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ON SOME GROUP ALGEBRA MODULES RELATED
TO WIENER'S ALGEBRA Mx

TENG-SUN LIU, ARNOUD VAN ROOIJ AND JU-KWEI WANG

Along with his study of the general Tauberian theorem
in Li, N. Wiener introduced the algebra Mi which consists
of all those continuous functions / on the real line R for
which

Σ max |/(aOI<oo.

He proved that many features of L19 including the general
Tauberian theorem, are shared by Mx. In this paper to
generalize Mx to an arbitrary locally compact group G. While
doing this, a host of LX{G)-modules mutually related by con-
jugation and the operation of forming multiplier modules.
-<[((?) is among them. In case G is abelian, -<[(£) is a Segal
algebra, so that it has the same ideal-theoretical structure as
LΛG). If further G = R, -<(G) reduces to the Wiener algebra
Mi with an equivalent norm.

1* Our notations are basically the same as those used in [3].
We use, however, C to denote the complex number field. Throughout
the paper, G is a locally compact group with a left Haar measure
λ. Instead of CQ0(G), LP(G) etc. we write Coo, LP etc. We view Lt as
a subspace of M. We identify two functions that are equal almost
everywhere.

For a function f on G define / ' by

f'(x) = f(x~ιMχ-1),

where Δ denotes the modular function of G. Then / " = / and
(/•*)'= *'•/' for / ^ e i ,

If B is a left Banach module over Lx (see [3; 32.14]), then J3*
becomes a left Banach module by

(i, f*Φ) = (/'*i, Φ) O'eB; φ e B^ feL,) .

If B = Lp(l ^ p < oo) orJ5 = C0 the module operation on 1?* coincides
with the convolution operation on Lq(q = p/(p — 1)) or M.

Let B be a left Banach module over Lλ. By [3; 32.22], {f*j:fe
Lit 3 e B) is a closed submodule of J5. We denote this submodule by
L^*B or I?α68. We call B absolutely continuous if Uα&3 = B.

Suppose B is a Banach space, and there is a map (i, #) t-» iβ of
5 x G into B such that

(1) j\=j(jeB),
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(2) (jx)y=jxy(jeB;x,yeG),
(3) for every xeG, j H> jx is a linear isometry,
(4) for every j e B, x H* jx is a continuous map G—*B.

Then (i, x) ι-» ̂  is called a continuous shift in JB. Such a continuous
shift makes B into an absolutely continuous left Banach module over
L, by

(/ *λ Λ - [/(αOOV-i, *)ds, (/ e A; jeB φe B*) .

For details, see [2], [4].
We can define continuous shifts in Lp(l g p < oo) and Co by

i*(l/) = i(»y) (J e L p or Co; x,yeG).

The resulting module operation is ordinary convolution.
Let J5 be a left Banach module over Lt. The continuous module-

homomorphism Lt—>B (the multipliers of B) form a Banach space
Mult 5 that can be turned into a left Banach module by

(/ * T)(g) = T(g * /) (/, g 6 L,; Te Mult B) .

Every jeB induces the multiplier f\-*f*j. The following theorem
is essentially due to Rieffel [6] and is proved in [2] as Theorem 5.2:

THEOREM 1.1. Let B be an absolutely continuous module. For
0eJ3* let Tφ be the multiplier f \—>f*Φ of B*. Then T is a module
isomorphism and a linear homeomorphism of B* onto Mult 2?*.

A Radon measure on G is a linear functional μ: Coo ~> C such
that for every compact set C c G there exists a number c such that

I(j, μ)\£c\\j\U (J e Coo, Supp j c C ) .

The Radon measures form a vector space which we denote by R.
For μe R and for an f e Lλ with compact support we define

f*μeR and μ*feR by

These formulas reduce to the familiar convolution formulas in case
μeLp.

Every Radon measure is a linear combination of positive Radon
measures [1]. Thus, if μ e R and if X is a relatively compact Borel
subset of G, we can in a natural way define μ(X). Further, if μe
R and if A is any Borel set there is a unique ξAμeR such that
ξAμ(X) = μ(X Π A) for all relatively compact Borel sets X. There
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exists a unique |μ\ e R such that ξA\μ\ = \ξΛμ| for every compact set
A (see [1; Ch. 13]).

