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MORE ON A GENERALIZATION OF COMMUTATIVE
AND ALTERNATIVE RINGS

MARGARET HUMM KLEINFELD

Let R be a ring such that in every subring generated by two
elements the following identities are satisfied:

(1) U,y2 ,x) = y ° U , y j )

(2) U, y, z) + (y, z,x) + (z,x, y) = 0

(3) (U,y),jc,jr) = O,

where (<:/, fr, c) = (#b)c - a(bc), (a,b) = ab - ba, and a°b =
ab +ba. This condition is satisfied by any alternative ring and
also by any commutative ring. Assume further that R is a
simple ring of characteristic not 2 or 3 and that R has an
idempotent e such that (e, e, R) = 0 = (R, e, e) while
(e, R) ^ 0. It is proved in this paper that under these conditions
R must be alternative.

Main section. In [2] and [3], E. Kleinfeld has studied rings of
characteristic not 2 or 3 which satisfy identities (1), (2), and (3). In [2] it
is shown that if such a ring has no divisors of zero, it is either
associative or commutative. In [3] it is shown that if such a ring JR is
simple with idempotent e such that (e, e, R) = 0 = (/?, e, e) and (e,R)^ 0,
then JR is associative. In [4] E. Kleinfeld considers rings of charac-
teristic not 2 or 3 in which identities (1), (2), and (3) are assumed only
locally, i.e., in subrings generated by two elements. Commutative
rings satisfy this condition as do associative rings, but now in addition
the new condition is satisfied by all alternative rings. In [4] it is proved
that if such a ring has no divisors of zero, it must be either commutative
or alternative. It remained to investigate the implications of the new
local condition in the case of a simple ring R with idempotent
considered in [3]. This is done in the present paper. Henceforth we
assume that R is a simple ring of characteristic not 2 or 3 with
idempotent e satisfying (e, e,R) = 0 = (R, e, e) and (e,R)^ 0. We also
assume that identities (1), (2), and (3) hold locally in R.

The full linearizations of identities (1) and (3) are respectively

A(w, y, z,x) = (w, y °z,x) + (x, y °z, w) — y °(w, z,x)

- z ° ( w , y , x ) - y °(JC,z, w)- z °(x, y, w) = 0
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and

β(H>, y, z,x) = ((w, y),x, z) + ((w, y), z, x) + ((x, y), w, z)

+ ((x, y), z, w) + ((z, y), κ\x) + ((z, y),x, w) = 0.

We will use the notation /(x, y, z) = (JC, y, z) + (z, JC, y) + (y, z, x) to simp-
lify some of the identities. Because (2) holds locally we have
/(xy, y,x) = 0. Linearizing y gives

C(x, y, z, x) = /(xy, z, x) + /(xz, y, x) = 0,

while linearizing x in /(xy, y,x) = 0, gives

D(x, y, y, w) = /(xy, y, w) + /(wy, y,x) = 0.

We also have J(xy,x, y) = 0. Linearizing y gives

E(x, y, x, z) = J(xy, x, z) + /(xz, x, y) = 0,

while linearizing x in /(xy,x, y) = 0, gives

F(x, y, w, y) = /(xy, w, y) + /(u>y, x, y) = 0.

Now C(x,y,z,x) = 0 can be linearized to obtain

G(x, y,z, w) = /(xy, z, w) + /(wy, z,x) + /(xz, y, w)

+ /(wz,y,x) = 0.

Since we are assuming characteristics not 3, the condition that (2) holds
locally implies (x,x,x) = 0, which can be linearized to give /(x,y,z) +
/(x, z, y) = 0. This means the sum of the six possible associators with
entries x, y, and z is zero. This fact will be used freely and referred to
simply as "third power associativity."

As in [3] we use the techniques employed by A. A. Albert in his
paper on simple alternative rings [1], and we take the Peirce decomposi-
tion of R into the direct sum, R = Ru © Jf?10 © R0\ ® Rw, where exn = ixή

and Xηe = jx<7, for all xi} E Rih ij = 0,1. First we compute the multipli-
cation table of the Ri}. Exactly as in [3] we can prove

(4) fl,oK.. = O

and

(5) RoiRoo = 0.
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The proof of RQQRW = 0 and RwRoo C Rw given in [3] has only one use of
identity (2), and we can get the same thing by taking 0 = CO, yoo, X|0, e) =

yQO,e). Thus we have

(6) RooRw = O

and

(7) RIQRQQ C R]Q.

