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ON COMPLETENESS AND SEMICOMPLETENESS
OF FIRST COUNTABLE SPACES

JOYLYN REED

In this paper, well known completeness conditions in
Moore spaces are generalized to arbitrary first countable
spaces. Relationships are established between these con-
ditions and various other completeness concepts including
Cech completeness, countable completeness, and countable
subcompactness. Finally, conditions are given for embedding
a given first countable space in a " first countable complete "
space. As one application of the theory developed, a neces-
sary and sufficient condition is obtained for the embedding
of a Moore space in a semicomplete or " Rudin" complete
Moore space.

There has been considerable work done concerning complete Moore
spaces, i.e., spaces satisfying R. L. Moore's Axiom 1, and completable
Moore spaces, i.e., spaces which are dense subspaces of complete Moore
spaces. There has also been much interest in M. E. Estill Rudin's
concept of semicomplete Moore spaces, i.e., spaces satisfying Axiom
1". In this paper the author applies the concepts of completeness
and semicompleteness to more general first countable spaces and estab-
lishes some theorems involving these concepts. Embedding theorems
are also given. The last theorem of the paper answers a question
discussed by Steve Armentrout at the Arizona State Topology Conference
in 1967 by supplying a necessary and sufficient condition for a Moore
space to be a dense subspace of a semicomplete Moore space.

The lower case letters m, n, i, j , and k will denote positive integers
unless otherwise stated.

DEFINITION 1. The statement that the sequence Glf G2, G3,
is an f.c. development for the space X means that for each n, Gn —
{9i(%) \i^n, xe X}, where for each xeX, g^x), g2(x), gs(x), is a
sequence of open sets forming a local base at x.

DEFINITION 2. The f.c. development is complete (semicomplete)
provided that if Mlf M2, Λf3, is a sequence of sets such that for
each n, Mn is a closed set contained in some element gn of Gn and
contains Mn+1 (Mn is an element of Gn and contains Mn+1) then
Γ\T=iMi=it 0 . The first countable space is complete (semicomplete)
if and only if it has an f.c. complete (semicomplete) development.

THEOREM 1. A T2 regular first countable semicomplete space X
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satisfies Baire's theorem (the intersection of countably many dense
open sets is a dense subset of the space).

Proof. For each x e X, let g^x), gz(x), denote a local base for
x such that the corresponding f.c. development Gu G2, is semi-
complete. Let D — dlf d2, denote a countable collection of open sets,
each dense in X, and let R be an open set. R contains a point pL

of dt. Let gni(pt) e GL such that pt e gni(px) and sΰjpd ξS RΠd^ For
i > 1, let Pi G Qn^ipt^) Π d, and let gni(pt) e Gt such that p, e gn.{p%)
and gn.(Pi) £ fl^ίPi-i) Π d,. Notice that for each i, gH(Pi) S-diOR

and ^(p,) s g^ip^). Thus fl~=i £•<(&) ̂  0 . Since ΓlΓ=i ff
(ΠΓ=i ̂ i) Π i2, the intersection of D is a dense subset of the space.

The reader should compare the following two theorems with those
analogous theorems of Creede in [4].

THEOREM 2. A completely regular f.c. complete space X with a
Gδ diagonal is Cech complete.

Proof. Let Y be a T2 compact space such that X is a dense sub-
space of Y. For each x e X, let g^x), gz{x), be a sequence of open
sets of X forming a local base at x such that the corresponding f.c.
development is complete, and {x, y} £ ΠΓ=i^W implies x = y. For
each x e X and positive integer i, let Gt{x) be an open set of Y such
that Gi(x) Γ) X = fifi(αj), and let H^x) be an open set of Y containing
x such that ΈJx) Q Gt(x) (in Y). Notice #<(&) Π-X" Π I S <?,(&) n X.
For each positive integer i9 let ίẐ  = U {Hi(x) \ x e X}. Thus Hu H2,
H3, is a sequence of open sets in Y such that I S ΠΓ=i -Hί