By the Radon-Nikodym Theorem [3; 12.17] we may identify LιΛθQ

with {μeR: μ < λ}.

THEOREM 1.2. If f eLγ has compact support and if μeR, then
f*μ and μ*f lie in Lltioc. If, in addition, f is bounded, and μe
-ΣΊ.IOO then f*μ and μ*f are continuous.

Proof. Let C = Supp / . If D c G is compact, then

for all Borel set XczD. It follows that f*μ<X. Further by [3;
20.16], if / is bounded and μe Luloc, then f*μ is continuous on every
compact D c G.

The proof for μ*f is similar.

From now on, K will be a nonempty compact subset of G which
is the closure of its interior.

For μeR we define μ\ G -+ [0, oo) by

μ*(χ) = \\ξ*κμ\\ = \μ\(χκ) (xeG).

It is easy to check that

μ* - I/Ί*£*-i

Thus, μ* e L1>loc, and μ* is continuous if μ e Luloc.
Further, if / is a measurable function on G, define fh G —> [0,

oo] by

P is lower semicontinuous, hence measurable. {Proof: For reR put
fr(x) = min (r, |/(a?)|); then /* = sup r/*. Thus, we may assume that
/ is bounded and ^ 0. For j e Llf j ^ 0, \j = 1, the function fj*ζκ-i

is continuous [3; 20.16], and for every xeG,

f(x) = sup \ζxKfj = sup/i* !*- ! .

Thus, /* is a supremum of continuous functions.)

LEMMA 1.3. Let μeR, let f be a measurable function. Assume
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that either μ < λ or f is continuous. Then

Proof. By the assumption, for every xeG we have |/1 ^
β{x)\μ\ a.e. on xK, so that

β{x)μ\x)^\ \f(y)\d\μ\(y).\
xK

We may assume f*μ* e Lx. Then there exists a σ-compact set X such
that f*μ* = 0 a.e. outside X. Since the X is σ-compact, it follows
from [3; 5.7] that there exists a closed and open σ-compact subgroup
H of G containing X and K. Every relatively compact Borel subset
C of G\H can be covered by finitely many cosets aγK, , amK where

Ui) = 0 for each i. Then

Put Λ = f^l/l, A = ίH | i"|. Then \\f\d\μ\ = J/^ft. Further,
/fi"? = /*j"* on if and /» ^ f\ μ\ ̂  ^^ everywhere; therefore (/*, ̂ ) =
(/ί, i"?) It follows that we may replace / by fι and μ by ^ i.e.,
we may assume that / ^ 0, μ *> 0 and that G is (7-compact. This
enables us to apply the Fubini Theorem:

= \\ξ,κ-i(x)\f(v)\dxd\μ\(y)

= jλ(yJΓ-1) I /(») I d I ίi I (y) = λ(JK:-1) jI /(») I d I μ \ (y) .

This lemma, and also its applications, Theorems 3.1 and
6.1, should be read with some caution. In the case where / is con-
tinuous the " / " in the right hand member of the formula denotes
a single function, but the "f" in the left hand member stands for
the class of all functions that are l.a.e. equal to /.

COROLLARY 1.4. For all μe R, \μ* = X{K~ι) \μ\ (G). Thus, if

μ* = 0 a.e., then μ = 0.

Proof. It is clear that \μ* ^ ||fjr-i||i|i"|(Cτ) = λ(ίΓ-ι)|jM|(G). On

taking / = 1, we get ίμ* ^ \(K'ι)\μ\(G). Hence the equality. If C
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is compact, then

= X(K-ι)\μ\(C) .

Hence we have the second statement.

2. For 1 <: p < co let

Further, put

Clearly 5C0 c

5^, we set

As ί f = il, we have ^ = L,. For

i l l s
p

THEOREM 2.1. Let 1 <; p ^ oo. ^ ς ^ 0

Lt is a dense subset of 5^0: the natural injection
tinuous. The formula

Banach spaces.

