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CYCLIC AMALGAMATIONS OF RESIDUALLY

FINITE GROUPS

BENNY EVANS

A group G is said to be residually finite If the intersec-
tion of the collection of a!! subgroups of finite index in G is
the trivial group* This paper is concerned with, the following"
question. If A and B are residiially finite groups, and if G
is the generalized free product of A and B with a single
cyclic subgroup amalgamated, then what conditions on A and
B will Insure that G is residually finite? The main result ©f
tills paper is that there exists a class C of residually finite
groups which contains all free groups, polycyίic groups, funda-
mental groups of 2-manii©ids? and other common residually
Suite groups, and in addition C is closed under the operation
of forming generalized free products with a single cyclic
subgroup amalgamated.

A well known example of G. Higman [4] shows that the gen-
eralized free product of residually finite groups amalgamated along
a single cyclic subgroup need not be residually finite. However G.
Baumalag [1] has shown that such a product is residually finite if
both factors of the product are free or if both factors of the product
are finitely generated and torsion free nilpotent. The results here
generalize these theorems of Baumslag.

In order to study generalized free products of residually finite
groups, P. Stebe [6] introduced the notion of a τcc group. Let / be
a subset of a group G, and let H be a subgroup of G. J is said to
be H-separable in G if for each g in J, either g e H or there is a
homomorphism a of G onto a finite group such that a(g) £ a(H).
Let πc(G) denote the subset of G x G with the property that (g,
h)eπc(G) if and only if {g} is #p(fe)-separable in G. (gp(h) denotes
the subgroup of G generated by h.) We say that G is a πc group
if πc(G) = GxG.

It is not difficult to show that the most common residuaiiy finite
groups are πc groups (e.g. free groups, parafree groups, polycyclic
groups, etc.). However, there are residually finite groups which
are not πc groups [2]. Such groups can be used to construct a large
class of nonresidually finite groups.

Let A and B be groups with subgroups H and K respectively,
and let a:H—>K be an isomorphism. We denote the generalized
free product of A and B analgamated along H and K via the iso-
morphism a by G = *(A, B; H, K, a). When we are not concerned
with the amalgamating isomorphism, this notation will sometimes be
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shortened to read G = *(A, B; H). When H is cyclic, we shall also
make use of the notation G = *(A, B; a0 — 60).

2* Some technical lemmas* We wish here to record several
lemmas that will be useful in the next section. Some of these
lemmas appear elsewhere in various forms, but in any case all can
be proved using standard techniques. Where necessary in this sec-
tion, references for similar theorems will be provided, but explicit
proofs will be omitted.

That the most common residually finite groups are πc groups is
the subject of the next two lemmas. The proof of the first part of
Lemma 2.1 may be found in [6], and the second part may be proved
by similar methods. The proof of Lemma 2.2 is essentially given in
Theorem 1 of [6].

LEMMA 2.1. Each finite extension of a πc group is a πc group,
and each split extension of a finitely generated πc group by a πc group
is a πc group.

LEMMA 2.2. // G is residually a finite p-group for all primes
p, and if the centralizer of each element of G is cyclic, then G is
a πc group.

From Lemma 2.2 we conclude that free groups, parafree groups,
and fundamental groups of 2-manifolds are πc groups. Then using
Lemma 2.1. we see that poly cyclic groups are πc groups. Finally
a generalized free product of finite groups is a finite extension of a
free group so that all such groups are πc groups.

The proofs of some of Stebe's theorems in [6] can be altered
to obtain the following useful lemma.

LEMMA 2.3. Let G — (A, B; H). If AU B is an Hseparable
subset of G, and ifAxAUBxB aπc(G), then G is a πc group.

In case H is cyclic, we obtain a more concise version of Lemma
2.3.

LEMMA 2.4. Let G = *(A, B; H). If H is cyclic, and if A x
A U B x J5cπc(G), then G is a πc group.

G. Baumslag [1] has shown that if A and B are residually finite
groups, then *(A, B; H) is residually finite if H is a finite group.
A slight modification of the method used by Baumslag to prove the
above result together with Lemma 2.3 yields the following result.
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THEOREM 2.5. If A and B are πc groups, and if H is a finite
subgroup of both A and B then *(A, B; H) is a πc group.

3* Finite quotient groups of πc groups* By following the
construction of Higman [4], we obtain the following theorem.

