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GENERALIZED CONVOLUTIONS AND POSITIVE
DEFINITE FUNCTIONS ASSOCIATED WITH

GENERAL ORTHOGONAL SERIES

ALAN SCHWARTZ

Let {φn} be a sequence of continuous functions orthogonal
on an interval with respect to a positive measure da, and let

h(n) — (\ \φn\
z da\ . Then under hypotheses general enough

to include as special cases the trigonometric system {einx}9 the
ultraspherical polynomials, and most cases of the Jacobi poly-
nomials, the sequences <α> satisfying || a ||=Σ~=o I a(n) I h(n)<
oo form a Banach algebra with a convolution defined by <α*δ> =
<c> where Σ;=o c(n)h(n)φn = (2£-o a(n)h(ri)φn)(Σn=o b(n)h(n)φn).
Attention is centered upon sequences <α> of unit norm (called
distribution sequences), and the associated orthogonal series
^Σιd{n)h{n)φn (called characteristic functions). Theorems on
divisibility and stability of these classes are proved, the results
being modeled after the corresponding ones about the class
of characteristic functions in probability theory.

In § 1 the classical example and the one corresponding to the
ultraspherical polynomials are discussed. Section 2 is devoted to the
study of the basic properties of characteristic functions. The principle
results of this section are Theorem 1 (c) which relates convergence of
distribution sequences and characteristic functions and Theorem 2 (f)
which gives a canonical form analogous to that of Levy and Khinchine
for the divisible characteristic functions, i.e., those characteristic
functions which have roots of every order in the class of characteristic
functions. An important collection of semigroups of characteristic
functions (the stable ones) is classified in §§ 3 and 4. Section 5 contains
several examples. An excellent exposition of the classical case can
be found in Lukac's book [12]; this paper makes heavy use of gener-
alizations of techniques which are to be found there.

The author wishes to acknowledge his debt of gratitude to Richard
Askey for suggesting the problems that are solved here, and for
encouragement throughout this investigation.

l Examples* Recall the definition and elementary properties of
characteristic functions in the classical case:

A distribution function F is a nondecreasing function defined on
(_ oo, + oo) such that F(x) —+ 0 as x —• — oo and F(x) —• 1 as x —* + oo.
A real-valued random variable X has distribution F if P[X ^ x] =
F(x). The characteristic function of F is its Fourier-Stieltjes trans-
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form:

f{t) - Γ eitxdF(x) .
J-oo

If X and Y are independent real-valued random variables with
distributions F and G, and if / and g are the characteristic functions
of F and G respectively, then X + Y has distribution H = F*G, the
convolution of F and G, where

F*G{x) - Γ F(x - y)dG(y) ,
J — oo

and the characteristic function h of H is given by h — fg. Thus,
questions about convolutions of distributions can be recast as questions
about products of characteristic functions. Much of the work in this
paper will correspond more closely to the situation that arises in those
cases where the random variables are integer-valued. In that case,
the distribution can be thought of as a sequence u(n) = P[X — n],
with u(n) ^ 0 and Σ"=-oo u(n) — 1. The characteristic function becomes
the series

f(x) = Σ u(n)eίnx

and the convolution (w) of distribution sequences (u) and (v) is
given by

oo

w(n) = Σ u(n — k)v(k) .

Similar techniques have been devised to deal with random variables
which take values in spaces other than the real line. For instance,
X may take values in the unit sphere ΣA-I in ^-dimensional Euclidean
space. If X and Y are random variables in Σ*-i> write X — Tp and
Y — Sp where T and S are random variables in S0(&), and p =
(0, 0, — , 0, 1), and define Xζ&Y = TSp. This relation can be used
to define a convolution for measure on SO(&) in such a way that the
distribution of TS is the convolution of the distributions of T and S.
Restriction to random variables satisfying P[XeE] = P[X e TE] for
every TeSO(k) satisfying Tp — p, yields a theory which takes place
on [ — 1, 1] by identification of X with X p. This gives rise to a
convolution algebra of measures on [ — 1,1]. The idea analogous to
characteristic function here will be a sequence of Fourier-Stieltjes
coefficients with respect to a certain orthogonal sequence. More
specifically, put 2λ = k — 2, and let {W£{x)} be the ultraspherical
or Gegenbauer polynomials normalized so that W£(JL) — 1. These
polynomials are orthogonal on [ — 1, 1] with respect to the measure
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(1 — x2)x~ll2dx; {Wnl2(x)} are the Legendre polynomials. Define

[win)]-1 = Γ [W*(x)Y(l - x2Y~ll2dx .

