A NOTE ON DIFFERENTIAL EQUATIONS WITH ALL SOLUTIONS OF INTEGRABLE-SQUARE

Philip W. Walker

It is shown that if all solutions to $l(y)=\lambda w y$ and $l^{+}(y)=$ $\lambda w y$ satisfy $\int_{a}^{b}|y|^{2} w<\infty$ for some complex number λ then so do all solutions for every complex number λ. The result is derived from a corresponding one for first order vector-matrix systems.

We shall be concerned with solutions to

$$
\begin{align*}
& l(y)=0 \quad \text { on } \quad(a, b) \tag{1}\\
& l^{+}(y)=0 \quad \text { on } \quad(a, b) \tag{2}
\end{align*}
$$

$$
\begin{equation*}
l(y)=\lambda w y \quad \text { on } \quad(a, b), \quad \text { and } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
l^{+}(y)=\lambda w y \quad \text { on } \quad(a, b) \tag{4}
\end{equation*}
$$

which satisfy

$$
\begin{equation*}
\int_{a}^{b}|y|^{2} w<\infty . \tag{5}
\end{equation*}
$$

In these expressions (a, b) is an interval of the real line ($a=-\infty$ and/or $b=\infty$ is allowed), w is a weight, i.e., a positive valued continuous function on $(a, b), \lambda$ is a complex number, l is an m th order linear differential operator given by

$$
\begin{equation*}
l(y)=\sum_{k=0}^{m} a_{k} y^{(m-k)} \tag{6}
\end{equation*}
$$

where each a_{k} is an $m-k$ times continuously differentiable complex valued function defined on $(a, b), a_{0}(t) \neq 0$ for all $t \in(a, b)$, and l^{+}is the formal adjoint of l so that

$$
\begin{equation*}
l^{+}(y)=\sum_{k=1}^{m}(-1)^{m-k}\left(\bar{a}_{k} y\right)^{(m-k)} \tag{7}
\end{equation*}
$$

In an earlier paper, [11], we defined w to be a compactifying weight
for l provided that every function which is a solution either of (1) or of (2) satisfies (5). If follows from Theorem 2-1 of [11] that if w is a compactifying weight for l then every function which is a solution either of (3) or of (4) satisfies (5) for every complex number λ.

The deficiency index problem (see for example [2] and [8]) for formally self-adjoint equations (where $l=l^{+}$) is concerned with finding the dimension of the linear manifold of solutions to (3) which satisfy (5). One of the results of this theory ([3], [4], [5], [6], [7], [10], and [12]) is that if this dimension is m (the order of l) for some complex number λ and $m>1$ then it is m for every complex number λ.

While much of the theory for the self-adjoint case breaks down when $l \neq l^{+}$we wish to show that this result carries over.

THEOREM 1. Let each of λ_{1} and λ_{2} be a complex number (λ_{j} real, even $\lambda_{j}=0$ is allowed). Let $m>1$. If every function which is a solution of either (3) or (4) satisfies (5) when $\lambda=\lambda_{1}$ then every function which is a solution of either (3) or (4) satisfies (5) when $\lambda=\lambda_{2}$.

This follows as a corollary to an analogous theorem (Theorem 2 below) for first order vector-matrix equations.

We consider the equations,

$$
\begin{align*}
& J y^{\prime}=\left[\begin{array}{lll}
\lambda A+B] y & \text { a.e. } & \text { on }(a, b), \quad \text { and } \\
J y^{\prime} & =\left[\lambda A+B^{*}\right] y & \text { a.e. }
\end{array} \text { on }(a, b)\right. \tag{8}
\end{align*}
$$

where J is a skew-symmetric ($J^{*}=-J$, * denoting conjugate transpose) $m \times m$ matrix, each of A and B is a complex $m \times m$ matrix valued function which is Lebesque integrable over each compact subinterval of (a, b), λ is a complex number, and $A(t)$ is nonnegative definate a.e. on (a, b).

It was shown in [13] that, given $l ; J, A$, and B may be chosen so that every solution of (3) satisfies (5) if and only if every solution of (8) satisfies

$$
\begin{equation*}
\int_{a}^{b} y^{*} A y<\infty \tag{10}
\end{equation*}
$$

and every solution of (4) satisfies (5) if and only if every solution of (9) satisfies (10). For the choice of J and A used in [13] it is also the case that trace $J^{-1} A \equiv 0$ when $m>1$.

Thus Theorem 1 above follows from Theorem 2 below.

Theorem 2. Let each of J, A, and B satisfy the conditions imposed above. Let $m>1$. Let each of λ_{1} and λ_{2} be a complex number $\left(\lambda_{j}\right.$ real, even $\lambda_{j}=0$ is allowed). Let $\int_{a}^{b}\left|\operatorname{tr} J^{-1} A\right|<\infty$.