When we reverse subscripts we can replace the use of (2) by

0 = E(e, y,,, e, xOi) = J(eyίU e, xOi) + J(exou e, y n) = J(y,,,

and so we have

(8) K,,/?o« = O

and

(9) Ro\Ru C /?oi

The proof in [3] of RURW C Rw also has only one use of identity (2)
which can be replaced by using F(y,0, e, jcn, e) = 0, and where subscripts
are reversed, D(JC00, e, e, yOι) = 0. Thus we have

(10) RURW CRl0

and

(11) RQQRQI C RQ\.

Exactly as in [3] we can prove

(12) Xιo = O = x l oy,o + yio^io

and

( 1 3 ) X θ ! = O = Xoiy(H + yθl*O|.

We cannot hope to prove Ri0Rl0 = 0 = RQ]Ro\ as in [3], since this is true
only for associative rings and not in general for alternative rings, and
our hypotheses are satisfied by alternative rings. We can prove
however that R^Rw C Roι and l?oi#oi C Rw, which is what happens in
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alternative rings. These are the only two places where our multiplica-
tion inclusions will differ from those proved in [3]. We have 0 =
B(e9xιθ9yιθ9e) = ((e9xw)9yίθ9e) + ((e9xl0)9e9yw) + ((y]Q,x]Q),e,e) +
((Jio,*ιo),e, e) + ((e, JC,O), β, yI0) + ((e9xίO)9y\θ9e) =
2(xιo, yio, β) 4- 2(JCIO, e, y,0). Thus we have (Xιo9yιo9e)-\-(xίθ9e9yίO) =
0. Expansion gives jcloyio * e - x^y™ = 0 so that

(14) xioyio ^ =*io;yιo.

Also we have 0 = A(xιθ9yιθ9e9e) = (*iO,yιo°e,e) + (e9yl0oe9xl0) ~
yίO°(x\o9e9e) - e°(xιθ9yιo,e) - yl0

o(e,e,x]0) - e°(e9yl09xί0) =
(*io,yio,e) + (e,y,o,JCio) - e°(xιθ9yW9e) - e °(e,y]0,x]Q). Thus we
have (x\Q9yιo9e) + (^yto,^io) = e°[(xιθ9yW9e) +
(^y,o,x,o)]. However, expansion gives (x,o,yio,e) + (e,yiO,Xio) =
Xwyw e + y,oXio ~ ^-yio^io = e x,oyio, because of (12) and
(14). Substituting this in the previous equation we get e xιoy]o =
e °(e - xwyw). Since (e, ̂ , JR) = (R, e, e) = 0, which also implies
(e, 1?, e) = 0, the previous equation reduces to e JCiOyio e = 0, which in
view of (14) gives

(15) e x,oyio = O.

Combining (14) and (15), we see that we have proved

(16) R\QRW C RQ].

The same substitutions with subscripts reversed yield a proof of

(17) RQ\R0\ C Jf?ιo-

The proof of RίQRm C Ru in [3] has only one use of (2) which can be
replaced by C(e,xlQ,yQUe) = 0, and with subscripts reversed by
F(JCOI, e, y,0, e) = 0. Thus we have

(18) R]ORoι CRn

and

We now wish to consider products of the type ROoR\ι and RuRoo. We
have 0 = F(yU9e9xW9e) = J(yue9XM,e) + J(xwe9yU9e) = /(yπ,^oo,^),
and 0 = E(e9yll9e9Xoo) = J(eyίί9 e9Xoo) + J(exoo9e9yu)
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e, *oo). Thus we have /(y π , xOo, e) = 0 and /(y,,, e, xOo) = 0. Using
these two equations, we can proceed exactly as in [3] to prove

(20) Xooyπ = yπXooGKoo + Λn.

We now consider products of the form RuRu- From third power
associativity we have (jc,,,y,,,e) + O,x,,,yM) + (yπ,e,x,,) + (y,,,x,,,e)
+ (e,yn,Jt,,) 4- (Jt,,,e,y,,) = O. Expanding and simplifying we get
(jc,iyn -f ynXii)^ - eθcnyιι + ynXu) = 0, which can be rewritten as
CJCH ° yn, ^) = 0. This implies

(21) xuoyueRn + Rn.