ι—+^vQ is con-

defines a continuous shift in ^ 0 .

Proof. Clearly J^, ^ 0 are vector spaces and |[ \\\ is a norm.
To prove completeness of 3^, let {ij be a sequence in 5^ such that
Σ I ! i J I * < °°ί it suffices to prove that Σ i * converges in ^ . We
know that X jl(x) converges for all x e G outside a certain locally
null set X. Take a compact set C c G . C is covered by finitely
many translates axK, , αmif of K and we can choose all at in G\X.
Then

so that 2 Ί i Λ | < co a . e . on C. By [3; 11.39 and 11.42] there exists

a measurable function j such that Σ j n = j l.a.e. Then \c\j\ ^

^ i ' l h'Λ | for every compact C, so i e L U θ c and j*<^Σj'l. Hence,
JC

We also obtain (i - Σ f i*)* ^ Σϊ+ so

iv
= Σ lli.l
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Therefore, j = Σjn in the sense of
For 3C0 we simply observe that j ι-> j " is a continuous map

Z^, so that 2Co is closed in 3C
Next, take i e Lx. Since £*-i e Lp, i* = | i | *fjK-ie Lp and

Ililli II£*-3H* It is easy to see that^eCΌ. Hence, Z^c 3^0 and the
injection is continuous. To prove that Lx is dense, take je TpΌ,
ε > 0. There is a compact set C such that ||i*(l - ίσ)IU ̂  e. Then
(1 - 3'ξcκY = 0 on C and tf - iί^) 1 1 ^ i^ everywhere. For p < oo it
follows that | | i - jξoκ\\l S. \\j\l - fσ)| |, ^ ε. But jξcκe L,. Thus, for
p < oo, Li is dense in 3^0. A similar proof works for p = °°.

Trivially, if i e $ς0, then ^ 6 Tpϋ for every a?. We only have to
prove that xt-+jx is continuous. As Lx is dense, we may assume
j G L1# Now for such j we know that the formula x H> i^ defines a
continuous map G—> L^ Now observe that the injection Lt —> 3^0

is continuous.

THEOREM 2.2. .For 1 ̂  p ^ oo, I,p is a dense subset of TP, and
the injection Lp-~* Tp* is continuous. Further, CQ is a dense subset
of 7Zo and Co —* Ti0 is continuous.

Proof. The first statement follows from the formula

and [3; 20.13]. Further, for jeC0 we have |i|*f*~ieC0 as is easy
to prove.

According to the remarks made in §1, 3^0 can be made into an
absolutely continuous module. The module operation * is given by
the familiar convolution formula:

THEOREM 2.3. If feL, and je^r;Q(l ^ p ^ oo), one has for
locally almost every xeG,

f*j(χ) =

Proof. We may assume /, j ;> 0. If h e Coo and h ̂  0, then

(K fj) = \f{y)(K jy-ι)dy = \\f(y)Hx)j(yιx)dxdy

3. For 1 <: p ^ CXD let ̂ ς be the set of all measurable functions
f on G for which f% e Lp. Then .^ς is a vector space, and the
formula
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defines a norm on v

THEOREM 3.1. Let l^v^k^,q = p/(p - 1). Every feΛϊ de-
termines a Φfe T^t by

U, Φf) = \j(x)f(x)dx (je TP0) .

Φ is a linear homeomorphism on ^Kq onto 5 0̂* We have

\\Φ\\ ̂ 1/XiK-1) and \\Φ~ι\\ ^ ( J~1/? .

Proof. It follows directly from Lemma 1.3 that Φ maps *^V\ into
TPt and that | |Φ| | ̂  XiK'1)'1. For the converse, take φe TJ. As
L1 c Tio and as the injection Lx —> 5 0̂ is continuous, there is an / e L^
such that

r

If / e ̂ J , then 0 = Φf on a dense subspace of TpΌ, hence on all of

Tpo. We proceed to prove that fe^Γq and | |/ | |* ^ | |^ | | ( _/"1/ff.