Assume p e ΠS=i -Hi- For each i, let fli(Xi) contain p. Let Â  —

) Π X Π X. Since X is dense in Γ, A1? A2, A3, is a sequence
of nonempty closed sets of X with the finite intersection property such
that for each i, At S #*(#*)• Thus there is a point x of X such that
x 6 ΠΓ=i A<. Assume α Φ p. For each i, let jβ, be an open set of F
containing ί> such that Iζ (in F) does not contain α; and Rt S
Let B€ = JB4 Π X Π X. As before, ΠΓ=i Bi contains some point k of X
But {x, k} S Π^=î i(̂ i)> so x — k. However, x Φ k since x$ Rt and
keB^Έi. Thus it must be that x = p and p e l . Hence f|Γ=i i?ί = X.

THEOREM 3. A Cech complete first countable space X is f.c.
complete.

Proof. Let Y be a T2 compact space such that X is a G3 set
in Y. Let Pl9 P2, be a sequence of open sets of Y such that
X = ΓiT=iP^ For each xeX, let ^(cc), #2(#), . . . be a sequence of
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open sets of X forming a local base at x, such that for each i,
gi+1(x) g gi(x). For each x e X and positive integer i, let G^x) be an
open set in Y such that gt(x) — Gt(x) Π X, and let H^x) be an open
set of Y containing x such that Ht(x) S G^x) Π Pi and Hi+ι(x) g iϊi(αθ
Thus hx{x), h2(x), is a local base at x in X where for each i, h^x) =
Hi(x) Π X. For each positive integer i, let J^ = {hn(x) \ n ^ i, x e X).
Thus Hlf H2, Hz, is an fx. development for X.

Let Al9 A2, A3, be a monotonically decreasing sequence of closed
sets of X such that for each i, At S hni(%ί) e i?*. The sequence C£ F A1?

CZ YA2, Cl YA3, , where Ci YAt denotes the closure in Y of Ai9

is a sequence of closed sets in Y with the finite intersection property;
hence, there is a point y of Y such that ye Γ\T=ιCl YA^ For each
i, Cl YAt g CT Y(Hni(xt) Π l ) g P,. Thus 1/ e fl&i P4 and hence y e X.
Thus f/i, iϊ2, H3, is a complete development for X.

In first countable spaces, the concepts of fx. completeness and
fx. semicompleteness are related to Frolic's concept of countable
completeness [6] and de Groot's concept of countable subcompactness
[7]. To avoid confusion the term "countable Cech-completeness",
coined by Lutzer and Aarts [1] will be used for the term "countable
completeness".

The phrase "C is a centered system on X" means "C is a collection
of subsets of X such that for any finite Co S C, Π Co Φ 0 " A collec-
tion F of nonempty subsets of X is called a regular filterbase [7] if
whenever Fl9 F2 e F, some F3e F has F3 § F1ΓΊ F2. A regular space
X is countably Cech-complete [6] if there is a sequence {Bn} of open
bases for X such that if nx < n2 < n3 < and if the sequence {Bnfc},
where Bnjc e Bnk forms a centered system, then Π ί B*J = 0 . A regular
space is countably subcompact [7] with respect to a base B of open
sets provided that any countable regular filterbase F ϋ B has
ΠFΦ 0.

THEOREM 4. In regular first countable spaces, the following
implications hold:

(1) fx. completeness ==> ( 2) countable Cech-completeness
==> ( 3 ) fx. semicompleteness .

None of the above implications are reversible. In Moore spaces,
countable Cech-completeness <=* More completeness <=>f.c. completeness
[1], and Rudin completeness <=>fx. semicompleteness. M. E. Rudin's
example [5] of a Rudin complete space that is not Moore complete
shows (3) =*> (2). The following example shows (2)=^>(1).