If μ is a measure on [ — 1 , 1], and N = {0, 1, 2, •••}, put

φ ) = Γ i Wi(x)dμ(x) (n e N) ,

equivalent to the statement

μ ~ Σa(n)w(n) WJ (neN) .

Then if

η ~ Σb(n)w(n)Wi (neN) ,

and if μ*η is the convolution of μ and 57,

μ*η ~ Σα(w)&(w)w(w)W»* (neN) .

The structure of the algebra and the convolution are discussed
in more detail by Bochner [3], Conte [5], and Hirschman [9]. Investi-
gations of stochastic processes associated with this structure can be
found in Bochner [3], Roberts and Ursell [13], Lamperti [11], and
Bingham [1].

Hirschman [9] pointed out a duality between n and x in {Wn(x)}
A distribution sequence is a sequence <α> = {a(n)}^ satisfying a(n) ̂  0
and Σa(n)w(n) = 1; call f(x) = Σa(n)w(n)Wi(x) (\x\<Ll) the charac-

teristic function of (a). Hirschman [9] describes a dual convolution
structure on the distribution sequences. That is, there are non-
negative coefficients c(k, n, m) such that if <α> and <6> are distri-
bution sequences with characteristic functions / and g, and if

c(k) — Σc(k, n, m)a(n)w(n)b(m)w(m) (n, meN) ,

then (c) is a distribution sequence with fg as its characteristic
function. Thus, there is a well-defined dual to the structure associated
with zonal probability distributions on spheres. Problems in this
context have been studied by Kennedy [10], and Bingham [2]. Both
structures are well defined even if 2λ is not an integer.

In this paper, a generalization of this dual structure to a wide
class of orthogonal expansions which include Fourier series, ultra-
spherical series, and certain Jacobi series is formulated.

2* Characteristic functions*

DEFINITIONS AND NOTATION. Let / = [a, b] be a fixed bounded
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interval an integral sign without limits will always denote integration

over /. Let N be the set of nonnegative integers and N' = N — {0};

Σ and Σ' will denote summation over N and N' respectively with

respect to repeated indices. Let a be a strictly increasing function

on I, and let {φn}n&N be a sequence of continuous functions on I such

that I φnφmda = 0 if n Φ m.

Define

h(n) = I I I φn |
2 da\ and c(/fc, w, m) == I φkφnφmda (k, n, meN) ,

and make the following assumptions.
Al. {̂ »}»eiv is a maximal orthogonal set in L2(da).
A2. 0o = 1.
A3. φjb) = 1 (neN).
A4. For some constant M

I 0H(a?) I ̂  M (neN,xeI) .

A5. c(&, 7̂ , m) ^ 0 (&, n, me N) ,
A6. Σh(k)c(k, n, m) < oo (^, meN).

A7. ( ^cta ^ 0 (neN) ,

REMARKS. Axiom A2 can be replaced by A2': \ 0wώα ^ 0 (n e N)

and JΛ^) \ φnda < oo. The purpose of either axiom will be to ensure

that the unit constant function will be a characteristic function, but
A2' adds complications to many otherwise simple arguments. Axiom
A7, which is obviously true in the real case, guarantees that the class
of characteristic functions will be closed under complex conjugation.
A corollary later in the paper will show that the M in A4 can be
replaced by unity.

EXAMPLES 1. Exponential functions. Let a — 0, b = 2π, and
da(x) = dx; replacing N by Z = N[J(-N'), let φn(x) = einx (neZ).
Then h(k) = (27Γ)-1 and

(2π k ~ n + m
c(k, n, m) = \

' ' (0 otherwise.

2. Orthogonal polynomials. Let {pj%e^ be a family of real
polynomials on [a, b] orthogonal with respect to da such that the
degree of pn is exactly n, and such that for some real positive
number M
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( 1 ) I pn(x) I ̂  Mpn(b) (x 6 1 and n e N)

and

( 2 ) j PkPnPmda ^ 0 (Jc,n,meN).

