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ON THE EXTREMAL ELEMENTS OF
THE CONVEX CONE OF SUPERADDITIVE

n- HOMOGENEOUS FUNCTIONS

MELVYN W. JETER

Let Pn be the collection of finite-valued functions defined on
the nonnegative orthant, E *2, of euclidean n2-space such that for
p E Pn it follows that p: Elr--> E\ and in addition

(a) p is continuous,
(b) p(ax) = anp(x),a ^ 0 ,
(c)

It follows readily that Pn is closed with respect to addition and
nonnegative scalar multiplication. Therefore, Pn is a convex
cone, whose vertex is the zero function, in the linear space of real
functions defined on E+

n-. The purpose of this paper is to
investigate the extremal elements of P*.

1. Introduction. One well known member of Pn is the
permanent function. Recently functions that generalize the permanent
function have been studied by Rothaus [9] and new representations for
the permanent function have been sought (for example see [2] by
Marcus and Newman). The interest in determining the extremal
elements of Pn comes from the fact that under certain circumstances it
is possible to give an integral representation for any p E Pn in terms of
the extremal elements of Pn [1] (examples of similar studies may be
found in papers by McLachlan [4], [5], [6] and Rakestraw [7]). In this
paper it is shown that for α E J S ^ \ 0 , the functions pa(x) =
sup {λ": x ^ λa} are extremal elements of Pn. Replacing condition (b)
by

(b) p(ax) = ap(x), α^O,

gives the collection of monotone concave gauges, denoted by Pf

m

defined on Eϊ [8]. If for all / = 1, , n, A E P'n9 then the function A
defined as A (x) = IT^AOO is an element of Pn. If Sn denotes all those
p E Pn which are finite nonnegative linear combination of functions of
this type, then clearly Sn is a subcone of Pn and Sn contains the
permanent function. It is shown here that for a function p E Sn to be
an extremal element of Pn, then p must be of the form p(x) =
where A(x) is an extremal element of P'n.
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In the material to follow define [p: a] = {x: p(x) = α}, where
p E Pn. It follows that α[p: 1] = [p: an] for all α ^ 0. Also, use will
be made of the fact that for p E P'n or p E Pπ, then x ^ y (or x > y)
implies that p(x)^p(y) (or p(x)>p(y)). Further if x Eint i?^ and
p^O, then p(jc)>0.

2. Extremal elements of Pn. The first theorem of this
section gives some of the extremal elements of Pn. It is conjectured
that this set includes all the extremal elements of Pn. The following
lemmas will be needed.

LEMMA 1.1. If p, q EP n . Define

(p Λq)(x) = min{p(x), q(x)}.

Then p Aq E Pn.

Proof. It follows readily from the definitions that p Aq is continu-
ous and homogeneous. Also,

{p Aq){x + y) = min{p(x + y

For all it = 1, , π 2 , let p^(x) = xl, JC =(JC,, , v ) G E>. Then
p^ E Pn. With this in mind consider the following:

LEMMA 1.2. Lei α = (α,, ,(v) e £^\{0} . Define pa as fol-
lows:

Then pa E Pn.

Proof. Without loss of generality, assume the nonzero coordi-
nates of a are au , αk, k^n2. Let

Lemma 1.1 implies that p GPn. Now for any given x E £ > suppose
that
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1 ^ / ̂  /c. Then it follows readily that for eaeh /

with equality when ί = /. Further there does not exist λ > x{\a{ such
that x^λa since otherwise

JC, > λ f l / x > —

Hence, pα(jc) = p(jc) for every jt Ei?£, which implies that pa = p.
Notice that if a, is a nonzero coordinate of a and x E E> such that

JC/=O, then JC ^ λα implies that λ = 0 . Thus, pβ(jc) = O. Also, if
a = ek, where efc is that vector having all zero coordinates except the A th
coordinate which is 1, then pa = pk.

In general, if p E Pn the set [p: 1] is difficult to characterize. For
example a complete characterization of the set [p: nl/nn] (and hence
[p: 1]) where p is the permanent function is not known [3]. However,
if p = pa for some α ̂  0, then a characterization is possible. Let
a = (ίii,- \ a,r) E Etr- , cι^ 0. For every ί G{1, n2}, define

= {(xI, ,xl H,fl, ,^ι +i, ,ΛπO: */ ^ 0 y for jV/}.