If every vector function which is a solution of either (8) or (9) satisfies (10) when $\lambda=\lambda_{1}$ then every vector function which is a solution of either (8) or (9) satisfies (10) when $\lambda=\lambda_{2}$.

Proof. Let $\boldsymbol{Y}(\lambda)$ and $Z(\lambda)$ be fundamental matrices for (8) and (9) respectively. (We will write $\boldsymbol{Y}(t, \lambda)$ and $\boldsymbol{Z}(t, \lambda)$ to denote the value of these functions at $t \in(a, b)$.) Let \boldsymbol{U} be defined by

$$
\begin{equation*}
\boldsymbol{Y}\left(\lambda_{2}\right)=\boldsymbol{Y}\left(\lambda_{1}\right) \boldsymbol{U} \quad \text { on } \quad(a, b) . \tag{11}
\end{equation*}
$$

Multiplying on the left by J, differentiating, and using (8) we have,

$$
\begin{aligned}
\left(\lambda_{2} A+B\right) \boldsymbol{Y}\left(\lambda_{2}\right) & =\left(\lambda_{1} A+B\right) \boldsymbol{Y}\left(\lambda_{1}\right) \boldsymbol{U} \\
& +J \boldsymbol{Y}\left(\lambda_{1}\right) \boldsymbol{U}^{\prime} \text { a.e. on }(a, b) .
\end{aligned}
$$

From (11) we have,

$$
J \boldsymbol{Y}\left(\lambda_{1}\right) \boldsymbol{U}^{\prime}=\left(\lambda_{2}-\lambda_{1}\right) A \boldsymbol{Y}\left(\lambda_{1}\right) \boldsymbol{U} \text { a.e. on }(a, b) .
$$

Multiplying on the left by $\boldsymbol{Z}^{*}\left(\lambda_{1}\right)$ we have
(12) $\boldsymbol{Z}^{*}\left(\lambda_{1}\right) J \boldsymbol{Y}\left(\lambda_{1}\right) \boldsymbol{U}^{\prime}=\left(\lambda_{2}-\lambda_{1}\right) \boldsymbol{Z}^{*}\left(\lambda_{1}\right) A \boldsymbol{Y}\left(\lambda_{1}\right) \boldsymbol{U}$ a.e. on (a, b).

We first note that

$$
\begin{equation*}
\int_{a}^{b}\left\|Z^{*}\left(t, \lambda_{1}\right) Y\left(t, \lambda_{1}\right)\right\| d t<\infty \tag{13}
\end{equation*}
$$

where $\|\cdot\|$ is any matrix norm. In order that (13) hold it is sufficient that

$$
\begin{equation*}
\int_{a}^{b}\left|z_{i}^{*}\left(t, \lambda_{1}\right) A(t) y_{j}\left(t, \lambda_{1}\right)\right| d t<\infty \tag{14}
\end{equation*}
$$

whenever z_{i} a column of \boldsymbol{Z} and \boldsymbol{y}_{i} is a column of \boldsymbol{Y}. By the Cauchy-Schwartz inequality we have a.e. on (a, b) (writing z for $z_{i}\left(t, \lambda_{1}\right)$ and y for $y_{i}\left(t, \lambda_{1}\right)$) that

$$
\begin{equation*}
\left|z^{*} A y\right| \leqq\left(z^{*} A z\right)^{1 / 2}(y A y)^{1 / 2} . \tag{15}
\end{equation*}
$$

From

$$
0 \leqq\left(\left(z^{*} A z\right)^{1 / 2}-\left(y^{*} A y\right)^{1 / 2}\right)^{2}
$$

we have that

$$
\begin{equation*}
\left(z^{*} A z\right)^{1 / 2} \cdot\left(y^{*} A y\right)^{1 / 2} \leqq \frac{1}{2}\left(z^{*} A z+y^{*} A y\right) \tag{16}
\end{equation*}
$$

From (15), (16) and the hypothesis that every solution of (8) or (9) satisfies (10) when $\lambda=\lambda_{1}$ we see that 14 holds.