Define φn = pjpjb), then {φn}neN satisfies A1-A7: Al, A3, and A4 are
obvious. A2 follows because φ0 — 1, A5 holds because of (1) and (2),
and A6 follows from the fact that c{k, n, m) — 0 if k > n + m. An
especially important example of orthogonal polynomials is

3. Jacobi polynomials. Let a— — 1, 6 = 1, da(x) = (l—x)a(l+x)βdx
and φn = Pia'β)IPia β){l) where the P£" β) are the Jacobi polynomials.
Then (1) holds with M = 1 if a ^ β and a ^ -1/2 [14, pp. 58 and
168], and (2) holds if a ^ β and a + β + 1 ^ 0 [6] (actually A5 holds
in a slightly larger region [7]). Thus {φ^n&N satisfy A1-A6 ϊίa^β
and a + β + 1 ^ 0. Hence the axioms hold for the normalized ultra-
spherical polynomials {Wi}] and, in particular, for Legendre poly-
nomials.

The following lemma will be referred to later.

LEMMA 1. Suppose \ \f\2da < oo and Σ \u(n)\ h(n) < oo, where

u(n) = \ fφnda. Then f = Σu(n)h(n)φn almost everywhere with respect

to a. If f is continuous, the series converges to f everywhere.

Proof. Σu(n)h{n)φ% converges uniformly to a continuous function
g by the Weirstrass Λf-test. By A4, {h(ri)~x} is a bounded sequence so
u(n)—»0as w—>oo, hence Σ(\ u(n) \ h{n)U2f < oo. Since {h(n)ll2φn} is a
complete orthonormal system with respect to da

f I k 2

I / — Σ u(n)h(n)φn da > 0 a s & > oo .
J I n=Q

Hence f — g almost everywhere with respect to a.
An immediate consequence of the lemma and A6 is

( 3 ) φnφm = Σc(k9 n, m)h(k)φk ,

evaluating (3) at b yields

(4) Σc(k, n, m)h(k) = 1 .

A sequence (u) = {u{n)}neN is called a distribution sequence if
u(n) ^ 0 and Σu(n)h(n) = 1. The continuous function

/ = Σu(n)h(n)φn
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will be called the characteristic function of (u). If (u) and (v) are
distribution sequences, define (w) = (u*v) by

w(k) = ^ ( ά , %, m)u(m)h(m)v(n)h(n) .

Then from (4)

Σw(k)h(k) = [2to(m)M

and from A5, w(k) ^ 0, so (w) is also a distribution sequence. More-
over, the characteristic function of (w) "is the product of the character-
istic functions of (u) and (v) because of (3).

The following theorem lists some of the useful properties of
characteristic functions.

THEOREM 1. (a) Two distribution sequences are the same if and
only if their characteristic functions agree.

(b) Convex combinations and products of characteristic functions
are also characteristic functions.

(c) Let K%)}ieΛr' be distribution sequences with characteristic
functions {fj}jeN' If <%) converges pointwise to a distribution
sequence (uQ) with characteristic function f09 then fj—>f0 uniformly;
conversely, iff3- converges pointwise to a function f which is continuous
at δ, then (Uj) converges pointwise to a distribution sequence (u),
the characteristic function of which is f, and fj~*f uniformly.

REMARK. Corresponding to every fact about characteristic func-
tions is one about distribution sequences; for instance, (b) also says
that the convolution of distribution sequences is also a distribution
sequence. This leads to a kind of stochastic process on the nonnegative
integers. We say X is sampled from distribution v if Pr [X == k] =
v(k)h(k). Let X and Y be sampled from distributions (u) and (v)
respectively. Then if it is observed that X = m and Y — n, sample
Z from the distribution w(k) = c(k, n9 m)h(k). Then the distribution
of Z is (u*v). (This interpretation was suggested by the referee.)

Proof, (a) follows from Al, the first part of (b) is trivial, and
the second part follows from the discussion above.

To prove the first part of (c), let (Uj) and f5 be as in the state-
ment of the theorem, and let M be as in A4. Choose ε > 0; since
(u0) is a distribution sequence, there exists an integer K such that

oo

Σ uo(n)h(n) < ε/AM ,

and since (UJ) —> (u0) pointwise, there is an integer / such that if
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h(n) < ε/iM.

Then, if j ^ J

K

Σ
n=0

^ M Σ I %(%) - «o(w) I

£) I h(n) + M Σ uQ(n)h(n)

— + Λf
2 %

u}(nMn) .

Now

Σ uά(ri)h(n) ^ M

_ε_

uQ(n)h(n) + ik£

Σ

Σ - MO(W)]M^)

K

Σ

Thus l/^a?) - f,(x) I ̂  ε, if j ^ /.