LEMMA 1.3. If a E£^\{0},

[pβ: 1]=

Proof. Let yEJ?(a,), where fl/^0. Clearly, ygfl. Notice
there does not exist λ > 1 such that y ^ λα, for otherwise a, ̂  λα, >
ά, . Hence, by definition pa(y) = 1. This implies that

U i j R t a J i a ^ O K i p , : 1].

Now suppose y E [ p α : l ] . Considering (1.1), there exists fcE
{1, ,n2} such that ak > 0 and (yk/ak)

n = 1. This implies that yϊ = αϊ,
which implies that yk = αfc. For all other ϊ E {1, , n2} such that a, > 0,
{yila iY ^ 1 and hence yf ^ αf . It follows that y &R(ak) and the proof is
complete.

Using this result it is possible to show that pa = ph if and only if
a = b. Next using Lemma 1.3, pa is shown to be an extremal element of
P..
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THEOREM 1.1. The function pa is an extremal element of Pn.

Proof. Suppose pa = / + g. Let y ^R(at)9 where 0,^0 and i E
{l, ,n2}, then

PΛa) = Pa(y)=f(y) + g(y)^f(a) + g(a) = Pa(a).

This implies f(y) = f(a) and g(y) = g(a), since f(y)^f(a) and
g(a). Also, pa(a)=f(a) + g(a) implies pa(a)^f(a) and p
g{a). Therefore, there exists a ^ 0 and β ^ 0 such that apa(a) = f(a)
and βpa(a) = g(a).

Again, without loss of generality, suppose the nonzero coordinates
of a are au , ak. Let x E E ^ such that x, > 0, ,xk > 0. Then for
every ί £ { l , ••-,&} there exists A f >0 such that αf = AΛ . Let λ =
maxjλi: i E {1, , fc}}. Notice there exists a / E {1, , k) such that
λ = λy. Hence, Ax, ^ α, with equality when i = j . Clearly, if
/ E {1, , M2}\{1, fc}, then AJC, g ^. Therefore, Ax GR(a}). Setting
y = AJC, it follows that

= apa(x).

Clearly, if x 6 £ > such that JC, = 0 for some i E{1, ,/c}, then 0 =
pα(x). This implies /(JC) = O, which in turn implies that /(*) =
apa(x). In either case f(x) = apa(x). Hence, / = apa. Likewise, g =
βpa. Therefore, pa is an extremal element of Pn.

By a somewhat similar proof it can be shown that the function pa is
minimal in the set of all elements of Pn which agree with pa(a) at
a. Also, for a > 0 the sets [pa: 1] have the property that a[pa: 1] =
[pa: an] = [paa: 1].

Recall that Sn CPn is the set of finite nonnegative linear combina-
tions of products of n functions of P'n. For a E J5^\{0}, let qa(x) =
sup {A: x S λa}. Then, as in the case for Pn, qa is an extremal element
of P'n. Also, pa(x) = [qa(x)]n, which implies that pa E Sn. Since 5n is a
subcone of Pn then pa is an extremal element of Sn. It is conjectured
that {pa: a E £"̂ {0}} represents all the extremal elements of Sn.
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LEMMA 1.4. If p^O and p(x) = Π"=, Af(x), where A, E:P'n, is an
extremal element of Sn, then each A{ is an extremal element of P'n.

Proof. Suppose there exists a fc = l, ,n such that Ak is not
extremal in Pf

n. Then there exists /, g EPr

n such that Ak = / + g and
neither / or g is proportional to Ak. Hence,

p(x) = Π A,(*) = A,(JC) (/(*) + g(x)) An(x)

= A,(x) /(*) An(x) + A,(JC) g(x) An(x).

Since p is extremal in Sn, there exists α ^ O and β ^ 0 such that
A,(x) f(x) An(x) = αp(x) and Aλ(x) g(x) An(x) =
βp(x). Let Λ: EintJB^. Then p(x)>0. Also, it can be shown that
each A, ( JC)>0, /(x)>0 and g(jc)>0. Therefore,

• Ak(x) An(x) = αp(x) = A,(x) f(x) An(x),

which implies that αAfc(x) = /(x), for all x GintEt 2. It follows from
continuity that aAk(x) = f(x) for all jtGEJ*. This is a
contradiction. Therefore, Afc is an extremal element of P'n for each k.