EXAMPLE A. The Sorgenfrey line is the topological space S of
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real numbers topologized by taking sets of the form [a, b) to be basic
open sets. Let Dl9 D2, D3, be a monotonic sequence of open sets
on the line such that ΓlΓ=ι A = I, where / is the set of irrationals.
Let rl9 r2, r3, ••• denote the rationals. For each x e I, let {[x, xz)} be
a sequence of open sets closing on x such that for each i, x% is a
rational not in {rl9 r2, , r j . For each rational x, let {[x, xτ)} be a
sequence of open sets closing on x such that for each i, xt is a rational,
and [x, xt) Π ({n, r2, , r J - {x}) = 0 .

For each positive integer n, let JS% = {[x, xz)/x eS, ΐ ^ %}. Notice
that if r is a rational there exists an n such that for i ^ ny r e g e Bt

implies g = [r, #<) for some xt. Let {[#<, qt)} be a centered sequence
such that for each i9 [pτ, qτ) e 2?<β Let x e Π {[Pi, ^]} D u e t o t l i e c o n -
struction of {Bn}, x e Γ\{[Pu Qi)} T h u s S is a first countable, countably
Cech-complete space.

Now let Gl9 G2, G3, represent any fx. development for S. There
must exist a monotonically decreasing sequence having the following
properties. (1) the nth term of S belongs to Gn and contains its left
endpoint, pn, and (2) pl9 p2, p3, is an increasing sequence converging
to a number x on the line. The sequence {[pi9 x)} is a monotonically
decreasing sequence of closed sets such that the nth. term is a subset
of some g e Gn, but has no common part. Thus S is not fx. complete.

The following theorems follow readily.

THEOREM 5. Any open subspace of an fx. complete {fx. semi-
complete) is fx. complete {fx. semicomplete).

THEOREM 6. A Gδ subspace of a regular fx. complete space is
fx. complete.

In Moore spaces, Rudin completeness <=> countable subcompactness.
In regular first countable spaces, countable subcompactness implies
fx. semicompleteness. In [1], Lutzer and Aarts use the term "com-
pleteness property" for any property implying the Baire property.
Of the several completeness properties they examine, all but countable
subcompactness and subcompactness are such that a space may have
the property locally but fail to have it globally. The proof they give
showing that if a regular space is locally countably subcompact then
it is countably subcompact may be slightly altered to yield this
theorem.

THEOREM 7. // a regular first countable space is locally fx.
complete, then it is fx. semicomplete.

It would be interesting to know if in first countable spaces, fx.
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semicompleteness implies countable subcompactness.
Some technical definitions are needed for the following theorems.

DEFINITIONS, (a) If G = Glf G2j G3, is a sequence of open sets,
the sequence gl9 g2, is a nested sequence (^-sequence) wrt G if and
only if for each i, gίeGi and contains ^ ( ^ e G i and contains # ϊ +i).
(b) The set sequence gl9 g2, is adjacent to the set M if and only
if for each i, gt Π M Φ 0 . (c) The set sequences gl9 g29 g3, and
ku k29 A3, are mutually separated if and only if for some i9 g% ΓΊ
ki = 0 . (d) The open set D covers the set sequence gl9 g2, gZ9 if
and only if for some i, gt g D.

THEOREM 8. Each T2 first countable space is a dense subspace
of an f.c. complete space.

Proof. Let X be a first countable space. For each x e X, let
Qi(%), Qz{%), be a monotonically decreasing sequence of open sets
forming a local base at x, and let G = Gu G2, G3, be the corre-
sponding f.c. development. The statement that glf g2f is an
/-sequence means for each n, gn = Π?=i Qi f ° r some sequence g[, g2f g[>
• where for each i, g\ eGt. If each of g = gl9 g2, g3, and k =
kίf k2, kZy is an /-sequence then we will say g ~ k if and only if
for each positive integer n there exist positive integers i and j such
that ki S flrw and gry S kn. If βr is an /-sequence, let g' denote [k \ g ~ k).
Let Xf = {gr I g is an /-sequence such that each term of g is non-
empty}. For each open set D, let Df = {g' \D covers g). Let 0 = {Df \ D
is open in X) be a basis for a topology Q on X.