To prove the converse, let {< î>}yê  be distribution sequences, and
let {fj}jBN' be their respective characteristic functions. Assume that
for each xel, fό(x) —•> f(x) as j —> oo, where / is a function which is
continuous at b. Since /,-(&) = 1 (j e N'), it follows that

( 5 )
/ ( « ) •

= 1 as t b .

Let u(n) = \ fφnda, then by Lebesgue's dominated convergence theorem

( \ ^ ώ α : —• \fφnda = ^(^) as i —• c>o, so u(n) ̂  0; and for any K,

K K

Σ u(n)h(ri) = lim Σ u3(ri)h(n) ^ 1 ,

so Σ u(n)h(n) S 1. From Lemma 1, it follows that

except on a null set with respect to da, so

lim Σ u(n)h(n)φn(x) = lim /(#) = 1 .

By Lebesgue's dominated convergence theorem and Axiom A3, it
follows that Σ u(n)h(n) — 1; so (u) is a distribution sequence. Now
the first part of (c) tells us that the sequence fs converges to its limit
uniformly, so / is continuous, and (6) holds everywhere on /, thus /
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is a characteristic function.
The following corollary justifies the replacement of M by 1 in A4.

COROLLARY. | φn(x) | g 1 for x e l .

Proof. By Theorem 1 (b) (φn)
p is a characteristic function for

each p e N'. Let a{Ί>){k) = \ (φn)
pφkda, then Σ h(k)a{p)(k) = 1, so

p = i Σ a{p)(k)h(k)φk(x)

i.e.,

I ̂ .(a?) I* ^ Af (peN'),

so ! φn(x) I ̂  1.
A class of characteristic functions which play a particularly

important role in our investigation are the divisible characteristic
functions: we say a characteristic function / is divisible if for every
ne N', there is a characteristic function fn such that (fn)

n = /. Note
that this definition is identical to the classical one (the phrase "infinitely
divisible" is often used). fn can be taken to be the continuous nth root
of / which takes the value 1 when t = b, and is denoted by /1/%. The
following theorem lists the basic properties of divisible characteristic
functions.

THEOREM 2. (a) Divisible characteristic functions have no zeros
on [a, δ].

(b) Products of divisible characteristic functions are divisible.
(c) If {fj}jeN' is & sequence of divisible characteristic functions

that converges to a characteristic function /, then f is divisible.
(d) If f is a divisible characteristic function, then fp is a

divisible characteristic function for each p > 0.
(e) If g is a characteristic function and if p > 0, then f =

exp {p(g — 1)} is a divisible characteristic function.
(f) Suppose u(n) ̂  0 (neNr) and Σ ' u{n)h(n) < °o, then

( 7 ) / - exp [Σ' u(n)h(n)(φn - 1)]

is an infinitely divisible characteristic function] conversely every
infinitely divisible characteristic function can be uniquely expressed
in the form (7).

The formula (7) is analogous to the Levy-Khinchine canonical
representation of divisible characteristic functions.

Proof, (a)-(e) are similar in statement and proof with theorems
that can be found in [12, pp. 108-113].
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Proof of (f). If u(n) ^ 0 and A = Σ'u(n)h(n) < <χ>, then / =
exp {Σ' u(n)h(ri)(φn - 1)} = exp {A[(ΣS A-ιu{n)h{n)φn) - 1]} is a divisible
characteristic function by (e). To demonstrate the converse, let /be
a divisible characteristic function, then for each meN'

with ujn) ^ 0 (meN',neN) and Σ ujn)h{n) = 1. Now

s o /m = exp (#m) is a characteristic function by (e) and fm converges
pointwise, indeed uniformly by Theorem 1 (c) to /. Since / is divisible,
it is bounded away from zero, whence gm —* g = log/ uniformly. Thus
for ne N' mujn) = I gmφnda converges to I gφnda = u(n), hence u(n) ^
0. Now

m Σ ' um(n)h(ri) = -([ den \ gmda > -([ don I gda = 5 ,

whence m Σ ' um(n)h(n) ^ J5 + 1 for m sufficiently large, and thus
Σ ; u(n)h(n) ̂  JS + 1, so (f) is proved.