N o w A(xίί,yιι,e,e) = 0 gives 2(x,,,y,,,e) + 2(έ?,y,,,*,,) =

Expanding and simplifying gives

y,,jci, e - e yπjc,ι ^. Now if we let xιxyxx = au + aw + αOi + «oo, then
because of (21) we have ynJCn = fen - aί0 — floi + fcoo Substituting these
in the preceding equation yields - 2a00 - a ]0 - a0) + 2foOo = 0. By the
directness of the Peirce decomposition this gives ^1o = floi==O and
tfoo = boo- Thus we have

(22) RuRnCRn + Roo

and

(23)

Reversing subscripts yields a proof that

(24) KooKooCKn +

and

(25)

From B(β,jc,0,yιi,Zόo) = 0 one can prove x,o yπ2oo = O = x l o Zooyn, ex-
actly as in [3]. Using this, (4), and (7) we have (JCIO, yπ,Zoo) = 0 =
(xIO,Zoo,yiι). Also, using (4) and (6), we see that (zoo,*io,yπ) = 0. Now
from A(zoo,yii,^xio) = 0 we get 2(zoo,y,i,Λ;1o) + 2(xlo,yii,zOo) =
^°(zoo,yπ,Xιo) + e°(*ιo,yn,Zoo) + yn0(zoQ,e,xί0) + yu0(xw,e,zoo). We
already know (JC,0, yn,Zoo) = 0 and using (6) we see that (z00, e9xί0) = 0
while clearly (JC,0, e, Zoo) = 0. We are left with
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(26) 2(Zoθ,yi!,*!θ) = e°(ZθO,yil,*1θ).

On the other hand, expanding and using (6), (10), and (20) we see that
(zoo,yπ,*io)Ξflu, so that we have

(27) eo(z0o,y]UX\o) = (zoo,yn,Xw)'

Combining (26) and (27) we conclude that (z00, yπ,*io) = 0. Now ex-

panding and using (6), (10), and (20) gives (y,i,zoo,Xio) = yπZoo Xio =

Zooyn *ιo = (zoo, yn,*io) = 0. We have now shown that five of the six

possible associators involving yu, z00 and jc10 are zero. By third power

associativity the remaining one, (yπ,*io, z00), m u s t be zero also. We

have proved

(*io, y119 Zoo) = ( ^ n , ZOo, *io) = {ZQQ,X\O, y M )

(28)
= (Zoo,yn,Xιo) = (y 11,̂ 10, Zoo) = (Xio,Zoo, y n ) = 0.

The same substitutions with subscripts reversed yield a proof of

(^oo, *oi, y11)

(29)
= (Zoo, y n , *oi) = ( y u , Xoi, Zoo) = (*oi, Zoo, yπ) = 0.

As in [3] we let A = {au -+• aOolauR\o = RoiQn = 0 = aOoRO\ =

We can prove exactly as in [3] that

(30) RuRooCA and 2?Oo#ii C A.

We now wish to show that all associators with two elements from Ru

and one element from i?/7 vanish. F r o m B(jc,o,e,yn,z,,) = O we get

O = (x,o,yπ,z n ) + (xio,z,,,yn) = ' - Xio(yπZn + z n y π ) . Using (22) and

(23), let yiιZ,, = α,,-f floo and z,,y,, = bu + αOo Then we have 0 =

*io(yiiZn+ z,,y,,) =• Xio(αiι + fo,ι + 2αOo) = 2x10α0o. Thus we have

*iotfoo = 0. But this implies that (JC,0, y n , z n ) = - X\o(au + α0 0) = 0 and

so also (xio,z,,,yι,) = O. N o w from Λ ( x l 0 , ^ y i i , z , , ) = 0 we get

2(z,,,y,,,*,0) = ^ 0(zM,y,,,Jc,o) but since (z,,,y,,,x,o)Glίio, this implies

(Zn,yii,JCio) = O. The same argument with z,, and yu interchanged

proves that (yn, zM, JCH>) = 0 and because of (4) and (10) we have directly

that (Zi,,jc,o,y,,)= 0 = (y,i,x,o,z,,). Thus we have

(31) (yπ,Zn, JC,o) = (yu, Xio,Z,,) = Uio,yii,Z,i) = 0.

The same substitutions with subscripts reversed yield a proof that

(32) (Xou yoo, Zoo) = (yoo, Xou Zoo) = (yoo, Zoo, Xo\) = 0.