The ordered pair (X\ Ω) is a topological space. X is a dense
subspace of Xr because X is homeomorphic to the subspace {I{x)r \ x e
X, I(x) = g^x), g2(%), •••}• X ' is first countable. For each ΓeX',
where I — gl9 g2, , and for each positive integer n, let Dn(Γ) = gn.
Thus A(i"0', D2(Γ)\ DS(Γ)', forms a local base at Γ in X'.

X' is f.c. complete. For each positive integer ί, let G\ —
{DJJ'y \n^i, Γ e X'}. Let Ml9 M29 M3, be a monotonically de-
creasing sequence of closed sets of Xf such that for each i9 Mt g
Dn.{y[)f for some Z>nί(y{)f e G[. Since ΠΓ=i A,(?/0' ^ 0 for each m,
then ΠΓ=i J5Λ4(i/J) ^ 0 . Now for each i, Dfti(2/ί) - Γlϊ=i ^*(l/i) ίor some
sequence g1{y%)f g2{yx), g3(Vi), where gk(yt) e Gk. Thus Dn.{y[) £ ^,(2/,)

since nt >̂ i. Since f|ί=i Dn.(yt) Φ 0 for each m, then flΓ î ^<(l/i) ̂  0
Observe that gt(yt)eGt, so Π U ί / M Π L ^ Λ Π L i ^ ^ ^ ) , ••• is an
/-sequence. Let J denote this /-sequence and examine any open set
D' of Xr containing Jf. D contains Πί=i 9z(vd f ° r some k. So D
contains ΠSU Ai/s/ί)* and thus D' contains Π*=i-Dn/l/ί)' and M"fc. J '
is thus a point or limit point of Mn for each n, and hence J ' e (\?=1Mi.
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Thus, G[, G2, G5, is an f.c. development for X'.

THEOREM 9. Each regular T2 space X is a dense suhspace of a
T2 f.c. semίcomplete space.

Proof. For each x e l , let I(x) = gλ(x), g2{x), be a nested
sequence of open sets forming a local base at x. Let G = Gl9 G2, G3,
• be the corresponding f.c. development for X

If I is a nested sequence wrt G, let Γ = {if \ K is a nested sequence
wrt G and if ~ /} (refer to the technical definitions and the proof of
Theorem 8). Notice that x Φ y implies I(x) and I(y) are mutually
separated.

Let K denote a maximal collection of mutually separated nested
sequences wrt G such that for each x, I(x) e if. *Let if' — {kr \ k e if}.
If D is an open set, let D' = {k'\D covers k and k e if}. Let B =
{D'\D is open in X) be a basis for a topology fl on ϊ ' . X is a
dense subspace of the Γ2 space (if', Ω).

if' is first countable. For each Γ e if', where / = gl9 g2, gs, ,
and each positive integer n, let Dn(Γ) = gn. Thus A(') ', A( ί')', •••
forms a local base at Γ in if'.

if; is f.c. semicomplete. Examine the f.c. development for if',
G' = G[, Gί, -, where for each i, Ĝ  - {^(1')' | w ^ i, Γ e if'}. Let
ikf = Dnι(Il)f, Dn2(I2y, be a nested sequence wrt G', i.e., for each i,

Dni+1(Il+ίγ S C%ί(I/)' and JP^I/y e ff. Now for each i, Dni(U)'= gmi(xt)'

for some gm.(x,) e Giβ Since flfm.+1(a?t+1)' S gmi(XiY in if', then flrTO.+1(α;<+1) S
flrTO<(a?t) in X Hence, ^m i(^0, ^W2(^2)? ^m3(^3), is a nested sequence
wrt G in X Since if is maximal, there is an element I — gu g2, g3,
• of if such that for each k, gmk(xk) ΓΊ gk Φ 0 Let D' be an open
set of if' containing Γ. D contains gt for some i, and in fact D
contains gk for k^i. Thus for all k, D Π gmjc(%k) Φ 0 and D' Π ̂ w^(^0' =
D f ίΊ Dn]c(Γy Φ 0. So ΓeTQJζ)' for each positive integer fc. Thus
I'e ΠΓ-i Dn.(Iiγ. Hence, G' is an /.c. semicomplete development for
if'.