Assume for the time being that / ;> 0. Take ε e (0, 1). The set

S = {(x, y) eG2:ye xK; f(y) ^ (1 - e)f{x)}

is m e a s u r a b l e . T h e n f o r l . a . e . xeG t h e s e t

S9 = {ye G: (x, y)eS} = {ye xK: f{y) ^ (1 - ε)f*(x)}

is measurable. Moreover, the function x —> X(SX) is measurable, and
X(SX) > 0 l.a.e.

Let h G Li n Lp, h ^ 0, Supp /& compact. Then

x) = dx= \f(y)j(y)dy ,

where

One easily sees that j e Lj so that

(1 - ε)\f*(x)h(x)dx £ \f(y)j(y)dy = (j, φ) £\\φ\\ \\j\\\ .

To find an estimate for | | j | | ^ we observe that for every aeG,
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As Sx c xK we have X(aK n Sx) = 0 unless x e aKK~\ so that

f(a)^ \ h(x)dx = h

By again applying [3; 20.13] we find

Thus, for all ε > 0 and all h e Lγ n Lp, h ^ 0 we get

Then feLqy i.e., / e ^ ς , and | |/ | |* ^ ||<*|| \κκJ~llq-

We have proved our point for the case / ^ 0. For the general
case we notice that there exists a measurable function τ: G —> C such
that \τ(x)\ = 1 for all x and τf ^ 0. Define ψ: Tp0-+C by

Then f e ^ς0*, | | f || = | |^| |, and (j, ψ) = (i(a;)(τ/)(aj)da; for i e L ^ It

follows that vfe^Z and | | τ/ | | * g || ̂ | | \ z/"1 ;̂ so / e Λr

q and
J KK^\\φ\\\ _Δ^\

COROLLARY 3.2. ^ q c: L^ f) Lq. The injections ^Γq-^L^ and

q —> Lg are continuous.

Proof. By Theorem 2.1, there is a constant c such that for
every i e L ^ | | j | | ^ ^ c | | j | | l e Then if / e ^ ς , we have

Hence / e L M and | | / |U ^ c| |Φ|| | |/ | |*. The proof for the statements
concerning Lg is simimilar, using Theorem 2.2 instead of Theorem 2.1.

COROLLARY 3.3. Λ/\ is a Banach space which is also an Li-
module under convolution.

Proof. We know that Tit can be made into a left Banach module
over 1/χ. After Theorem 3.1 we only have to show that the induced
module operation in ^fς is convolution. Now for feLu ge^^ and
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je T
pQ
 w e have

(Λ f*g) = (f'*j, g) = \\f(χ)j(χ'
ι
y)g(v)dχάy

4* For 1 <̂  p < co let

- ^ = if e ^K: f is continuous} .

THEOREM 4.1. Coo is α dense subspace of „/%.

Proof. Take / e ^ ^ , ε > 0. There exists a compact C c G such
that | |/*(1 - ζc)\\p <Ξ e, and there exists & g e C0G, g = f on CK, such
that |flf| ^ | / | . Then (/ - gf = 0 on C, and

11/ - flrll* ^ | | ( / - flr)*fcllp + ll/*(l - ί,)!i, + I|0*(1 ~ fc)ll, ^ 2ε .

THEOREM 4.2. For 1 ^ p < co? ^ep = ( ^ ς ) o 6 s . Tfeβ formula

Tfg = g*f (fe^n geL,)

establishes a one-to-one correspondence between ^Kp and Mult ^/fp.

Proof. First, take / e Coo. Let S = Supp / . Let U be a compact
neighborhood of S. For every ε > 0 there exists a neighborhood Vε

of 1 such that V7lSaU and \\f - fx\\M ^ ε for all xe Vε. Then for
xe Vε, we have | | ( / - /,)*{{„ ^ ε and (/ - fxf = 0 off E/K;-1. Thus,
for ^e Fε, | | / - / β | |* ^ εfλίϋϊΓ-1)]^.