THEOREM 3.1. Let Abe a residually finite group with an element
a of infinite order. There is a residually finite group B with an
element b of infinite order such that G — *(A, B; a = b) is not resid-
ually finite.

Proof. Let B be any residually finite group which is not a πe

group. Then there is an element b0 of infinite order in B and an
element bt in B such that bx is not #p(&0)-separable. Let G = *(A,
B; α2 = 60).

Then the commutator [a, 6J is a reduced word in G and hence
is not the trivial element. Let a be any homomorphism of G onto
a finite group. Then aφ^e gp(a(bo))czgp(a(a)). It follows that
ά[a, 6J = [a{a), a(b$\ = 1. Hence G is not residually finite.

Let C* be the class of all residually finite groups A with the
propterty that if B is any residually finite group then *(A, B; H) is
residually finite if ίΠs cyclic. Let C denote the class of all πe groups
with the property that *(A, B; H) is a πe group whenever H is a cyclic
group. According to the above theorem and Theorem 3 of [1], C*
is exactly the class of all residually finite torsion groups. In com-
parison, we shall show that C is considerably larger than C*. Not
only does C contain the most common πc groups, but also C is closed
under the operation of forming generalized free products with a single
cyclic subgroup amalgamated.

We begin with a study of finite quotient groups of πc groups.
With each element g of a group G, we associate a set of positive
integers G(g) with the property that n e G(g) if and only if G has
a finite quotient group in which the image of g has order n.

A subset X of G(g) is said to be cofinal in G(g) if and only if
for each pair gίf g2 in G, either gγ e gp(g2)9 or there is a homomorphism
a of G onto a finite group such that a(gx) ί gp(a(g2)), and the order
of a(g) is in X. In particular, G is a πc group if and only if G(l)
is cofinal in G(l). More generally, we have the following lemma.

LEMMA 3.2. Let A and B be πc groups, and let a0 and b0 be
elements of infinite order in A and B respectively. Then the gen-
eralized free product *(A, B; α0 = δ0) is a πc group if and only if
A(a0) n B(b0) is cofinal in both A(a0) and B(b0).
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Proof. Suppose G = *(A, B; a0 = b0) is a πc group. We wish to
show that A(a0) Π B(b0) is coίinal in A(a0). Let x and y be elements
of A with x g gp(y). There is a homomorphism a of G onto a finite
group such that a(x) $ gp{a{y)). Since a(a0) = a(b0), we may restrict
a to A and to 5 to obtain \a(ao)\e A(aQ) Γ) 2?(δ0). Thus -4(0 n J5(&0)
is cofinal in A(a0).

Similarly, A(a0) n B(60) is cofinal in B(b0).
We now suppose that A(aQ) Π B(δ0) is cofinal in both A(aQ) and

2?(&0) According to Lemma 2.4, we need only show that A x AΌ B x
Baπc(G). Let x,yeA with x$gp(y). Since J.(α0) ΓΊ 5(&0) is cofinal
in A(α0), there is a homomorphism α of A onto a finite group such
that a(x)&gp(a(y)), and | a(a0) \ e A(a0) f] B(b0). Let Aι be the kernel
of a. Since |α(α o) | e B(bQ), there is a normal subgroup Bx of finite
index in B such that the order of b0 in B\BX is |α(αo)|. Observe that
the isomorphism of gp(a0) onto gp(b0) defined by a0 —» δ0 carries Ax Π
βrp(α0) isomorphically onto Bx n gp(b0). Thus we obtain a natural
homomorphism β oϊ G onto a generalized free product of finite groups

G, = *(A/Alf B/B,; a0 = &0) .

Further, since x ί gp(y) mod A1? it follows that β(x) $ gp(β(y))
Since Gλ is a πe group, it follows that (x, y)eπe(G). Thus A x

Aczπc(G). Similarly, Bx Bczπc(G). An application of Lemma 2.4
completes the proof.

We say that G has regular quotients at g if there is a constant
Kg such that {^Z#; n = 1, 2, •} (zG(g). A group G is said to have
regular quotients if (? has regular quotients at each element of infinite
order in G. All τrc groups have a property approximating regular
quotients. This is the subject of the next lemma.

LEMMA 3.3. Let G be a πc group and K any positive integer.
If xeG has infinite order, then there is a homomorphism a of G
onto a finite group such that K divides the order of a{x).