DEFINITION 3. Property R. A Γ2 regular first countable space
has property R provided that there exists an f.c. development G =
Gu G2, G3, and a collection if of mutually separated nested sequences
wrt G such that: (1) for each x e Xf some element of if forms a local
base at x, (2) if g is a nested sequence wrt G, there is an element &
of If such that g and & are not mutually separated, and (3) if the
open set D covers the sequence glf g2, g3, of if, there is an integer
n such that D covers any element k of K adjacent to gn.

THEOREM 10. A T2 regular first countable space X with property
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R is a dense subspace of a T2 regular f.c. semicomplete space.

Proof. Let G and K respectively be the f.c. development and
collection as assured by property R. That X is a dense subspace of
a T2 f.c. semicomplete space can be seen by applying the part of the
proof of Theorem 9 following *, using K as defined here.

We will now see that the space Kf is regular. Let Df be an
open set containing /' of K', where I = glf g2, gz, . Thus D covers
/, and there is an integer n such that if k = ku k2, of K is adjacent
to gn, then D covers k. Let kf be a limit point of DJJ')f = g'n. Thus
Dx{kry, D2(k'Y, is adjacent to DJJ')' and so kl9 k2, kz, is adjacent
to gu. Thus D covers k, and kf e D'. So DjF)' £ D'.

THEOREM 11. Each T2 regular f.c. semicomplete space X has
property R.

Proof. Let G = Gu G2, be an f.c. semicomplete development
for X. For each xe X, let I(x) = gSx), g2(x)f where for each i,
gt{x) e Gif and I(x) forms a local base at x. Let K = {/(x) | x e X).

Let ^ = glf g2, be a nested sequence wrt G. Thus for some
x, xe ΠΓ=i#t So /(#)GiΓ and βf and I(x) are not mutually separated.

Let D be an open set covering I(x) of iL Let n be an integer
such that gn(x) S -D Thus if .%) is adjacent to gn(x)9 y e gn(x) and
thus, y e D. Thus Z) covers I(y). This completes the proof that X
satisfies property R.

DEFINITION. If X is a topological space, the statement that G
is a nested development for X means that (1) for each positive integer
n9 Gn is an open cover of X containing Gn+1 as a subcover and (2) if
U is an open set and p is any point of U there is an integer n such
that pegeGn implies g ϋ U.

DEFINITION. The topological space X is a Moore space if and
only if it is a regular T2 space with a nested development.

DEFINITION. A complete (semicomplete) Moore space is a Moore
space with a nested development G having the property that if
Mu M2, M3, is a sequence of sets such that for each n9 Mn is a
closed set containing Mn+1 and Mn is a subset of some element gn of
Gn (Mn is an element of Gn and contains Mn+ι), then ΓiT^MiΦ 0.
Such a development is called a complete (semicomplete) nested de-
velopment.

Every complete Moore space is semicomplete, but the converse
is not true [5]. Not every Moore space is a dense subspace of a
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complete Moore space [5]. In [9], Whipple provides a necessary and
sufficient condition for a Moore space to be completable. Not every
Moore space is a dense subspace of a semicomplete Moore space [5].
In his thesis for the University of Iowa, Alzoobaee provides a sufficient
condition but it is not known if this condition is necessary for a
Moore space to be semicompletable. The following definition and
theorem provide a necessary and sufficient condition.