It follows that x \-» / x is a continuous map G —> ^ ̂  for every
feC00, hence for every / e ^fp (see Theorem 4.1). Thus, ^/fp can
be made into an absolutely continuous left Banach module over Lλ.
It is easy to see that the induced module operation is convolution,
which is the same as the module operation in ^K^. Thus, ^fίp —

Now (^f^jabs = I/! * ̂ K dL^L^ and every element of LL * L^ is
continuous [3; 20.16]. Hence, M ς ) t t 6 8 c ^ , so that (^ς)α&s = ^ C

We also see that every Tf maps Lx into ^£"p, hence is an element
of Mult ^ C . Let g = p/(p - 1), (g = oo if p = 1). As 5 0̂ is an
absolutely continuous module, it follows from Theorem 1.1 that for
every Te Mult TPt there exists a φe TPt such that T/ = f
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The rest of the theorem follows from Theorem 3.1 and the trivial
observation that Mult ^€J c Mult ̂ fς.

COROLLARY 4.3. ^/ίv is a Banach space.

Let us consider the case p — ©o. Obviously, ^/C = L^. Thus,
{/ G Nj. f is continuous} is the space of all bounded continuous func-
tions. It is known, however, that {LJahs = Cru(see [3; 32.45]). We
could save the situation by defining, for 1 <s V ̂  °°>

^€p = Cru Π '-/f/]> .

Then Theorem 4.2 remains valid if we change "1 <Ξ p < °o" into
" 1 ^ P ^ C X 3 " .

5* ^£[ deserves some special attention.

THEOREM 5.1. Λ\ and ^/ίλ are Banach algebras under convolu-
tion. If G is abelian, ^ is a Segal algebra (as defined in [5; Ch.
6, §2]).

Proof. The injection ϊ. Λl—>L± is continuous (Corollary 3.2).
For/^G^ςwehavell/^llf^ll/IUI^Hί^llIIIII/llfl^llf. Further,
^i[ is a left ideal in L, by Theorem 4.2. The second statement
follows from Theorem 4.1 and the continuity of the shift (see proof
of Theorem 4.2).

Consider in particular the case G = R, the additive reals. Wiener
defines his Banach algebra Mx as the set of all continuous functions
/ on R for which li/H^ < oo, where

11/11*,= Σ max |/(aθl .
n — ~oo [n,n + ί]

Mγ was discussed in [7; Ch. 2] and [5; pp. 12, 127], [3; II pp. 506,
600]. To show that Mt = ̂ ϊ, for a continuous function f on R
define fb on R by

fb(x) = s u p I / 1 if neZfn^x<n + l .
[w.w + l]

Then | | / | U , = 11/11,. By taking K = [0, 1] we find f(x) £ f\x) +
f\x + 1) and f{x) ^ f*(χ - 1) + f*(χ) for all x. Hence Mι = ̂ C and

Δ

6. Finally, for 1 ̂  p ^ oo we set

W; = {μeR:μ*e Lp} ,
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For all μe R we have [μ\x)dx = MK'1) \μ\ (G). Hence Wl = M.

THEOREM 6.1. Let 1 ^ p < °°, g = 2>/(p - 1) ϊ ^ e formula

(/, ̂ ) - J / ^ (/ e ̂  Λ e ^ )

establishes a linear homeomorphism of W^ onto ^€/\ Further,

\\Ψ\\ ^1/XiK-1) , \\Ψ~ι\\ ̂

Proo/. It follows from Lemma 1.3 that Ψ: Ύ/^-*^* and that
^ XiK'1)-1. Conversely, take φ e ^fq*. If C c G is compact, then

for every / e Coo that has its support in C we have

ι σ , Φ)\ £ \\Φ\\ 11/ιιt ^
Thus, there is a μ e R such that

If ^ e L g and | | ^ | | g ^ | | ^ | | ( zί~1/g, then Ψμ = φ on a dense subset

of ^ ^ , and we are done.
Take h e Coo, fe ^ 0. Then

55
By [3; 14.5] and the continuity of h*ξκ we obtain (h*ξκ, \μ\) =
sup i 6 J^ |(i, ^ ) | where ^ " = (/e Coo: | / | ^ h*ζκ). Observe that for
every / 6 ά^ and a e G,

/*(α) ^ sup h*ί^(αj) = sup 1 h ^ \ h = h*ίM-i(α) .