In any convex cone, if the sum of two nonzero elements is an
extremal element, then the two elements are proportional. Hence, the
only possible extremal elements of Sn are those elements of the form

(1.2)

where /(/) is a nonnegative integer and Σ/(ί) = n. Moreover, Lemma
1.4 implies that the A, must be extremal elements of P'n. The Lemma
1.4 and these comments give conditions that are necessary when p is an
extremal element in Sn. These conditions are not sufficient as will be
seen in Proposition 1.1.

Attention will now be given to considering the extremal elements of

THEOREM 1.2. Let p be defined as in (1.2). Let k be the number of
ifor which /(/) > 0. Ifk> I, then pis not an extremal element ofPn.

Proof Assume
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where each /(/) is a positive integer, Σ*=j/(/) = n and the A, are distinct
(pairwise nonproportional) extremal elements of P'n. For each i E {1,2}
define

/«(*) =
I 0

It follows easily that p = /, + f2. It will now be shown that each f, G Pπ.

n-Homogeneity: Let α ^ 0 and x G JEJ*. If α = 0, then
Λ2(αJc) = 0 and hence f Aax) = 0 = anfXx). Suppose a>0. If 0 =
A{(ax)-\-A2(ax) = a(Aι(x) + A2(x)), then A\(x) + A2(x) = 0 and hence

= anfi(x). Suppose a > 0 and

then Λ,(JC) + A2(x) >0. Therefore,

So for all a g 0 and x G E£, /(αx) = anfXx).

Superadditivity: Let JC, y E £ ^.

/. If Λ,(JC + y) + A2(JC + y) = 0, then

which implies that ΛI(JC) + Λ2(JC) = 0andΛ,(y) +A2(y) = 0. Therefore,

//. Suppose that Ax(x + y)-hΛ2(jc + y ) > 0 , Λ,(JC) + Λ2(JC) =

0andΛ,(y) + Λ2(y) = 0. Clearly, /,(x + y)^/,

CaseΠL Suppose Ax(x + y) + A2(x + y)>0, Λ,(JC) + A 2 ( J C ) > 0

and Λ,(y) + Λ2(y) = 0. Then
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and fi(y) = 0. It must be shown that

όd*lD(x) P{X)'P ( J C + V )
Ax(x + y) + Λ2(x + y)P{X y) = Aι(x) + A2(x)

This is true if and only if

(1.3)

It suffices to show that each term on the right hand side of (1.3) is less
than or equal to the corresponding term on the left hand side of
(1.3). Now for m = 1 (or m = 2)

Am(x)Ai(x + y) Π A'f>\x + y)

= Am(x + y)A(x + y) {Am{x)AtJm)Λx + y) • Aι

k

ik\x + y))

It follows that (1.3) is true.

Case IV. Suppose A,(x + y) +A2(x + y)>0, A,(x) + A2(x) > 0
and A,(y) + A2(y)>0. Then

and

It must be shown that

A?>
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This will be true if and only if

(c) Ai(x

(d) ^Ai

(e) +

Since

(f) A
l

fl(g) ^ A,{xHA,(x) + Ajx))(A,(y) + AJy)) fl A\ih{x + y)

(h)

it is sufficient to show that (g) ^ (d) and (h) ̂  (e). An argument similar
to the one in Case III shows that each term of (g) or (h) is greater than or
equal to the corresponding term of (d) or (e). Thus, (c) ̂  (d) + (e) and
hence (a) ̂  (b). Therefore, each / is superadditive.

Continuity: Let x G E+2 and {y,}CE+n* such that y} -* x. Suppose
AI(JC) + A2(x) > 0, then without loss of generality it may be assumed tha
Λ1(y/) + Λ2(y j)>0 for each /. In this case

Suppose that Ax(x) + A2(x) = 0, then p(x) = ft{x) = 0. If there exists
m G{1,2} such that Λm(yy) = 0, /(y,) = 0 = /•(*). Suppose Am(y i)>0
for m = 1,2. Since each A^Xy^-^O and the expression

is obviously bounded by 1, then /•()>/)-»0. Therefore, /• is
continuous. Hence, each f, G Pn.

