Πi=i (^ί ~ 1)> and assume there exists a factorization
if* = G1UG2U U Gk such that %((?*) ^ ^ - 1 for each i = 1,2, ••-,&.
Then by the Lemma, it follows that

1 + Π (*« - 1) = X(K,) ^ Π Z(G.) ^ Π (nt - 1) ,
ί=l < = 1 i=l

which produces a contradiction. Thus, in any factorization Kp =
(?i U G2 U U Gk for j> = 1 + Π?=i (nt - 1), we have χ{Gτ) ^ ^ f for
at least one i, 1 <* i <^ k.

In order to show that

k

X(nlf n2, , nk) ^ 1 + Π (nt - 1) ,

we exhibit a factorization ^ f c = Gx U (?2 U U Gk9 where Nh =
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Πl=i (% — 1) and χ(Gi) <; nt — 1 for i = 1, 2, , k. The factorization
is accomplished by employing induction on k. For k = 1, we simply
observe that χ(KN) — χ(Kni_^ — nt — 1. Assume there exists a fac-
torization KNk_l = JE?! U JBΓ2 U U -fiffe.i such that χ(H"<) ̂  ^ — 1 for
i = 1, 2, •••,& — ! . Let JP denote % — 1 (pairwise disjoint) copies of
KNk χ and define Gk by G& = F. Thus, Gk contains nk - 1 pairwise
disjoint copies of Ht for i = 1, 2, , k — 1, which we denote by G>
Hence, i^ f c = Gx U G2 U U Gk, where χ(G%) ̂  nt — 1 for each ί,
1 g ΐ ^ ί;, which produces the desired result.

Vertex-arboricity Ramsey numbers* The vertex-arboricity a{G)
of a graph G is the minimum number of subsets into which the ver-
tex set of G may be partitioned so that each subset induces an
acyclic subgraph. As with the chromatic number, the vertex-arbo-
ricity may be considered a coloring number since a(G) is the least
number of colors which may be assigned to the vertices of G so that
no cycle of G has all of its vertices assigned the same color.

Our next result will establish a formula for the vertex-arboricity
Ramsey number a(nu n2, , nk)f defined as the least positive integer p
such that for every factorization KP = (?! U G2 U U Gk9 a(Gt) ̂  nt for
some i, 1 <£ i <£ ifc. Since a(Kn) = {n/2}, it follows that a(nlf n2, ,
%) ^ r(2nt — 1, 2n2 — 1, , 2nk — 1). In the proof of the following
result, we shall make use of the (edge) arboricity αx(G) of a graph,
which is the minimum number of subsets into which the edge set of
G may be partitioned so that the subgraph induced by each subset
is acyclic. It is known (see [1, 4]) that aJJK,) — {n/2}.

T H E O R E M 2 . For positive integers n l f n 2 , ' " , n k ,

a(nlf n2, . , nk) = 1 + 2k Π fa< - 1) .

Proof. In order to show that

k

<Φi, n2, , nk) ^ 1 + 2k Π (nt - 1) ,

we let p = 1 + 2k Πi=i (n{ — 1) and assume there exists a factoriza-
tion Kp = G1 U G2 U U Gk such that a(G^) <. nt — 1 for each i =
1, 2, •••,&. For each i — 1, 2, , Λ, there is a partition {£/",,!, Ϊ7<fϊ, ,
t7ifW<_J of the vertex set V(Gt) of Gf such that the subgraph {Uii5}
of Gi induced by Uifj is acyclic, j = 1,2, , ̂ έ — 1. At least one
of the sets U1Λ, Ult2, , U1%%1-19 say UUmι, contains at least 1 +
2k Πi=2 (w>i — 1) vertices. Thus, at least one of the sets UttU U2}2, ,
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ίf2,tt2-i> say U2>m2y contains at least 1 + 2ft ΠLs (^i — 1) vertices of
U1>mi. Proceeding inductively, we arrive at subsets i7lfWl, U2>m2, •••,
Ukίm]e such that f|l=i Ui)m. contains at least 1 + 2ft Πtί+i i^i — 1) ver-
tices, 1 ^ ί <£ ft — 1. In particular, ΠLi Ui>m., contains a set U hav-
ing 1 + 2k vertices. For each ί = 1, 2, « ,ft, <ί7> is an acyclic
subgraph of the graph (Ui>mi). This implies that αx(ίΓ1+sjfe) ^ ft, which
is contradictory. Therefore, &((?*) ^ nt for at least one i, 1 ^ i ^ k.

The proof will be complete once we have verified that

k

a(nl9 n2, , nk) ^ 1 + 2k Π ( ^ - 1)
1• = 1

Let r = Πί=i (^i ~" 1) We shall exhibit a factorization K2kr = G1\J
G2 U U Gk such that a(Gt) ̂  w, - 1 for i = 1, 2, , &. We begin
with r pair wise disjoint copies of K2k, labeled K2\, Kikf , K2k. Since
î(̂ 2&) = >̂ it follows that K2k — (Ji=i Fif where each Ft is an acyclic

graph. We introduce the notation Fit to denote the Ft contained in
Kι

2k, 1 = 1,2, - - , r and i = 1, 2, •••,&. With each of the r Λ-tuples
(clf c2, , ck), cά = 1, 2, , % — 1 and i = 1, 2, , ft, we identify
a complete graph K\k, I = 1, 2, , r, in such a way that the identi-
fication is one-to-one. Then, for each i = 1, 2, , ft and I = 1,2, ,
r, we associate with ί7^ the ft-tuple identified with K2\. Define the
graph Gif i = 1, 2, , ft, to consist of the graphs Filf Fi2, , i^ r ;
in addition, each vertex of Fis is adjacent to each vertex of Fίt,
s, t = 1, 2, , r, provided the ΐth coordinate is the first coordinate
in which their associated ft-tuples differ (otherwise, there are no edges
between Fi8 and Fίt). It is then seen that K2kr = UiU <?,. For
each i — 1, 2, , ft, define F<,y to be the set of all vertices v such
that v is a vertex of an Fu whose associated ft-tuple (clf c2, , ck)
has ct = i ; i = 1, 2, •••, ̂  - 1. Then {V<fl, Fi>2, •••, F^^.J is a
partition of F(GJ for which the subgraph (Vij) consists of
rftibi — 1) pairwise disjoint copies of Ft9 j = 1, 2, , ̂  — 1. Thus,
< F i f J > is an acyclic graph for each such j . Hence, α(G{) ̂  nt — 1,
i = Ί f 2 f . . ., ft.
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