By another application of [3; 20.13] we find

\h{x)μ\x)dx = (h*ζκ,\μ\) = sup | ( / , μ)\ ^ sup | ( / , 9)I
J /ejr / e ^r

<ί sup \\φ\\ ll/ll* ^ | μ | | μ | * f M - χ | | p ^ | |(ί | | IIA|

Thus, f*eLq and | | ^ | | ? ^ | ^ | | ( Δ^".
JKK~1
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COROLLARY 6.2. W^^ is a Banach space.

By the general theory of Banach modules, Wp can be made into
a left Banach module over Lx (see §1, and §3 where we introduced
a module operation on ^K9). An application of Theorem 4.1 yields
the fact that for / 6 LlΛoc and μ e *WV the module product and the
convolution product f*μ coincide. It follows that Tv is a submodule
of ^ ς .

We close the circle by:

COROLLARY 6.3. If p < oo, then 5ς = ( ^l)abs. For all p the
formula

Sμf = f*μ

yields a linear homeomorphism S of "Wl onto Mult Tp.

Proof. For p = 1 we can apply WendePs Theorem [3; 35.5],
since Wl= M and Tx = Lt. By the last part of Theorem 2.2, Tv =
( 3̂ )α&s c ( Wl)abs if ί> < °°. For any p and for an / 6 Lx that has
compact support, we have

/ * ^ ς c ( / * i ? ) n ^ ; c L U o c n ^ ς = j ς .

As 3ς is closed, ( ^ ς ) α 6 s - L ^ ^ c r , . Thus 3ς - ( ^ς) α δ β if p <
oo, and S^eMult Tv for all ^ e ^ ς . The proof of the facts that
for p Φ 1 every element of Mult Y]> is of the form Sμf and that S is a
homeomorphism is entirely analogous to the final part of the proof
of Theorem 4.2 (using 6.1 instead of 3.1).

7* In order to see how the operations * and * depend on K,
take another nonempty compact set Kγ that is the closure of its
interior and define

(xeG μeR),

As iΓ is compact and Kx has nonempty interior, there exists alf

αn such that K c α ^ U U anKx. Then we see that

i K ( / 6 L U 0 C ) .

From these formulas it will follow directly that the Banach spaces
TP, 3Co, ̂ K, +Λp, W^p are essentially independent of K: A different

choice of K will only lead to a different, but equivalent norm in
the same space.
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In fact the proof shows that we can relax the conditions on K.
We only need to require that K is a relatively compact set with
nonempty interior. Any such K will lead to the same spaces 71,
3Co, ~Λ"Ϊ, - ^ , and ^ ς with equivalent norms. The inequalities in

Theorem 6.1 will no longer be true for such a general K. (The
analogous inequalities in Theorem 3.1 remain valid.)

The results obtained so far can be summarized in the following
table where we use the equality sign to indicate linear homeomor-
phism. In each formula, 1/p + 1/q = 1.

TΛ =
Mult

Mult Tp=

(1 £ p £

( 1 ^ J > <

(l£p£

The equalities in the first and third line clearly do not hold in
general if we put p — oo. For the fourth line this is less easy to see.
Take G = R, K = [0, 1]. Let j be the function that vanishes on
(—oo, 0] and coincides with wth Rademacher function φn on (n — 1,
n] for every positive integer n (see [8; Ch. I, §3]). Then je 71,
but iί(5C)β6.. (It is not hard to prove that, if i e ( ^ ) α δ s , then
lim^olli — iJlol = 0, and that the latter formula is false.)

We do not have an adequate description of Mult 3C0.
Let us conclude with a table listing $ς, ^ ς , ^ ζ , «^ς for compact

G and for discrete G.

G

J^pO- — p — °°)

^ ^ (1 < -p < Oθ)

^^)(1 ^ p ^ °°)

^ ) ( 1 ^ ί> ̂  °°)

compact

I-x

-LI

M

M

C

discrete

Lp

Co

Lp

Leo

Lp

Lp
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