Proof. It clearly suffices to prove Lemma 3.3 when K = p* is
a power of a prime p. Since x has infinite order, x $ gp(xp) and xr £
gp(xpt) for any r with 0 < \r\ < p*. Thus there is a homomorphism
a of G onto a finite group with the following properties.

( 1 ) a(x) g gp(a(x)p).
( 2 ) a{x)r g 0p(α(α>)pί), 0 < | r | < p*.
Since α(a?) g gp(a(x)p), it follows that (|α:(α?)|, p) Φ 1. Hence p

divides the order of α(a?). Let \a[x)\ — p*Q wher (p, Q) = 1. We
wish to show that £ <£ s.

Choose an integer i2 ^ 1 such that (i?, j>) = 1 and RpsQ > p*.
Then Rp8Q = Wp* + r where | r | < p*. Then (α(^)pί)w = a{x)~r. I t
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follows from condition 2 above that r = 0. But then RQ = Wpι~\
Since (p, E) = (p, Q) = 1, it follows that ί — s ^ 0. Hence t <: β so
that p* divides |α(#)l

COROLLARY 3.3.1. Let G be a πc group, and let g be an element
of infinite order in G. If G has regular quotients at gk for some
positive integer k, then G has regular quotients at g.

Proof. Let {nL; n = 1, 2, •} c G(gk). Let G1 be a normal sub-
group of finite index in G such that k divides the order of g in G/Gi
Suppose (?! is of index S in G. We shall show that

{nSLk n = 1, 2, •• }<zG(#) .

Let Go be a normal subgroup of finite index in G such that gk

has order nSL in G/Go. Let (?n = Go Ω Gi Then gk has order
in G/Gn, and ά divides the order of g in G/Gn. In GjGn1

I ff*| = _ ] £ ] _

But (|flf|, &) = k. Thus |flf| = |^fe|fc = nSLk in G/Gn. This completes
the proof of Corollary 3.3.1.

We are now prepared to prove a theorem which will enable us
to identify certain members of the class C.

THEOREM 3.4. Let A and B be πc groups with elements a0 and
b0 of infinite order in A and B respectively. If A has regular
quotients at α0, then G = *(A, B; a0 = b0) is a πc group.

Proof. We shall show that A(a0) f] B(b0) is cofinal in both A(a0)
a n d B(b0). L e t {Kn|n = 1, 2, •} c A(a0). L e t x,yeA w i t h x ί gp(y).
Let A1 be a normal subgroup of finite index in A such that x$
gp(y) mod A±. Suppose a0 has order L in A/At. Choose Bx to be a
normal subgroup of finite index in B such that δ0 has order KLM
in B/Bι for some positive integer M. Let A2 be a normal subgroup
of finite index in A such that a0 has order KLM in A/-A2. Put AB =
.̂i Ω ̂ 42 Then clearly α? ί gp(y) mod J.3, and α0 has order KLM in

A/A3. Since KLM belongs to both A(a0) and B(b0), we have shown
that A(a0) Ω -B(60) is cofinal in A(a0).

The proof that A(a0) Ω 5(δ0) is cofinal in B(b0) is similar (in fact
less complicated) and is omitted.

Theorem 3.4 together with Theorem 2.5 yield the following
corollary.
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COROLLARY 3.4.1. If G is a group with regular quotients, then
G is in the class C.

We wish now to establish that the most common groups have
regular quotients and hence belong to C. In order to prove this,
we need to consider a possibly stronger property. We say G has
completely regular quotients at an element g of infinite order in G
if there is a constant Kg such that for each n, there is a charac-
teristic subgroup Hn of finite index in G such that G has order nKg

in G/Hn.

Following closely the proof of Corollary 3.3.1, we obtain the
following lemma.

LEMMA 3.5. Let G be a finitely generated πc group, and let g
be an element of infinite order in G. If G has completely regular
quotients at gκ for some positive integer K, then G has completely
regular quotients at g.

LEMMA 3.6. Let G be a finite extension of a finitely generated
πc group A. If A has completely regular quotients, then G has
regular quotients.

Proof. Let g be an element of infinite order in G. Then gk e
A for some positive integer k. By Corollary 3.3.1., it suffices to
prove that G has regular quotients at gk.

Let L be a positive integer such that for each n, there is a
characteristic subgroup An of finite index in A such that gk has
order nL in A/An. Observe that An is a normal subgroup of finite
index in G and that gk has order nL in G/An. Thus

{nL;n = 1,2, -- }c:G(gk).