We say a distribution sequence <w> is divisible if for each n there
is a distribution sequence (un) such that <u*%> = (u) where, (u*1) = (u)
and (u*ny — (u*u*^n~1)S). Then an immediate consequence of (f) is the

COROLLARY. A distribution sequence (u) is divisible if and only
if (u) has the form

\ L^=o n\

for some distribution sequence ζy}.

REMARKS. 1. If / is divisible, then (/)1/w is a characteristic
function which converges to the constant function l a s m ^ ^ , thus
the existence of divisible functions implies Axiom A2. Conversely
Axiom A2 states that 1 is a characteristic function; 1 is obviously
divisible, so A2 is equivalent to the existence of divisible functions;
or, what is the same, the existence of divisible functions is equivalent
to 1 being a characteristic function.

2. An alternate approach to this subject is to take the convolution
algebra as the primitive notion. This is the method used by Gilewski
and Urbanik [8]. Let & denote the set of nonnegative meas-
ures on N with total mass not exceeding 1, and ̂ 0 be the probability
measures in ^*. We say Pk —> P if Pk(n) —* P{n) for each n e N. Ek

stands for the unit mass concentrated at k. A binary operation * on
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& is a generalized convolution if it satisfies
( i ) E,*P= P(Pe&).
(ii) (αP + bQ)*R= α(P*JS) + b{Q*R)

(P, Q, 126 ^ , , α, b > 0, and α + b £ 1).
(iii) If Pk-+P, then P,*Q — P*Q, (P, P4, Q
(iv) P * Q G ^ 0 whenever P, Q e ^ .
The convolution is studied by means of a generating function which

is a one-to-one mapping from & into the analytic functions on the unit
disc. The image of P, called the generating function of P, is denoted
by Φp and must satisfy

( i ) φaP+bQ = aΦP + bΦQ, (P,Qe^* and, α, 6 ^ 0, α + b ^ 1).

( i i ) ΦP»Q = ΦPΦQ (PfQe&>).

(iii) Φpk-+ΦP uniformly on compact subsets of the disk if and
only if Pk~>P.

In this context, then, Gilewski and Urbanik obtain a result analogous
to Theorem 2(f).

In this general setting a characteristic function can be defined by
requiring the ΦP to be continuous on some interval [α, b] and replacing
(iii) by (iii') ΦPk-+ΦP uniformly if and only if Pk~+P.

3* Stable characteristic functions* In the classical case, a dis-
tribution function F is said to be stable if to every bt > 0, b2 > 0, and
real cl9 c2, there corresponds a positive number b and a real number
c such that if F, = F((x - c%)jb%)y then Fx * F2(x) = F((α - c)/δ). The cor-
responding relation for the characteristic functions is that f(b£)f{b2t) =
f{bt)eiat where α = c — cx — c2. Thus the study of stable characteristic
functions reduces to a study of characteristic functions which have
the following property: given positive real numbers &x and b2, there
exists a positive real number b such that /(M)/(W) = /(&*)• A

canonical form for all stable distributions in the classical case can be
found in [12, p. 132].

The balance of the paper is devoted to the formulation of an
appropriate notion of stability and to the identification of the stable
characteristic functions as so defined.

In the classical definition of stability, a set of functions was
required to exhibit a certain behavior with respect to a semigroup
of functions on the line. This notion is generalized so that stability
with respect to a semigroup acting on I can be defined.

Reminiscent of the semigroup sc(x) = ex define a dilation to be a
1-parameter family of function sc each one being defined at least on I
such that sc is strictly increasing if c > 0 and the following properties
all hold

Bl. so(x) = δ.
B2. se(b) = δ (c ^ 0).



GENERALIZED CONVOLUTIONS AND POSITIVE DEFINITE FUNCTIONS 575

B 3 . sc(sd(x)) i s d e f i n e d i f c, d ^ 0 a n d xel a n d sc(sd(x)) = s e d ( x ) .
B 4 . s,(x) = x .
B5. sc(x) is continuous in c and in x.
As examples, consider sc(x) = b — c(b — x), and sβ(a;) = (δ + 1) —

(6 + 1 - x)c.
A definition of stability can now be given. Let s be a dilation

and let E(s) = {sc(» | c :> 0, x e ί } ; write #c(x) for #(sc(») if there is
no danger of confusion. A function / defined on E(s) is said to be
stable with respect to s (or simply stable if there is no ambiguity) if
fe restricted to I is a characteristic function for each c ^ 0, and if
corresponding to each c ^ 0 and d ^ 0 there is an e ^ 0 such that
fc(oo)fd(x) = fe(x) for xel; when this is the case write

cod = e

If / is stable with respect to s say (/, s) is a stable pair. As a
trivial example, if / is the function which is equal to one at each
point of /, then (/, s) is a stable pair for every dilation s.