MORE ON A GENERALIZATION OF RINGS 165

We now show that all associators with two entries from Ru and one
entry from Rμ vanish. From β(jcOi, e, yn, zu) = 0 we get (JCOI, yπ, z n ) +
(jCoiiZii,yn) = O. Because of (8) and (9) we have directly that
(yii,*oι,2Ί,) = O = (z n ,x O ι ,yi i) . K follows by third power associativity
that (yn,Zii,JCoi) + (2rM, yn,xOi) = 0. Expanding gives
(yπZιi + Zιiyii)Xoi = O. Using (22) and (23), let y n z,, = an + a00 and
Znyii = bxx + floo Substituting this in the preceding equation gives
(flιi + b,i + 2αoo)^oι = 0, and hence αOo*oi = 0. We now have
(yπ,2:II,Xoι) = O = (z,,,yII,jCoι). N o w A(x0ue,yu,zu) = 0- gives
2(Xou yn, z,,) = έ? O(JCOI, y,,, z,,), but (xOι, yn, zn) G KOi because of (5), (9),
and (22). Thus (JcOι,yn,Zn) = O. We have now shown

(33) (Xoi, yι i,Z,,) = (y n ,Xoi ,Z i i ) = ( y π ^ π ^ o i ) = 0.

Reversing subscripts yields a proof of

( 3 4 ) Cx 1 0, yOo, ̂ oo) = (yoo, -̂ 10, ^oo) = (yoo, ^oo, X\o) = 0 .

We can now prove exactly as in [3] that A is an ideal of 1? and that since
R is simple and (e, /?)^0, we must have A = 0. Since RuRoo C A and
RooRπ C A by (30), we have

(35) RUROO = ROORU = 0 .

Also using (31)—(34) we can prove easily that if yuzu = au + aO(>, then
amE:A and if yOô oo= c π + c00 then cnGA, in fact our proofs of
equations (31)—(34) contain this information. Thus we have

(36) RuRnCRn

and

(37) RQQRQQ C /?OO

We now have the same multiplication table as in an alternative ring,
i.e., RijRu C δjkRu except for the case /?ί7i?/7 where we have RηRij C
R}i. We will now show that R must be alternative by considering all
possible associators (RihRkhRmn) and showing that they obey the
alternative law. An associator (x, y, z) obeys the alternative law if
(xσ, ycr, zσ) = sgn CΓ(JC, y, z) for all six permutations σ of x, y, and z
within the associator. Using (31), (33), (35), and (36) it is obvious that
all associators with exactly two entries from Ru vanish, ΐ = 0,1. Thus
assuming iV/ we have
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(38) (ΛHCΓ, /?«σ, Ru<r) = (/?i(<7, Rh<r, Rμσ) = (β i (o% /Jh<r, / ^ σ ) = 0.

In the case where exactly one entry is from Rih we see that if one or both
of the remaining entries are from Rjn the associator vanishes by either
(28), (29), or (38). There are three other possibilities for the remaining
two entries, both from Rih both from Rjh or one from Ru and the other
from Rμ. We consider the last of these first. We have immediately on
expansion that Oci,,yo,,zIO) = 0, (yOi,Zio,*n) = 0 and (z,o,jcn,yo,) =
0. Now from β(yOi,^, JC,,,z,o) = Owe get (y0ι,Xιι,zl0) + (yoi,z,o,JC,,) -
(Zιo,yoi9JCπ) ~ (zϊ0,JCn, yoi) — 0. The second and fourth terms vanish
leaving (yoi,*n,Zιo) = (Zιo,yoi,Xπ), but (yOi,*ii,z,o)eKoo w h i l e

(2.0, yoi,*n) e /?,„ hence we must have (yOi, JC,,, Z I O) = 0 = (z1 0, yOi, Jc,,). It
follows from third power associativity that (JC,,, zI0, yoi) = 0 also. Since
we could repeat this with subscripts reversed, we have

(39) (Raσ9Ruσ9Rliσ) = 0.

Now consider associators of the form (l?,,σ,R\Oσ,Rwσ). Using (4),
(10), and (12) we see that (JCπ,y,o,zIO) = JC,Iy,o z l o = - z l 0 Jcny10 =
(Zιo,Xn,yιo), so we have

(40) (JC,,, y10, z,0) = (z I 0, Jc,,, y l 0).