This completes the proof of Lemma 3.6.

Lemma 5.14 of [1] (together with the simple observation that
an element of order ά in a residually finite group can be represented
on a finite group so that its image has order k) shows that torsion
free nilpotent groups have regular quotients. The proof in fact
yields that finitely generated torsion free nilpotent groups have
completely regular quotients.

It is an easy consequence then that finitely generated parafree
groups have completely regular quotients. Since each generalized
free product of finite groups is a finite extension of a free group,
it follows that these groups also have regular quotients.

If g is an element of infinite order in a polycyclic group G, then
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there are integers i and k such that gk has infinite order in G{ί)/G{i+1)

(Gir) is the rth term of the commutator series of G). Then following
Baumslag's proof of Lemma 5.14 [1], it is not difficult to show that
G has completely regular quotients at gk. It follows from Lemma
3.5 that each polycyclic group has completely regular quotients. In
summary, we have the following theorem.

THEOREM 3.7. Free groups, parafree groups, polycyclic groups
and generalized free products of finite groups have regular quotients
and hence belong to the class C.

This compares favorably with Baumslag's Theorems 6 and 7 of
[1]. We now proceed to show that C is in fact closed under cyclic
amalgamations.

LEMMA 3.8. Let 4 U B be an H-separable subset of G = *(A, B;
H). Then G has regular quotients at each element of cyclic length
greater than one in G.

Proof. Let g — α16iα262 akbk be a cyclically reduced word in
G with k ;> 1 and a.eA-H.b^B- H(l ^ i ^ k). Then there is
a normal subgroup 2Vof finite index in G such that at, b% £ if mod N(l g
i g k). Let Aλ = A n N and Bλ = B f) N. Since Aλ Π H = B, Π H,
we obtain a natural homomorphism a of G onto a generalized
free product of finite groups Gx = *(A/Al9 B/B^H/Hf] N) with the
property that

a(at) e A/A, - H/Hf] N, a(bx) e B/B, - H/Hf] N (1 ̂  i^ k) .

In particular, a(g) has cyclic length greater than one in Gλ and
hence a(g) has infinite order in Gx. Since Gx has regular quotients,
it follows that G has regular quotients at g. This completes the
proof of Lemma 3.8.

LEMMA 3.9. Let a0 and b0 denote elements of infinite order in
A and B respectively and let aι be an arbitrary element of A. If
Gt = *(A, B; a0 = b0) is a πc group, then G2 = *(A, B; a^^a^1 — b0) is
also a πc group.

The proof of Lemma 3.9 is fairly straightforward and is omitted.

THEOREM 3.10. // A and B belong to the class C and if H is a
subgroup of A and B that is either finite or cyclic, then G = *(A,
B; H) is a member of C.
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Proof. We consider only the case that H is infinite cyclic so
that G = *(A, B; a0 = α0). (The case that H is finite can be handled
in a similar fashion.) Let D be any πc group, and let g0 and dQ

denote elements of G and D respectively such that gp(gQ) is isomorphic
to gp(d0). We wish to show that K = *(G, D; g0 = d0) is a πc group.
By Theorem 2.5, we may assume that gp(g0) is infinite. Also making
use of Lemma 3.9, we assume that g0 is a cyclically reduced word
in G.

If g0 has length greater than one, then G has regular quotients
at g0, and we may apply Theorem 3.4 to obtain our result.

It remains only to consider the case that g0 has length one (with
no loss of generality we assume that goe B). But then applying the
definition of the class C twice we obtain that

K = *(*(A, B; aQ = δ0), D; g0 = d0)

= *(A, *(B, D; g0 = do; a0 = bQ)

is a πc group.
There are several interesting questions concerning the class C

which the author has been unable to answer.
Question 1. Is there a πc group not in class C?
Question 2. // G is in C, does G have regular quotients!
The author strongly suspects that both questions 1 and 2 have

an affirmative answer, and that all that is required is a suitably
general example of a πc group without regular quotients. Note
however, that Lemma 3.3 indicates that some care will be required
in constructing such an example (if it exists).

In any case, a theorem analogous to Theorem 3.10 caD be esta-
blished for groups with regular quotients.

THEOREM 3.11. If A and B have regular quotients, and if H
is a subgroup of A and B such that H is either finite or cyclic, then
*{A, B; H) also has regular quotients.
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