In order to state the main result a canonical form for dilations
is necessary. This is given in Lemma 3, below, the proof of which
requires

LEMMA 2. (a) For each xel, x Φ b, sc(x) is a strictly decreasing
function of c.

(b) For each x e l , x Φ b, {sc(x) | c ^ 0 } 3 l .

Proof. Since sc(x) is continuous in c and sλ(x) = x < b = so(x) it
will suffice to show that if c Φ d, sc(x) Φ sd(x). Suppose by way of
contradiction that sc(x) = sd(x), and assume that λ = d/c < 1. Then
application of slίc to both sides of the last equation yields x = sλ(x))
repeated application of sλ leads to x = sλn(x). But, Xn—>0, so sXn(x)-+b,
hence x = b. This contradiction establishes (a).

To prove (b) let y e L If y ^ x then s^x) — x ^ y ^b = sQ(x) so
y — sc(x) for some c ^ 1. If y < x then x = sd(y) for some d in (0, 1],
but then y = s1/d(ίc), so (b) is proved.

LEMMA 3. Let ψ be a strictly decreasing continuous function
defined on an interval containing I and with range containing [0, oo)
such that ψ(b) = 0. Then if we define

(8) se(x) = ψ-\c(γ(x))) (c^0)

s is a dilation) conversely if s is a dilation there is a strictly
decreasing continuous function ψ defined on an interval containing
I and with range containing [0, co) such that ψ(b) — 0 satisfying (8).
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Proof. If ψ satisfies the hypothesis then B1-B4 follow by direct
computation and B5 is trivial.

To prove the converse, let xoel, x0 Φ b and define ψ by ψ~ι{t) =
£ί(#o). ψ is well defined by Lemma 2 (a). The domain and range of
ψ are correct by Lemma 2 (b). Finally, to establish (8) let x e I.
Then for some d ^ 0, x = sd(xQ), so f '

= scd(xQ) = sc(sd(xQ)) = sc(x).

4. The main result*

THEOREM 3. Let s be a dilation determined by the function ψ as
in (8) and let B — sup {β | 1 — Xψβ is a characteristic function for
some λ > 0},

(a) There are nontrivial stable pairs (/, s) if and only if B > 0.
(b) If B > 0, (/, s) is a stable pair if and only if

(9 ) / = exp [-mψβ] for some m ^ 0 and 0 ^ β ^ B .

REMARKS. The hypothesis of (a) can be more simply stated: for
some λ > 0 and β > 0, 1 — Xψβ is a characteristic function.

The proof of the theorem will follow from a number of lemmas.
In the following assume (/, s) is a fixed nontrivial stable pair and
that s is determined by a function ψ as in (8).

Define c(0) = 0 and c(n) = loC(n - 1) (neN'). The following
lemma describes the behavior of fc and c(n).

LEMMA 4. (a) f = /, /0 = 1, (/.)* - /β 6 f and fafh - /β.6.

(b) /,(*)=/• faetf').
(c) φ , ) =9*0 (raeiV7).
(d) / is divisible.
(e) If x Φ y then fx Φ fy.

Proof, (a) follows by trivial computations, and (b) follows by
iterating the last relation in (a), (c) follows from (b) and the assump-
tion that / is not constant.

Since / is stable fnc(n) is a characteristic function for neN'.
Moreover [flcin)]

n - [f%,cM = [fe^han) = Λ = /, so (d) is proved. To
show (e), assume by way of contradiction that x > y; but fx = fy so
we have (fx)l!x = (fy)llx or / = / „ , . Thus / = /(W.,* (fteAΓ')> but
(2//#)fc —*0 as k—>oo and / and s are continuous, so / = 1 which is a
contradiction.

The next task is to extend c t o a function on [0, oo) which satisfies

(10) /β(., = /• .

Since / is divisible, /* is a characteristic function for every positive
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x, so by (e) of Lemma 4 there is at most one positive number c(x)
such that (10) holds. Let X denote the set of all x ^ 0 for which
such a c(x) exists.

LEMMA 5. Xis closed under multiplication and division] ifxeX
and y e X, then c(xy) = c(x)c(y). Moreover, X is dense in [0, oo).