It remains to be shown that the functions ft form a nonproportional
decomposition of p. Suppose fi(x) = ap(x), for all x G E J . Let
JC G JE+2. There exists a sequence {yy} Cint E ^ such that y, -> x. Since
y, GintE^, then Λ1(yJ)>0, Λ2(y/)>0 and p(y y)>0. Hence,
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which implies that

Since A(y;)-*ACO and a(Ai(yi) + A2(yi))-*a(Aι(x) + A2(x)), then
Aι(x) = α(Ai(jc) + A2(JC)). Since Λi and A2 are pairwise nonpropor-
tiόnal extremal elements in P'n, this is a contradiction. Therefore, there
does not exists α ^ O such that / = αp. Hence, the decomposition is
nonproportional, which implies that p is not an extremal element of Pn.

Two questions immediately arise. First, is / e 5 n ? Secondly, is
every extremal element of P'n of the form qa, where a E £v\{0}? If
both answers are affirmative, then every extremal element of Sn is of the
form pα, where a E JE^\O. It is entirely possible that the functions /
do not belong to Sn.

The following is an example of a subcone of Pn that has as extremal
demerits some functions that are not extremal in Pn.

EXAMPLE 1.1. Let Qn bέ the set of all p: £ ^ - » E ΐ such that

n2

P(X)= Σ (Xih inXil ' Xin
i 1, , in =

where /1 ̂  S in, αlΊ,...,,-„ ̂  0 and x = (xu ,xn0 Thus, Qn is the set
of nonnegative superadditive n-fotms. Clearly, Qn is a subcone of
Sn CPn. Therefore, the functions /),, ,pn2 are extremal elements of
Qn. However, these are not all of the extremal elements of Qn. In fact
without much difficulty it can be shown that the extrefrial elements of Qn

are the positive scalar multiples of functions of the form

where kj E{1, ,n2}, for / = 1, ,n and k\ ^ ^ kn.
Now for every x = (xu ,Jcn0 e Eϊ* define p{x) as

(1.4) p( jc) = jcί ( 1 ) jcπ 2

/ ( n 2 ),

where (/) is a nonnegative integer and ΣΓlf/(/) = n. Notice that
l(i) > 0 for at most n values of i = 1, , n2. Clearly, p G Qn. In fact
the preceding example shows that p is an extremal element of Qn. If k
is the number of i E {1, n2} for which l(i) > 0 and k> 1, Theorem 1.2



140 MELVYN W. JETER

says that p is not an extremal element of Pn. The following proposition
shows that p is not an extremal element of Sn.

PROPOSITION 1.1. Let p be defined as in (1.4). If k > 1, then p is
not an extremal element of Sn.

Proof. Without loss of generality assume

P(X) — X] X2 Xk

where each l(k) > 0. As seen in the proof of Theorem 1.2, p = fx + f2

where

' O . . . v '<
| k

0

Consider /Iβ Notice that

Let

( XXX2 , X j + J C 2 > 0

X^ + X^
0 , X, + JC2 = 0

Then /,(JC) = g(x)x[(l)xii2)-1 xι

k

(k\ Since the objective is to show that
/j E Sή9 it remains to be shown that g GPr

n. As in Theorem 1.2 g is
continuous and homogeneous of degree 1. To show supperadditively
let x, y G £v . If JC, + x2 = 0 or y, 4- y2 = 0, then it follows readily that
g(x+y) = g(x) + g(y) Suppose xί + x2>0 and y, + y 2 >0. In this
case it must be shown that

which is equivalent to proving that

y2) - [(xλx2)(x{ + y, + x2 + y2)(y, + y2)

s o.

By direct calculation the left hand side of the above inequality is equal
to (JCiy2 — Jc2yi)2. The computation is tedious but straightforward.
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Hence, g is superadditive and fx G Sn. Likewise, f2 E Sn. Hence, p is
not an extremal element of Sn.

Actually, it can be shown that if p is defined as in (1.2) and if at
least two of the A, are additive, then p is not an extremal element of Sn.
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