DEFINITION 4. The Moore space X satisfies Axiom K provided
that there exists a nested development Q and a collection K of mutually
separated ^-sequences wrt Q such that: (1) for each x e X, x e f] g
for some g of K, (2) if d is a nested sequence wrt Q, there is an
element g of K such that d and g are not mutually separated, and
(3) if the open set D covers the sequence d of K, there is an integer
n such that if gl9 g2, g3, is an element of K and gn covers d, then
D covers any element k of K adjacent to g%. (The reader should
refer to definitions a, 6, and c for explanation of above terms.)

THEOREM 12. A Moore space X satisfying Axiom K is a dense
subspace of a semicomplete Moore space.

Proof. Let X be a Moore space with Q = Ql9 Q29 Q8, and K
defined as in Definition 4. Form the topological space (K\ Ω) as in
the paragraph following * in the proof of Theorem 5, using Q
for G.

For each k' e Kr, where k = kl9 k2, h, , let gn(k') = kn. As
before, gffi)', g2(k'y, forms a local base at kf in K'. For each
p o s i t i v e i n t e g e r n, l e t Q'n - {gτ(kj \i^n,k'e K'}. Q' - Q[, Q[, <%
is a nested development for Kf. Let D' be an open set containing
k! of Kf. Thus D covers kl9 k2, k39 of K. There is an integer n
such that if glf g2, g3f is an element of K and gn covers kl9 k2j k39

• , then D covers any element mlt m2, m3, of K adjacent to gn.
Let d' be an element of Q'n containing kf. Now d - gt(f) for some
positive integer t^n and j e K. Also gt{jr) = j t for some j l f j 2 , j 3 ,
K. Thus j t covers k. Assume h\ where h — hu h2, hz, , is a point
of limit point of d\ i.e., of j ' t . Thus g^hj, g2(h')', gz{h')\ is adjacent
to j ' t f and hence hl9 h2, h3f is adjacent j t . Thus D must cover
K9 ^2, hSf and h' e D'. This shows that K' is regular.

From techniques used in the proof of Theorem 5, we see that K!
is T2, contains X as a dense subspace, and the development Q is a
semicomplete nested development for K'. This completes the proof.

THEOREM 13. A dense subspace of a semicomplete Moore space
S satisfies Axiom K.
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Proof. In Theorem 2 of [5], M. E. Rudin proves the following
result. If S is a Moore space with nested development G, S' is a
subspace of S and G' is a nested development for S\ there are
sequences Tl9 T2, Γ3, and Qx, Q2, Q3, such that (1) Γt and Q* are
subcollections of Ĝ  and G[ containing Ti+1 and Q,+1 respectively-
covering S\ (2) if gly g2, g3, is a sequence such that for each ΐ,
#* G Qi and contains gΐ+1, then there are sequences wl9 w2f of in-
creasing integers and #!, g29 gz, of regions such that for each ί,
Qi G Tt and contains gi+ι and gWί (in S), and (3) if xl9 x2, cc3, is a
sequence such that for each i, xt e 7\ and contains xi+lf there are
sequences zl9 z2t z3, of increasing integers and kl9 h2} h3, of
regions such that for each i, hi e Qi and contains hi+1 and xz. Π S'

Let S' be a dense subspace of a semicomplete Moore space S.
Let ilί be a semicomplete nested development for S. Let Gι = Mx.
For each positive integer n ^ 2, let Gn — {g\g eMn and ̂  is a subset
of some element of GΛ_J. Thus (? = Gx, G2, G3, is also a semi-
complete nested development for S. Let G' be the corresponding
development for S'. Applying the preceding theorem to S, G, S\ and
G', we get the sequences T = 7i, Γ2, Γ3, and Q = Ql9 Q29 Q2,
Notice that Q is a nested development for $'.

For each element x of S such that x^f\7^ClSqi for some
sequence qu q2y qZf where qt e Qt and qi+1 S ί4, let dx denote one
such sequence, qlf q2t q3, . Let wu w2, w3, and g^x), g2{%\ be
sequence such that g^x) e T% and gt(x) contains ^+1(0?) and qw% in S.
Notice x G ΠΓ=i 9i(%) Now, let zl9 z2, zZf and λ(a ) — h^x), h2(x)9

be sequences such that h^x) e Qi9 contains hi+1(x) and gH Π S'. For
each n9 x is a point or limit point of hn(x) in S, since for each k ^ n,
gZjc(x) contains x and intersects hn(x).