Proof. If x and y are in X, f*v = [fc{x)\
y = /•<*)„(*>, s o ^ e l a n d

by (e) of Lemma 4 c(xy) = c(x)c{y). If xeX, x Φ 0, / = [/C^LM*) =
[/1i/β<.) = [/i/c(,)]% so /1/af =/ 1 / β ( j B ) , whence l / x e l and c(l/aθ - 1/Φ).
Thus X is closed under division, the last assertion follows because X
contains the positive rational numbers.

There is now enough information to obtain the exact form of c:

LEMMA 6. X = [0, oo) and c(x) = xr for some 7 > 0, so that

(ii) r = u.

Proof. Let x e [0, oo), and let {x{n)}neN be a sequence in X which
converges to x. By taking a subsequence, it may be assumed that
c(x(n)) —» c0 G [0, oo] as w —> oo. If c0 = <>o? let s (w) = l/x(n), then
«(%) 6 X (w e ΛΓ) and c(z(n)) - 0 a s % - o o , Thus / 1 / x - lim._>0O/z(%) =
lim^^/^,^)) = / 0 , or fllx = f0, and by Lemma 4, this is not possible
for any real x; hence cQ < co.

In this case, fco = l i m ^ / c ( x ( % ) ) - lim^f*™ = / β , or/* - /β0, thus
x G X and c(x) = cQ. Moreover, c is continuous at x since Lemma 4e
shows that if x(n) is any sequence which converges to x then
Vimc(x(ri)) = limc(ίc(^)) = c(x), so lim c(x(n)) = c(x).

Thus c(xy) = c(x)c(y) for positive reals x and y, c(0) = 0, and c is
continuous. These conditions guarantee that c(x) = xr for some 7 ^ 0 .
This can be seen by considering the function L(t) = log c(e*) for t real.
L is continuous and linear so L(t) = Ίt for some real 7, whence e(#) =
αr for some real 7; finally 7 > 0 since c(0) = 0.

The question is now: for which /S does (9) describes a character-
istic function. A partial answer is given by the following lemma which
adopts Bochner's technique of subordination (cf. [4, pp° 91-93]) to the
present case.

LEMMA 7. If for some function g, exp(-mg) is a characteristic
function for each m ^ 0 then so is exp( —mg 3) for each m ^ 0 and
0 < / 3 < l .

Proof. First observe that exp ( — mxβ) is completely monotone for
x > 0; i.e., its derivatives alternate in sign. Thus by Bernstein's
theorem [15, p. 161], it is the Laplace-Stieltjes transform of a positive
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measure p:

S CO

exp (— xt)dρ(t) (x > 0) .
0

p has, in fact, total variation one as can be seen by letting x decrease
to zero and using Lebesgue's monotone convergence theorem.

Now define t(n, i) = i/n for i = 0, 1, , n2 and ne N', and set
E(n, i) = [t(n, i), t(n, i + 1)] if i = 0, 1, , n2 - 1, and E(nf n2) =
[n, oo).

/•(a?) = Σ exp {-t(n, i)g(x)}ρ[E(n, i)]
0

is a characteristic function because it is a convex combination of
characteristic functions. On the other hand, it is elementary to show
that

limfn(x) = \ exp (-tg(x))dρ(t) = exp {-m[g(x)]β} .

So exp {—m[g(x)]β} is a pointwise limit of characteristic functions.
Since it is continuous, it is itself a characteristic function by Theorem

Proof of Theorem 3. Let s, φ, and B be as in the statement of
the theorem. Define

The set of all stable functions is

S = {/(m β) I m ^ 0 and 0 £ β ^ B) .

To see this, let / = fim'β) e S and assume 0 < β < B. Then for some
positive λ, 1 — Xψβ is a characteristic function; so by Theorem 2 (e),
f{m"β) is also, as long as m > 0. Moreover

fc = exp{-mcβfβ}

so that fc is a characteristic function for every c ^ 0, it also follows
that

(12) fjd = f. where e' = c' + d' ,

so / is stable.
To show fίm"B) is stable, let β increase to B, then f{

c

m β) converges
pointwise to / c

( m S ) which is continuous at 6, so by Theorem 1 (c) fc

{m"B)

is a characteristic function for every c Ξ> 0. Now fix c and cί, and let

e(β) = (ĉ  + dθ1/i9
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so, if 0 < β < B, it follows from (12) that

Jc Jd — Je(β)

Again, letting β increase to B it is found that / ( w j 5 ) is stable. Thus
the set S consists entirely of stable functions.