Next we establish that

$$
\begin{equation*}
\left(Z^{*}\left(\lambda_{1}\right) J Y\left(\lambda_{1}\right)\right)^{-1} \tag{17}
\end{equation*}
$$

is bounded on (a, b). Let $\alpha \in(a, b)$ then by Theorem 4 of [13] it follows that

$$
\begin{gathered}
\boldsymbol{Z}^{*}\left(t, \lambda_{1}\right) J \boldsymbol{Y}\left(t, \lambda_{1}\right) \\
=Z^{*}\left(\alpha, \lambda_{1}\right) J \boldsymbol{Y}\left(\alpha, \lambda_{1}\right)+\left(\lambda_{1}-\bar{\lambda}_{1}\right) \int_{\alpha}^{t} Z^{*}\left(s, \lambda_{1}\right) A(s) \boldsymbol{Y}\left(s, \lambda_{1}\right) d s
\end{gathered}
$$

for all $t \in(a, b)$. Thus from (13) we see that

$$
\begin{equation*}
Z *\left(t, \lambda_{1}\right) J Y\left(t, \lambda_{1}\right) \tag{18}
\end{equation*}
$$

has a limit as $t \rightarrow a$ and as $t \rightarrow b$. In order to show that (17) (which is continuous) is bounded it is then sufficient to show that the limits of (18) at a and at b are nonsingular. From Abel's formula for (8) and (9) (recall that $J^{*}=-J, A^{*}=A$, and $\operatorname{tr} P Q=\operatorname{tr} Q P$ for matrices P and Q) we have that

$$
\begin{aligned}
& \operatorname{det}\left(Z^{*}\left(t, \lambda_{1}\right) J Y\left(t, \lambda_{1}\right)\right) \\
& =\operatorname{det}\left(Z^{*}\left(\alpha, \lambda_{1}\right) J Y\left(\alpha, \lambda_{1}\right)\right) \\
& \cdot \exp \int_{\alpha}^{t} \operatorname{tr}\left(\left(J^{-1} \lambda_{1} A+J^{-1} B^{*}\right)^{*}+J^{-1} \lambda_{1} A+J^{-1} B\right) \\
& =\operatorname{det}\left(\left(Z^{*}\left(\alpha, \lambda_{1}\right) j Y\left(\alpha, \lambda_{1}\right)\right) \exp \int_{\alpha}^{t}\left(\lambda_{1}-\bar{\lambda}_{1}\right) \operatorname{tr} J^{-1} A .\right.
\end{aligned}
$$

Since by hypothesis $\int_{a}^{b}\left|\operatorname{tr} J^{-1} A\right|<\infty$ the limits of (18) must be nonsingular.

It now follows that (12) is equivalent to an equation of the form

$$
\begin{equation*}
U^{\prime}=M U \quad \text { a.e. on }(a, b) \tag{19}
\end{equation*}
$$

where $\int_{a}^{b}\|M(t)\| d t<\infty$. It is well known (see, e.g. Theorem 5.4 .2 of [9]) that all solutions of (19) are bounded.

Returning to (11) we see that every solution of (8) when $\lambda=\lambda_{2}$ is a bounded multiple of a solution of (8) when $\lambda=\lambda_{1}$.

The argument to show that every solution of (9) satisfies (10) when $\lambda=\lambda_{2}$ is similar.

Theorem 2 is a generalization of a result of Atkinson (Theorem 9.11 .2 of [1]) for the case where $B^{*}=B$.

Theorem 1 is also valid for the quasidifferential expressions considered in [13] where no smoothness conditions on the coefficients of l are required.

References

1. F. V. Atkinson, Discrete and Continuous Boundary Value Problems, (Academic Press. New York, 1961).
2. A. Devinatz, The deficiency index problem for ordinary self-adjoint differential operators, to appear.
3. W. N. Everitt, Integrable-square solutions of ordinary differential equations, Quart. J. Math. Oxford Ser., (2) 10 (1959), 145-55.
4. -_, Integrable-square solutions of ordinary differential equations (II), Quart. J. Math. Oxford Ser., (2) 13 (1962), 217-20.
5. -, Integrable-square solutions of ordinary differential equations (III), Quart. J. Math. Oxford Ser., (2) 14 (1963), 170-80.
6. -_, Singular differential equations, I; the even-order case, Math. Ann. 149 (1963), 320-40.
7. -, Integrable-square, analytic solutions of odd-order, formally symmetric, ordinary differential equations, Proc. London Math. Soc., (3) 25 (1972), 156-182.
8. -_, Integrable-square solutions of ordinary differential equations, Nieuw Archief Voor Wiskunde, to appear:
9. E. Hille, Lectures on Ordinary Differential Equations, (Addison-Wesley, Reading Massachusetts 1969).
10. V. I. Kogan and F. S. Roje-Beketov, On the deficiency indices of differential operators of odd order with matrix coefficients Publications of the State University, Karkov, UKR. S.S.R. No. 7 (1969), 93-95.
11. P. W. Walker, Adjoint boundary value problems for compactified singluar differential operators, Pacific J. Math., to appear.
12. - A vector-matrix formulation for formally-symmetric ordinary differential equations with applications to solutions of integrable square, to appear.
13. _-, An adjoint preserving matrix formulation for ordinary differential equations, to appear.

Received August 10, 1973. Research for this paper was partially supported by National Science Foundation Grant GP-38212.

Virginia Polytechnic Institute and State University
and
University of Houston