Since y,0 and z l 0 are interchangeable, it follows from (40) that

(41) ( J C , , , Z I O , y , 0 ) = ( y i o , J C , , , z , 0 ) .

W e a l s o h a v e ( y , 0 , z , 0 , J C M ) = y n , z , 0 - J C i i = - z m y , 0 J Γ M = - ( z , o , y ι o , J Γ ι ι ) .
T h u s w e h a v e

(42) (yio,zIO,JcM)= -(z,o,y,o,JCιi).

Using third power associativity we have (JCπ,yio,z,o) + (zi0jxίUy]0) +

(y io ,Zio,^ i i ) + (JCn,Z,o,y,o) + (yio,JCιι,Z,o) + (z,o,yio,JCn) =

0. Substituting in this equation (40), (41), and (42), we find this reduces

to 2(jcII,y,o,zlo) + 2(jc,,,z1o,y,o) = O, so we have

(43) (JCM, yI0, zI0) = - (JC,,, Z,0, yI0).

Combining (40), (43), and (41) we see that four of the associators are
related by
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and the remaining two are related by (42). We need only link one of the
first four to one of the second two in the proper way to have the full
alternative relation. For this we use G(x]X,e, zί0, yxo) = 0 to get

9yίO) + (yίθ9XnZίθ9e)
) + (e,xxuyxozXQ) =

0. Expanding the associators and using the multiplicative relations, we
see that the last three associators vanish. Using this and expanding the
associators containing the product xnZi0 gives (jcn, z10, yio) + (yio, X\u Zio)
+ (Zio, yio, Xu) - X\\ZXo yio + yio * n z 1 0 + yio XπZ10 = 0. Using (4), (10),
and (12) we see that -JCnZio yio = yio'Jc n z l o =

Substituting this in the preceding equation gives
yio^ii^zw) + (zlo,yio,Xπ) - 3(y,o,Xπ,zIO) = O. By (41)

and (44) this yields -(Xn,z lo,yio) + (Zio,yio,JCπ) = O. We have now
shown

(45) (Λ«σ, Rip, Rqσ) = sgn σ(Rih Rih Rq).

We now consider the possibility of one entry in JRΠ and two entries in
J?oi- This works very similarly to the preceding argument. By ex-
panding and using (8), (9), and (13), we quickly get (zOi,yOi,Xπ) =

(yoi,*,,,Zoi), ..(yoi,Zoi,Xii) = (Zoi,Xπ,yOi) and (Xπ,yoi,Zoi)
-(xii,Zoi,yOi). Substituting this in third power associativity one gets
(Zoi,*n,yoi) = -(yoi,^π,Zoi). Thus we have

(46) _
"~ lyoi? 2Ό

and

(47) (x,,, y O i , Zoi) = - (Xπ, Zoi, yO i).

The final link is provided byG(e,xU9 zOi, yoi) = 0, which gives (jtn, zou yOί)

Oi) = O. The
last three terms can be shown to vanish by expansion. Expanding the

associators involving yOiJcn, the preceding equation becomes (jc,,, zou yOί)
+ ( y o ι , * ι ι , Z o i ) 4- ( Z o ι , y o i , X i i ) - y o i J C i i Z o i - y o i X i ι Zoi + Z O i y O | J C , , =

0. Using (8) and (13) this gives (JC,,,Zoi,yoi) + (yoi^. i^oi) +
(Zoi, youXn) ~ 3(yOi,x,i, zOi) = 0. Using (46) this reduces to (*,,, zOi, yOi) ~
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(yoi,Xii,Zoi) = 0. Since subscripts can be reversed in this proof, we
have proved

(48) (R«σ, R}iσ, R}ia) = sgn σ(Rih Rjh Rμ).

This completes the case where exactly one entry comes from Rih Next
we consider the case where all entries are from Rw. From

A(y,o,e,z,o,Xio) = O we get (y,o,Zio,Xιo) + (xιo9zίO,yίO) = e °(yιo,zlo,Xιo)
+ Zw°(yw,e,xw) + e°(xιθ9zίO,yιo) + zIO<>(Xιo,e,yio). Expanding we

see that z10

0(yio,e,*io) + z,o°(*io?e,yio) = z l 0 ° ( - yio*io~*ioyio) = 0
because of (12). Thus we are left with

(*io? Z\$, y 10)

(49)
= e ° [(y,o, z,0, Xio) + (*ιo, 2,0, yio)].