Now suppose / is stable, by Lemma 6 there is 7 > 0 so that (11)
holds. Let g = /<TO w then a direct computation shows

(13) g' = gxr

(even if 1/7 > J5). Using (11) and (13), if

k = log //log g

x7(

If tγΦt, by Lemma 2 (b) an x can be found such that ίt = vOO* hence
) = k(sxϊ(t)) = k(t) and A; must then be constant so

(14) f = fiM>β)

for some constant Λί and β = 1/7.

Since / is a stable characteristic function, it is divisible by Lemma

4 (d), so by Theorem 2 (f) there must be a(n) ^ 0 ne N' such that

X' a(n)h(n) = A < oo

(15) / - exp [Σ ' a(n)h(n)(φn - 1)] .

Comparing (14) and (15),

-Mr = Σ' a(n)h(n)(φn - 1) ,

or

(16) 1 - λ^ = Σ A-tyriMnfa
n=ί

where λ = M/A. The right hand side of (16) is a characteristic func-
tion, hence 0 < β ^ B. M> 0 because / is a characteristic function
s o / e S , and S is exactly the set of stable functions, and part (b) of
the theorem is proved.

In the course of the above argument stable functions were pro-
duced under the assumption B > 0, and it was shown that if / was
nontrivial and stable, / = f{m β) for some β > 0, which implies B > 0,
thus (a) is proved also.

5* Examples* Now a detailed analysis of the simplest /-semi-
group is made in the following
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THEOREM 4. If {φn}neN are polynomials and sc(x) = b — c(b — x),
then the characteristic functions which are stable with respect to S
have the form

(17) exp {-m(b - x)β} (m ^ 0, 0 < β £ 1) .

The proof, which appears after the following lemma, consists of
two parts: the first being to show that f(x) = 1 — λ(5 — x) is a
characteristic function for some λ > 0, which implies by Theorem 3
that functions of the form (17) are stable, and the second part will
show that β cannot exceed 1.

The following lemma is used in both parts of the proof.

LEMMA 8. φ'n(b) > 0 if n > 1.

Proof. The zeros of φn are simple and contained in (α, b) [14,
p. 44]; by Rolle's theorem, the same holds for φ'n. Thus φr

n has constant,
nonzero sign on [6, co). Since φn is a polynomial and since φn(b) = 1,
the lemma follows.

Proof of Theorem 4. Define the moments μ(i) — I af<ta(#). φ1 is

a first degree polynomial satisfying φx{b) — 1, so φx{x) = 1 — c(b — x).

Lemma 8 implies that

(18) c > 0 .

/ is also a polynomial of degree one so

(19) f(x) = 1 - λ(6 - x) = a(0)h(0) + α(l)Λ(l)^(a?) .

Differentiation of the above yields

λ - a(ϊ)h(l)c .

Since / is bounded by 1 on /, λ > 0, so (18) implies

(20) α(l) > 0 .

Also α(0) = [ fda = 1 - X(bμ(0) - μ(ΐ)). Thus for small enough

positive λ

(21) α(0) > 0 .

Evaluation of (19) at x = b shows

(22) α(0)λ(0) + α(l)Ml) = 1 >

and so (20), (21), and (22) imply that / is a characteristic function for
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sufficiently small λ.
To see that β <> 1, note that if / = Σ a(n)h{ri)φn is a characteristic

function which is differ en tiable at 6, then

Σ a(n)h(n)φ'»(b) £ f'(b)

(this is readily shown by Fatou's lemma). In particular, Lemma 8
guarantees that if / is differentiate at b,

(23) f(b) > 0 .

Thus if f(t) = exp { — m{b — t)β}, then β cannot exceed 1 without
violating (23).

It is easy to see the conditions on s and {φn} which make Theorem
4 possible. They are stated in the following theorem which is given
without proof.

THEOREM 5. Suppose either
(a) {φn} are real orthogonal polynomials, or
(b) 0o = 1, and for some complex number a and all neN'

f α > 0 .
b — x

Let s, ψ, and B be as in Theorem 3, and assume 1 — Xψ is a
characteristic function for some λ > 0, then the set of functions stable
with respect to s is

{exp {-mψβ} I m ^ 0, 0 < β g 1} .
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