Yί x Φ y and fex and hy exist, then h(x) and h(y) are mutually
separated. Let Dx and D^ be mutually separated open sets in S
containing x and y respectively. Let n be a positive integer such
that any element of Gn containing x is a subset of Dx and any element
of Gn containing y is a subset of Dy. Let m > n + 1. Now α? e hm(x)
and fem(ίc) G G'm; y e hm{y) and hm(y) e G'm. In S», hjx) is a subset of
some element of Gm_L containing x and Am(τ/) is a subset of some
element of Gm_x containing y. Thus feTO(a;) S ^ and Λm(i/) S A,. So

W»)nMi/) = 0.
Let K = {A(α ) | cc e S, /t(cc) exists}. Thus K is a collection of

mutually separated ^-sequences wrt Q, where Q is a nested develop-
ment for S r.

To examine #3 of Axiom if, let Z) be an open set of S' covering
h(x) — hί(x)9 h2(x)9 hz(x)9 of K. Let m be the maximal open set in
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S such that m Π S ' = D. D contains hn(x) for some n. Thus D con-
tains gZn(x) lΊ S', and m contains gβn(x). Thus m contains x. Let &
be a positive integer such that xe g eGk implies g £ m. Let i > fc + 1.
Let /^(ΐ/), ft2(2/), ̂ 3(1/), be an element of K such that /^ Q/) covers
h(x). Since a? e /^(x) in S, for each i, xehi(y) in S. Since /^0/) in S
is a subset of some element g of G3 _19 then a; e # and g £ m. Thus
Λi(#) g m i n S , and y em. Now let /^(p), /&2(#), W P ) , be an element

of i£ adjacent to h3 (y). The point p is an element of ht(p) in S for
each i. Let ml9 m2, md, be a sequence such that for each ΐ, m% e G%

and contains hi+1(p) in S. Thus for each ί, miΓ\hj(y)^ 0 , since
ht+ι(p) Γl A5 (ί/) ^ 0 . So p G fej d/) in 5 . Since Λ ^ ) £ m, p e r n , Thus
for some i, m contains ^(p) . Hence D contains Λi(^) and covers
h(p).

To examine #2 of Axiom K, let gx, g2, qS9 be a nested sequence
wrt Q in S\ Thus for each n, qn e Qn and contains qn+ι. Let ^ w2,
w8, and flTi, flr2, #3, be such that gn e Tn and T̂C 2 3Wi and gw%

in S. Since G is a semicomplete development for S, there is an x such
that x G ΠΓ=i flfί- Thus for each i, x € ^ in S since for j ^ ί gά contains
x and intersects qim Thus α; e ΠΓ=i ẑ in S, where qt e Qt and g4 contains
qi+1. Examine h(x). Let qSpή\ qj&)\ Q^ϊ, be the defining sequence
for h(x), i.e., x e f|Γ=i ?<(»)' in S and g^a;)' e Q, and qi+1(x)' £ ?*(»)'. The
sequence wl9 w2, w5, and g^x), g2(x)9 gs(χ), ' were chosen such that
gn(

x) a α»+i(«) and qWn{x)r in S. Since for each n, sc e flfΛ(flc) and x e qn(x)
in S, then gn(x) Π gw(ίc) ^ 0 . Since hn(x) contains gzjx) Π £', we have
^»(ί») Γi qgn(x) Φ 0, and hence, hn(x) D (?Λ(ίc) ^ 0 for each w. Thus
there is an element h(x) of K such that fe(ίc) and qί9 q2, qZi are not
mutually separated.

This completes the proof that a Moore space is semicompletable
if and only if it satisfies Axiom K.
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