Expanding will show that CR,o,/?ιo,#ιo) C i?,, + jROo. Let (yιO,z,o,JCio) +
(JCio,2:io,yio) = Λii + αoo. Then g °[(y 10,z,0,Xio) + Uιo,2:io,yio)] =
2α,,. Comparison with (49) yields 2au = α,, + α00 which implies α n =
0 = α00, so that we have

(50) (yio,2,o,Xιo)= -Uιo,2:ιo,yιo).

From B(x,o,yιo,^2:,o) = O, we get ((x,o,yio),β,zlo) + ((Xio,yio),2io,^) +

0. The first two terms and the last two terms vanish because of
(39). We are left with (yiO,Xιo,2ιo) + (yio,2ιo,*ιo)==O which gives

(51) (yio,*io,2ιo)= -(y ic^cXio) .

Since all entries are from Rw and since any two transpositions generate
the full symmetric group on three elements, (50) and (51) are sufficient to
imply the full alternative law for associators of this type. Since the
same argument works with subscripts reversed, we have proved

(52) (i?/7σ, Rqσ, Rtj) = sgn σ(Rιh Rιh Ri}).

Now we consider the case of one entry from JROI and two entries from
Rw. Using (12), (13), and various multiplicative relation we have

(*oι? ylo? Zio) = (yio? ZJO, JCoi)? v ̂ oi? yio? Zjo) = ~~ (-^oi? ^10? yio)? a n d

(*oι? 2:10, yio) = (zio, yio»^oι)- Thus we have four of the associators prop-
erly related by

(53)
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From third power associativity we now get

(54) (y,o, Xoi, 2,o) = ~ ( z io, *oi, y 10).

The necessary link is provided by G ( J C 0 I , £ , Z 1 0 , yio) = 0 = (JCOI,ZIO, yio) +

+ (y\oZ\o,e,Xoι) + (Xoι,yioZio,e) + (^Xoi,yio^io). In this
equation all the associators having entry Xoî io vanish because of (19)
and (28). We are left with (xOι,zIO,yio) + (yio,*oi,z,o) + (zίθ9yιo,xOί) +
yio^io * *oi - ^ o i y.o^io- Xo\ yioZιo = 0. This gives (Xoi,Zlo,y,o) +
(yio,Xoi, 2ιo) + (2,0, ylo,*oι) + 3(xOi, ylo, z10) = 0. Using (53) this reduces
to (JtOT,yio,Zio) + (yιo,*oι»Zιo) = O, which completes the case. Since we
can reverse subscripts in this proof we have proved

(55) (Ri}σ, R^, Rμσ) = sgn σ(Rih Rih Rn).

We are now left with only the cases where all three entries come from
the same jRif . We will show that Ru and Rw are associative subrings of
R. As in [1], it follows easily from the multiplicative relations of the Ri}

that B = RlQRQl + Rw + Roι + Ro\Rw is an ideal of R. Since we are
assuming (e,R)^ 0, we have R,0 + JROi ¥" 0, so that B^ 0. Hence by the
simplicity of R we have B = R. This implies that Ru = Rl0R0] and
Rw = Ro\R\o. Now consider the associator (JCn,yii,Zii). Since Ru =
RιoRo\, we can write 0cπ,yπ,Zji) as a sum of associators of the form
(fliofcoι,yn,z,,). In an arbitrary ring we have the Teichmuller
identity (wx,y,z)-(w,xy,z) + (w,x,yz) = w(x9y,z) 4-
(w,x,y)z. Using this gives (awb0l9yU9zu) - («io,boiyn,zn) +
(aιo9boι9ynzu) = «io(fcoi,yn,2:π) + (tf,o,&oi,yn)z,,. However, by (39)
associators of the type (/?,0, i?oι, J?π) vanish and by (33) those of the type
(JROI,UII,/?II) vanish also. We are left with (a]ObO],y]UZu) = 0 and
hence Cxn,yπ,Zi,) = 0 so that Ru is associative. A similar argument
proves that Rw is associative. We have proved the following:

THEOREM. If R is a simple ring of characteristic not 2 or 3, which
has an idempotent e such that (e,e,R) = 0 = (i?, e, e) and (e9R)^ 0, and
if every subring ofR generated by two elements satisfies (1), (2), and (3),
then R is alternative and hence either associative or a Cayley Dickson
algebra [1].
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